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Auxiliary field diffusion Monte Carlo calculations of magnetic moments of light nuclei
with chiral effective field theory interactions
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We calculate the magnetic moments of light nuclei (A < 20) using the auxiliary field diffusion Monte
Carlo method and local two- and three-nucleon forces with electromagnetic currents from chiral effective field
theory. For all nuclei under consideration, we also calculate the ground-state energies and charge radii. We
generally find a good agreement with experimental values for all of these observables. For the electromagnetic
currents, we explore the impact of employing two different power counting schemes, and study theoretical
uncertainties stemming from the truncation of the chiral expansion order by order for select nuclei within these
two approaches. We find that it is crucial to employ consistent power counting schemes for interactions and
currents to achieve a systematic order-by-order convergence.
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Introduction. Electromagnetic (EM) phenomena are of
great importance in nuclear physics both as external probes
into the structure of atomic nuclei and to understand certain
internal observables. From high-energy electron scattering
that explores nuclear distributions [1–3] to EM transition
strengths that reveal details of nuclear structure [4–6], it is
crucial to have a robust theoretical description of both strong
and EM forces in nuclear-physics systems. One instance of
their union manifests in the magnetic moment of an atomic
nucleus. Magnetic moments are fundamental properties of
nuclei which interact with atomic electrons and give rise to the
hyperfine structure in electronic spectra which can be used as
a powerful tool to test quantum electrodynamics and nuclear
structure. Additionally, nuclear magnetic moments provide
a compelling test of both nuclear many-body methods and
the construction of nuclear interactions and EM currents in
a low-energy framework.

The nuclear magnetic moment is the vector that defines
the strength and direction of the magnetic field created by
an atomic nucleus. In a simple independent-particle model,
the magnetic moment can be computed from the sum of in-
dividual nucleon magnetic moments and contributions from
nonzero orbital angular momenta of protons. For a more
realistic description, this model is greatly complicated in
two ways: correlations in the nuclear wave function and
internucleon EM currents. The former can be handled by
quantum many-body methods, such as the quantum Monte
Carlo (QMC) [7] method, while the latter can be handled in
a consistent way by including higher-order contributions from
an EM current derived from chiral effective field theory (EFT)
[8–13].

Chiral EFT provides a framework for modeling the
interactions both among constituent nucleons and with
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external probes in terms of an expansion in powers of the
relevant momentum scale (Q) over the chiral breakdown scale
(�). Retaining a finite number of terms in the chiral expansion
allows one to study nuclear systems using a systematically
improvable yet tractable model of the interactions. Addition-
ally, theoretical uncertainties can be systematically estimated
by analyzing the order-by-order convergence of the expansion
[15,16]. In this expansion, the lowest order term in Q/� is
referred to as the leading order (LO) term, the second lowest
order term as next-to-leading order (NLO), the third lowest
order term as next-to-next-to-leading order (N2LO), and
so on.

In this Letter, we employ local interactions and EM cur-
rents from chiral EFT and use them to compute the magnetic
dipole moments of light nuclei with the auxiliary field dif-
fusion Monte Carlo (AFDMC) method [7,17,18]. In Fig. 1,
we compare the calculated magnetic moments to experimen-
tal data and generally find good agreement. To bolster these
results, we also compute the corresponding ground-state en-
ergies and charge radii. We then explore different power
counting (PC) schemes for the chiral expansion of the EM
currents and address the consistency between these and nu-
clear interactions. Low-energy constants introduced by the
EM currents at N3LO are constrained by two different fits
to data. Additionally, we compute results order-by-order and
use those to estimate theoretical uncertainties for both PC
schemes.

Methods. We treat nuclei as a collection of A point-like
interacting nucleons of average mass m described via the
nonrelativistic intrinsic Hamiltonian

H =
∑

i

−∇2
i

2m
+

∑
i< j

Vi j +
∑

i< j<k

Vi jk . (1)

Here, the first term describes the kinetic contribution to the
Hamiltonian, and Vi j and Vi jk are the nucleon-nucleon (NN)
and three-nucleon (3N) potentials, respectively, the former of
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FIG. 1. AFDMC results for the magnetic moments for all nuclei
studied in this work. We show the experimental values (green lines)
and results with the EM current at LO (black points), NLO (purple
stars), N2LO (yellow diamonds), and N3LO (blue squares for scheme
A and red triangles for scheme B; see text for details), while keeping
the interaction fixed to be the N2LOE1 interaction with R0 = 1.0 fm
[14]. The uncertainties for each experimental value and for the Monte
Carlo statistics are indiscernible on this scale.

which also includes the Coulomb force. The NN interactions
we use in this work were derived in Refs. [19,20] and the 3N
interactions in Refs. [14,21] and are based on a local formu-
lation of chiral EFT. Chiral EFT is a systematic theory for
nuclear forces describing interactions in terms of a systematic
momentum expansion [22,23]. It enables an improvement of
interactions order by order and enables theoretical uncertainty
estimates [15,16]. The interactions employed here are derived
within Weinberg PC [24,25] but other PCs have been intro-
duced in the past, see, e.g., Refs. [26–33]. Local interactions
from chiral EFT [34] have been successfully applied to QMC
calculations of various nuclear systems [35]. Here, we per-
form AFDMC calculations of the magnetic moment using the
local chiral NN and 3N interactions with cutoff R0 = 1.0 fm
up to N2LO using the E1 parametrization for the 3N forces
(N2LOE1) [14]. These interactions have been used to study
the ground-state properties of various atomic nuclei up to 16O
[14,18,36–41], few neutron systems [42,43], and neutron-star
matter [14,44–48].

With the Hamiltonian in hand, as the first step, we optimize
the variational trial wave function of the form

|�T〉 = [FC + F2 + F3]|�〉Jπ ,T , (2)

where FC accounts for all the spin- and isospin-independent
correlations, and F2 and F3 are NN and 3N correlations linear
in spin- and isospin-pairs as described in Ref. [7]. The term
|�〉J,T is taken to be a shell-model-like state with total angular
momentum J , parity π , and total isospin T describing the
target nucleus. Its wave function consists of a sum of Slater

determinants (D) constructed using single-particle orbitals:

〈RS|�〉Jπ ,T =
∑

n

cn

(∑
CJTD{φα (ri, si )}

)
Jπ ,T

, (3)

where ri are the spatial coordinates of the nucleons and si

represent their spins. Each single-particle orbital φα consists
of a product of a radial function ϕ(r) and an appropriate
spherical harmonic coupled to the spin and isospin states. The
determinants are coupled with Clebsch-Gordan coefficients
(CJT ) to total J and T , and the cn are variational parameters
multiplying different components having the same quantum
numbers. The radial functions ϕ(r) are obtained by solving
for the eigenfunctions of a Woods-Saxon well, and all pa-
rameters are chosen by minimizing the variational energy as
described in Ref. [49]. Then, using the AFDMC algorithm, the
ground-state wave function is projected out by evolving the
variational wave function with the time-propagation operator
in imaginary time,

|�(τ )〉 = lim
τ→∞ e−(H−E0 )τ |�T〉. (4)

More details on the AFDMC method for nuclear systems are
given in Refs. [7,17,35].

Here, we will use the AFDMC method to calculate the
magnetic moments of the nuclei 2H, 3H, 3He, 6Li, 7Li, 8Li,
15N, 15O, 17O, and 17F. For these nuclei, we show the binding
energies per nucleon and the charge radii without theoretical
uncertainties in Fig. 2. Overall, our calculations follow the
trends of the experimental data. For the binding energies, we
observe a slight underbinding consistent with the results of
Ref. [38] for which all results agree with experiment within
theoretical uncertainties. For the charge radii, on the other
hand, we find a very good description of experimental values.
The magnetic moment (μ) is calculated from the mixed expec-
tation value of VMC and DMC wave functions (see Ref. [18]
for more details) for the magnetic form factor FM ,

FM (q; τ ) ≈ −i
2m

q

[
2
〈�T| jy(qx̂)|�(τ )〉

〈�T|�(τ )〉 − 〈�T| jy(qx̂)|�T〉
〈�T|�T〉

]
,

(5)

in the limit of zero external momentum, μ = FM (0; τ ).
Electromagnetic current contributions. We study magnetic

moments by employing two different PCs for EM currents that
are consistent with Weinberg PC for nuclear interactions: the
Pisa [12,50] and Bochum [13] PCs. In the Pisa PC, ratios of
momenta to the nucleon mass are counted similar to ratios
of momenta to the breakdown scale (�b) so that Q

m ∼ Q
�b

.
The coordinate-space leading-order (LO) and next-to-leading
order (NLO) contributions to the EM currents for the Pisa PC
are given in Eqs. (2.1) and (2.3) of Ref. [50] and in momentum
space in Ref. [12]. In contrast, the Bochum PC counts Q

m ∼
Q2

�2
b
. As a consequence, the lowest-order contributions to the

electromagnetic vector current appear at NLO in the Bochum
PC. The total contribution to the EM current operators at NLO
is identical between the Bochum and the Pisa PCs and is
equal to the sum of the LO single-nucleon operators and the
one-pion-exchange (OPE) NLO contributions of Ref. [50].

L031304-2



AUXILIARY FIELD DIFFUSION MONTE CARLO … PHYSICAL REVIEW C 108, L031304 (2023)

FIG. 2. Binding energies per nucleon (a) and nuclear charge radii (b) estimated using AFDMC (black diamonds) and the experimentally
determined values (green lines denoted “Exp.”) for all nuclei studied in this work. Binding energies are calculated from a transient
unconstrained path evolution for the N2LOE1 interaction with R0 = 1.0 fm, while the charge radii are estimated using AFDMC using a
constrained-path extrapolation. (See [18] for discussion on (un)constrained estimates.) There is no available experimental data for the charge
radii of 15O and 17F. The indicated errors represent the standard error arising from the statistical uncertainty of the Monte Carlo estimate, and
do not include the theoretical uncertainty arising from the truncation of the chiral expansion.

At N2LO, there are several differences between both PCs.
First, relativistic corrections proportional to 1/m2 appear at
N2LO in the Pisa PC while the same contribution appears
at N4LO in the Bochum PC. Second, the Pisa PC explicitly
includes intermediate excitations of the 
 isobar. The cor-
responding N2LO operator is proportional to an equivalent
operator contribution at N3LO in a 
-less PC. The term at
N2LO is assumed to be significantly larger than that at N3LO
which is subsequently omitted in Ref. [50]. Because we em-
ploy a 
-less Hamiltonian, we omit this structure at N2LO,
and restore the saturated operator structure at N3LO. As a
result, Eq. (2.9) of Ref. [50] is modified: first, the term propor-
tional to τz,i appears at N3LO (weighted by the πN LEC d8),
and the operator proportional to (τ i × τ j )z appears at N3LO
but with a different multiplicative factor. We therefore retain
the term proportional to (τ i × τ j )z at N3LO and make the
substitution of its prefactor

gAhAμ
N m4
π

36πm m
N f 2
π

→ g4
Am4

π

512π3 f 4
π

.

We discuss our treatment of the 
-saturated N3LO term
proportional to τi,z in the next section. Finally, we em-
ploy the commonly utilized phenomenological Sachs form
factors instead of EM currents arising from the chiral expan-
sion of these form factors which is only slowly converging
[13,50,51]. As a consequence, there is no EM current contri-
bution at N2LO in the Bochum PC.

Two nucleon, pion-nucleon, and electromagnetic LECs. At
N3LO in both the Bochum and Pisa PCs, there appear three
types of low-energy constants (LECs). First, there are NN
contact LECs which already appear in the NLO nuclear in-
teraction (C2, C4, C5, and C7). These LECs are associated with
the particular parametrization of the nuclear interaction used
in Ref. [8] which includes both local and nonlocal operators in

momentum space. Here, instead, the Hamiltonian employed
for the imaginary time propagation includes a different set
of purely local operators expressed in configuration space
[20], described by a different set of NN contact LECs. We
can employ the Fierz rearrangement freedom [52] in order
to relate the LECs appearing in the EM currents (Ci

1) to our
interaction LECs (C′

i ):

C2 = −4 (C′
2 + 3C′

4 + C′
7), (6a)

C4 = −4 (C′
2 − C′

4 − C′
7), (6b)

C5 = −C′
5, (6c)

C7 = −8C′
7. (6d)

The C′
i were determined from fits to NN scattering data

[20]. Details on the mapping between the LECs identified
via the Fierz rearrangement are provided in the Supplemental
Material [53].

Next, there are contributions to the EM currents from the
N3LO pion-nucleon and N4LO pion-pion Lagrangians which
are proportional to the di and li LECs, respectively. All except
three terms proportional to the πN LECs vanish in the q → 0
limit, and do not contribute to the evaluation of nuclear mag-
netic moments. The three which contribute are proportional
to d8, d9, and d21. Here, we chose to exclude all operators
proportional to di, as these LECs are of higher order compared
to the employed nuclear Hamiltonians.

Finally, there arise two unknown purely EM LECs that
must be fit to experimental data. These are called L1 and
L2 in Ref. [13] or dS

1 and dV
1 in Ref. [50], respectively. We

fit these two unknown EM LECs using two prescriptions,

1See [54] for clarification on the LEC naming conventions utilized
in Refs. [8,12,50].
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FIG. 3. Contributions to the magnetic moment at each order in
the chiral expansion of the nuclear EM current for each nucleus
considered. We show results for the Pisa PC [50] but the sum of
the LO and NLO results is equivalent to the NLO contribution in
the Bochum PC. N2LO only includes the 1/m2 relativistic correction
while the N3LO results are obtained by using the LECs fit in scheme
B. The number appearing in each cell represents the MC estimate of
the contribution, while the color of the cell represents the logarithm
of the magnitude of the contribution to guide the eye.

hereafter denoted scheme A and scheme B. In scheme A,
we have fit the unknown LECs to reproduce the experimental
values of the magnetic moments of 3H and 3He. For scheme
B we have performed a linear least squares fit of the two
LECs to the entire data set for the magnetic moments. Using
the naming convention of Ref. [50], we find the LEC val-
ues for scheme A to be dS

1 = −0.09596 ± 0.0018 and dV
1 =

−0.11085 ± 0.00099 with a χ2 per degree of freedom (DOF)
of 0.48078. For scheme B we find dS

1 = −0.03958 ± 0.0035
and dV

1 = −0.06420 ± 0.0028 with a χ2 per DOF of 1.5035.
Results. In Fig. 1, we show AFDMC results for the mag-

netic moments at each order in the EM current expansion
as expressed in Ref. [50], omitting the terms proportional
to the di LECs as detailed above. For all calculations, we
fix the nuclear interaction to be the N2LOE1 Hamiltonian
and include all contributions to the EM currents up to the
specified order. None of these results include theoretical un-
certainty estimates. As a simple measure of the convergence,
we consider the absolute difference between the estimated and
experimental magnetic moments averaged across all nuclei
at each order in the EM currents. This difference is 0.18 at
LO, 0.13 at NLO, 0.13 at N2LO, and 0.08 (0.09) at N3LO in
scheme A (B). Generally, the order-by-order convergence is
reasonable for all nuclei and we reproduce experimental data
well.

We note that N3LO contributions seem to be larger than
expected based on lower-order contributions, which was also
observed in A = [2, 3] systems in Ref. [50]. To highlight
this, in Fig. 3 we show the contribution of each order in the
expansion for the EM currents to the total magnetic moments
in the Pisa PC. We find a nearly universal large size of the
N3LO contribution, particularly with respect to the relativistic
corrections at N2LO, with most nuclei displaying O(μNLO) ∼
O(μN3LO). This feature is independent of the fitting scheme.

Next, we study the systematic uncertainty of the magnetic
moments arising from the truncation of the chiral expansion
in both PCs for 6Li, 7Li, 8Li, and 15N. For this, we perform

AFDMC calculations of the magnetic moments order by or-
der in the chiral expansion for both the nuclear interaction
Hamiltonian and the electromagnetic current operators, i.e.,
the Hamiltonian now also varies from order to order. We use
the simple prescription introduced in Ref. [15] and for the Pisa
PC, the theoretical uncertainty at each order is found using the
following recursive expressions:

δ
(
μLO

LO

) = Q
∣∣μLO

LO

∣∣, (7)

δ
(
μNLO

LO

) = max
{
Q

∣∣μNLO
LO − μLO

LO

∣∣, Qδ
(
μLO

LO

)}
, (8)

δ
(
μN2LO

NLO

) = max
{
Q

∣∣μN2LO
NLO − μNLO

LO

∣∣, Qδ
(
μNLO

LO

)}
, (9)

δ
(
μN3LO

N2LO

) = max
{
Q

∣∣μN3LO
N2LO − μN2LO

NLO

∣∣, Qδ
(
μN2LO

NLO

)}
, (10)

where we take Q = mπ/�, and � = 500 MeV correspond-
ing to our cutoff choice of R0 = 1.0 fm [20]. In the above
expressions superscripts denote the order in the expansion of
the currents, and subscripts denote the order in the nuclear
interaction Hamiltonian. In estimating the uncertainty, we
systematically increase the order of the expansion by powers
of (Q/�), but because of the differences in counting powers
of 1/m in the Pisa PC, some care is needed. At LO, the
magnetic moment is calculated using both the Hamiltonian
and the EM currents at LO in the Pisa PC. Because the nuclear
interactions are suppressed by (Q/�)2 at NLO relative to LO
but only by (Q/�)1 in the Pisa PC, next we calculate the result
matching LO interactions with the NLO currents. We include
this step in our uncertainty estimate as δμNLO

LO , and refer to
this combination as LO∗ in Fig. 4. At NLO, the magnetic
moments are calculated with the NLO Hamiltonian and the
N2LO currents, while at N2LO they are calculated with the
N2LO Hamiltonian and the N3LO currents.

Similarly, we estimate the truncation uncertainty in the
Bochum PC for the EM currents, which is more consistent
with the employed interaction Hamiltonian. Because the LO
and N2LO contributions to the magnetic moments vanish in
this PC, effectively only the NLO contribution is employed.
Then, order-by-order changes in the magnetic moments arise
from the nuclear interactions and the theoretical uncertainty
estimate is given by

δ
(
μNLO

NLO

) = Q
∣∣μNLO

NLO

∣∣, (11)

δ
(
μNLO

N2LO

) = max
{
Q

∣∣μNLO
N2LO − μNLO

NLO

∣∣, Qδ
(
μNLO

NLO

)}
. (12)

The ratio of the QMC estimate of the magnetic moment to
the experimentally determined value for the selected nuclei is
shown in Fig. 4 for both the Pisa and Bochum PCs. For all
nuclei, we observe a systematic behavior within the Bochum
PC. However, for 15N, the calculations seem to predict a mag-
netic moment 40% above the experimental value. For the Pisa
PC, we observe a (scheme dependent) systematic convergence
for 6Li, 7Li, and 8Li. In contrast, for 15N the order-by-order
results are less systematic. We also observe that for both fitting
schemes, the N2LO estimate lies outside the estimated error
band for NLO for 6Li, 7Li, and 8Li.

This highlights that consistent PCs for interactions and
currents need to be employed. It might also point to a sys-
tematic underestimate of the characteristic momentum scale
Q for these nuclei, and a more detailed investigation into the
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FIG. 4. Order-by-order contributions to the magnetic moment relative to the experimental value for the indicated nuclei. The abscissa
labels indicate the order in the chiral expansion for the nuclear interaction Hamiltonian. The estimates labeled LO∗ are calculated using the
LO nuclear interactions and the NLO EM current operators.

one- and two-nucleon momentum distributions in these nuclei
is warranted. The choice of fitting scheme for the N3LO EM
LECs also produces some variance in the estimated values of
the magnetic moments but this variance is of the same order
as the theoretical uncertainty at NLO.

Discussion and conclusions. We performed AFDMC calcu-
lations of the magnetic moments of several light nuclei with
nuclear interactions and EM currents derived from chiral EFT
and found agreement with experiment. These results are sup-
ported by comparing supplementary AFDMC calculations of
the ground-state binding energies and charge-radii to experi-
ment as well. Additionally, we explored the two prevalent PCs
for the chiral EM currents and the order-by-order convergence
of the magnetic moments.

While our accurate magnetic moment results are valuable
in verifying the different components of these ab initio calcu-
lations, our uncertainty analysis indicates that the consistency
between employed nuclear interactions and EM currents is
crucial: Our results for the consistent PC shows a more natural
order-by-order convergence pattern. This is also supported by
the prominence of the N3LO EM contributions to the calcu-
lated magnetic moments, and more work is necessary to study
the convergence up to N3LO in a consistent PC. Furthermore,
ensuring that the corresponding continuity equation is ful-
filled is crucial [13]. Future work to derive consistent currents
for the interactions used in AFDMC is important. Given the

significance of uncertainty quantification for this task, it is
key to properly estimate momentum scales that are being used.
Employing uncertainty quantification tools based on Gaussian
processes [16] might be beneficial for this task.
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