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Complex valence-space effective operators for observables: The Gamow-Teller transition
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Nuclei in the vicinity of driplines have been receiving a lot of attention in nuclear structure studies. In the
nuclei, the continuum coupling is crucial in reproducing weakly bound and unbound phenomena. To calculate
observables of the nuclei as open quantum systems, we have developed valence-space effective operators in the
complex-energy Berggren basis using many-body perturbation theory. We focus on the Gamow-Teller β decay
in the sd shell. The two- plus three-nucleon force from the chiral effective field theory, named EM1.8/2.0, has
been used. The Gamow shell model which takes the continuum coupling into account can properly reproduce
experimental observations of weakly bound and unbound states. The β-decay isospin asymmetry between the
dripline nucleus 22Si and its mirror partner 22O is reproduced, in which the s1/2 continuum plays a key role.
Significant Thomas-Ehrman shift is seen through mirror energy differences between the mirror daughters 22Al
and 22F, in which the continuum effect plays an important role.
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One of the frontier issues in nuclear physics theory is
the description of weakly bound and unbound nuclei in the
vicinity of driplines. The development of rare-isotope beam
facilities worldwide is being driven primarily by this topic.
These exotic nuclei are important for many longstanding
problems, such as the limits of the nuclear landscape [1–5],
the formation and evolution of new shell closures [6–8],
and astrophysical nucleosynthesis [9,10]. Isospin asymmetry
happens with significant mirror energy difference (MED) typ-
ically. The Thomas-Ehrman shift (TES) [11,12] can occur
when the nuclear state in the proton-rich mirror nucleus is
weakly bound or unbound, especially for the states with a
significant s partial wave and hence a strong coupling to the
continuum [13].

The goal of the ab initio nuclear theory is to describe
the structures of nuclei from the underlying interactions be-
tween nucleons without input from experimental data beyond
that necessary to implement nuclear forces. Using two- and
three-nucleon forces (2NF and 3NF, respectively) from the
chiral effective field theory (EFT) [14–16], ab initio many-
body calculations have exhibited great progresses, such as in
reproducing the location of the oxygen dripline [2,17], and
understanding the origin of the anomalous long lifetime of 14C
[18]. A variety of observables of nearly all open-shell nuclei
that are accessible to the conventional shell model (SM) can
be obtained using the many-body perturbation theory (MBPT)
method [19,20], including energies, charge radii, electromag-
netic moments and transitions, and β decays [21,22].
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Since nuclei around driplines are open quantum systems,
the continuum coupling and resonance degrees of freedom
are crucial in describing their structure. The transition density
between initial and final states is indeed influenced by the
asymptotic behaviors of wave functions. A powerful tool for
properly describing the asymptotic behavior of wave functions
is the Gamow shell model (GSM) [23–25] which uses the
complex-energy Berggren basis [26] so that it incorporates
the coupling to the continuum at the basis level. The complex
coupled cluster [27,28] and complex in-medium similarity
renormalization group [29] have also been formulated within
the Berggren basis to properly account for the continuum
coupling.

The Berggren basis can be generated using the complex-
energy Gamow Hartree-Fock (GHF) method [13,30,31]. The
basis is then produced self-consistently by the used realistic
interaction instead of a parametrized Woods-Saxon poten-
tial. The GSM MBPT calculations have shown that wave
functions incorporating the continuum coupling can provide
a suitable description of nuclear states, which can be used
to explain phenomena such as the TES [13] and Borromean
structure [32]. Therefore, in order to calculate the observables
of weakly bound and unbound nuclei more properly, we have
developed the theory of valence-space effective operators us-
ing MBPT within the Berggren basis.

Starting from chiral 2NF and 3NF, the intrinsic Hamilto-
nian of the A-nucleon system reads

H =
A∑

i=1

(
1 − 1

A

)
p2

i

2m
+

A∑
i< j
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where pi is nucleon momentum in the laboratory coordinate,
and m is nucleon mass, while vNN and v3N are for 2NF
and 3NF, respectively. The chiral 2NF plus 3NF labeled by
EM1.8/2.0 [33] has been used, which can globally reproduce
nuclear binding energies [4,34].

For the ab initio goal, we use the GHF approximation
with the same chiral interaction to generate the Berggren
basis which provides bound, resonance, and continuum states
on equal footing in the complex-momentum (complex-k)
plane. For the A ≈ 20 nuclei of interest, 16O is chosen as
the reference state for the GHF and as the core for the
GSM calculation. A brief formulation of the GHF calcula-
tion with exact 3NF included can be found in our previous
work [35].

In practical calculations, the continuum states on the con-
tour L+in the complex-k plane need to be discretized, which
can be achieved by the Gauss-Legendre quadrature method
[30,36]. We use the contour L+ with 35 discretization points,
which is sufficient to obtain convergence in numerical calcula-
tions [31,37,38]. After that, we transform the chiral interaction
and bare operator matrix elements from the harmonic oscil-
lator (HO) basis to the GHF basis for the many-body GSM
calculation by computing overlaps between the GHF and HO
bases wave functions [39]. In this calculation, we take the
HO basis at h̄ω = 16 MeV with 13 major shells (i.e., e =
2n + l � emax = 12) and e3max = e1 + e2 + e3 � 12 for 3NF.

The GHF calculation gives bound 0d5/2 and resonant 0d3/2

orbits for both neutrons (ν) and protons (π ). While π1s1/2

orbit is a resonance, ν1s1/2 orbit is bound. The s1/2 and
d3/2 partial waves are treated in the complex-k GHF ba-
sis to include the continuum effect, whereas the d5/2 partial
wave is represented in the real-energy discrete HF basis. The
active space for the present GSM calculations are {ν0d5/2,
ν1s1/2 plus continuum, ν0d3/2 resonance plus continuum,
π0d5/2, π1s1/2, π0d3/2} for neutron-rich nuclei and {ν0d5/2,
ν1s1/2, ν0d3/2, π0d5/2, π1s1/2 resonance plus continuum,
π0d3/2 resonance plus continuum} for proton-rich nuclei,
respectively.

In many-body calculations, 3NF is usually normal-ordered
with respect to a reference state, giving the normal-ordered
zero-, one-, and two-body terms with the residual three-body
term neglected [4,13,34,35,40]. We construct the valence-
particle effective Hamiltonian and other effective operators in
the framework of MBPT [19] consistently. We separate the
Hamiltonian of the reference state into a zero-order part H0

and a perturbative part H1,

H = H0 + (H − H0) = H0 + H1. (2)

H0 can take the one-body part of the normal-ordered Hamil-
tonian, and H1 is the residual two-body part including the
normal-ordered 3NF at the two-body level [13,35].

For the GSM calculation, valence-space single-particle
energies and effective interaction matrix elements can be ob-
tained using so-called Ŝ-box [41] and Q̂-box folded diagrams
[37,42], respectively. The Ŝ box is by definition the one-body
part of the Q̂ box. Because the GHF basis states with con-
tinuum states are not degenerate, we use the extended EKK
method [43,44] to construct the effective Hamiltonian Heff by

iterating

H (κ )
eff = PH0P + Q̂(ε) +

∞∑
n=1

1

n!

dnQ̂(ε)

dεn

{
H (κ−1)

eff − ε
}n

, (3)

where κ represents the κth iteration, and ε is the starting
energy. The Q̂ box is defined as

Q̂(ε) = PH1P + PH1Q
1

ε − QHQ
QH1P (4)

with derivatives as

Q̂n(ε) = 1

n!

dnQ̂(ε)

dεn
, (5)

where P and Q are projection operators representing the
model space and its complementary space (the excluded
space), respectively, with P + Q = 1. Usually the Ŝ box and
Q̂ box are calculated up to the third order and second order,
respectively, within the GHF basis [31,37]. In the present
work, we have promoted the complex MBPT calculation with
the two-body matrix elements of pole states (i.e., bound and
resonant states) calculated up to the third order.

After the Ŝ-box and Q̂-box calculations, we obtain the com-
plex GSM effective Hamiltonian [35] in the chosen valence
space with the 16O core. The complex-symmetric GSM effec-
tive Hamiltonian is diagonalized in the model space using the
Jacobi-Davidson method in the m scheme [45].

For other observables, their bare operators also need to be
renormalized into the valence space, which can be done by a
so-called �̂ box within the same complex MBPT framework,
similar to the Q̂ box. A valence-space effective operator, de-
noted by �eff, which takes into account the contribution from
the excluded Q space, can be expressed as

�eff =
∑
α,β

|ψα〉〈�̃α|�|�β〉〈ψ̃β |, (6)

where the valence-space wave function |ψα〉 obtained from
diagonalizing Heff is the projection of the full-space wave
function |�α〉 onto the valence space, i.e., |ψα〉 = P|�α〉.

In the MBPT, the �̂ box is defined as [20,46]

�̂(ε) = P�P + P�Q
1

ε − QHQ
QH1P (7)

and

�̂(ε1; ε2) = PH1Q
1

ε1 − QHQ
Q�Q

1

ε2 − QHQ
QH1P (8)

with their derivatives

�̂n = 1

n!

dn�̂(ε)

dεn
(9)

and

�̂mn = 1

m!n!

dm

dεm
1

dn

dεn
2

�̂(ε1; ε2)

∣∣∣∣
ε1=ε2=ε

. (10)

With the identity Q̂Q̂−1 = 1, the final perturbative expansion
of the effective operator �eff can be expressed by the Q̂ box
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and �̂ box, as

�eff = (P + Q̂1 + Q̂1Q̂1 + Q̂2Q̂ + Q̂Q̂2 + · · · )Q̂Q̂−1

× (χ0 + χ1 + χ2 + · · · )

= HeffQ̂
−1(χ0 + χ1 + χ2 + · · · ), (11)

where χn are related to �̂ box, Q̂ box, and their derivatives as

χ0 =(�̂0 + h.c.) + �̂00,

χ1 =(�̂1Q̂ + h.c.) + (�̂01Q̂ + h.c.),

χ2 =(�̂1Q̂1Q̂ + h.c.) + (�̂2Q̂Q̂ + h.c.)

+ (�̂02Q̂Q̂ + h.c.) + Q̂�̂11Q̂. (12)

This perturbation technique of constructing valence-space
effective operators of observables has been successful in
real-energy SM calculations [20,46]. In the present work,
we apply the MBPT technique of effective operators to the
complex GSM in which resonance and continuum states are
included.

In our calculations, the χn series is truncated up to the
χ2 order, which has been proved to be sufficient to obtain
convergences [20]. The �̂-box diagrams are calculated up to
the third order, which is consistent with the expansions used
in the Ŝ-box and Q̂-box calculations. Due to the presence
of the nonresonant continuum, the matrix dimension grows
dramatically when adding more valence particles into the con-
tinuum. Therefore, we allow at most two valence particles in
the continuum with which converged results can be obtained
[31,37,47].

In this work, we focus on the GT β decay for which the
free-space bare transition operator is [48]

O(GT±) =
∑

j

σ jτ
j
±, (13)

which is a one-body operator with σ for the Pauli spin opera-
tor and τ± = (τx ± iτy)/2 for isospin operators corresponding
to β± decays, respectively. The sum is over all interacting
nucleons of the nucleus. Then, the reduced GT transition
matrix element [48] can be calculated by the valence-space
wave functions of the initial |ψi〉 and final |ψ f 〉 states as

MGT =
∑

p,q∈valence space

M pq
GT〈ψ f ‖[â†

pâq]‖ψi〉, (14)

where M pq
GT stands for valence-space effective GT transition

matrix elements obtained with the bare GT operator using the
�-box perturbation up to the third order.

In GT transition calculations, usually a quenching fac-
tor is needed to better describe data [48,49]. For the sd
and pf shells, an average phenomenological quenching fac-
tor of q ≈ 0.75 is usually taken [48,49]. As commented
in [50,51], in the chiral EFT framework the effect of the
coupling of weak interactions to two nucleons can be cal-
culated via two-body currents, giving a quenching factor

SM SM GSM Expt.

M
ED

(M
eV
)

1+2

1+1

22Al 22F
0

0.25

0.50

0.75 USDC EM EM

FIG. 1. MED’s for the 1+
1 and 1+

2 analog states between mirror
nuclei 22Al and 22F, calculated by standard SM with USDC and
EM1.8/2.0 (abbreviated by EM), and by GSM with EM1.8/2.0,
compared with data [54].

as [51]

q = 1 − ρ

F 2
π

[
c4

3

[
3Iσ

2 (ρ, |q|) − Iσ
1 (ρ, |q|)]

− 1

3

(
c3 − 1

4mN

)
Iσ
1 (ρ, |q|) − c6

12
Ic6(ρ, |q|)− cD

4gA�χ

]
,

(15)

where the momentum transfer q is approximately equal to
zero in β decays [51]. Fπ and gA are the pion-decay and
axial-vector coupling constants, respectively. c3, c4, c6, and
cD belong to the low-energy constants of the EFT with �χ

being the chiral scale. These constants have been available in
the chiral EM1.8/2.0 interaction [33]. Functions Iσ

1 (ρ, |q|),
Iσ
2 (ρ, |q|), and Ic6(ρ, |q|) have been defined in Refs. [52,53].

The calculated value of the quenching factor is dependent on
the nuclear density ρ. For finite nuclei, the typical density
range is ρ = 0.09–0.11 fm−3 [51], and ρ = 0.10 fm−3 is
taken usually [51], giving a quenching factor of q = 0.78
which is used in our calculations.

The recent experiment [54] observed remarkable isospin
asymmetry in mirror nuclei 22Si - 22O, and also in their β-
decay mirror daughters 22Al - 22F. Two 1+ excited states in
22Al were observed in β-delayed proton emissions from 22Si
through 22Al to 21Mg. Isospin asymmetry in mirror nuclei
22Al - 22F was shown by the mirror energy difference (MED)
[54]. The MED is a good probe into the mirror isospin
asymmetry, which is defined by the difference between the ex-
citation energies of analog states in mirror nuclei. For heavier
nuclei in the p f shell, the MED between mirror states is rather
small [55,56]. The situation is different for lighter nuclei, such
as the 1/2+

1 state in 13N is 0.72 MeV lower than that in 13C
[57], which is related to the loosely bound nature of the proton
1s1/2 orbit [11,12]. The lack of a centrifugal barrier implies
that the radial wave function of the 1s1/2 orbital has a larger
extent than those of other orbitals, which then provides a large
MED. The GSM can generate the proper asymptotic behavior
of wave functions self-consistently.

Figure 1 presents calculated and experimental MED’s for
the first and second 1+ analog states between mirror nuclei
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FIG. 2. Spectra of mirror nuclei 22Al and 22F, calculated by GSM
with EM1.8/2.0 and by standard SM with USDC. Green shadowing
indicates resonance with the calculated width (in MeV) given above
(below) the level. The data are taken from [54] for 22Al and [57] for
22F.

22Al and 22F. To see the continuum effect, we have also per-
formed a standard SM calculation using the same EM1.8/2.0
interaction as in the GSM calculation. We see that the in-
clusion of the continuum coupling improves significantly the
MED calculations for both 1+ states compared with data.
In the experimental paper [54], the authors explained the
observed isospin asymmetry by the standard SM calculation
with readjusting isospin-nonconserving (INC) interactions re-
lated to the s1/2 orbit. The s1/2 orbit has no centrifugal barrier,
and thus has a strong coupling to the continuum when weakly
bound. Both isospin symmetry breaking and coupling to the
continuum may be equivalently included by adjusting the
relevant interaction matrix elements. As shown in Fig. 1, we
have also performed a standard SM calculation with the new
isospin-breaking USD-type interaction, named USDC [58]
which was obtained by a global fit to sd-shell data. The result
gives smaller MED’s than data, indicating the need of the
coupling to the continuum.

Figure 2 shows the spectra of low-lying states for mirror
nuclei 22Al and 22F. We see that both GSM with EM1.8/2.0
and standard SM with USDC give reasonable spectra com-
pared with data. The excited states of the proton dripline
nucleus 22Al should be unbound since the single-proton
separation energy is close to zero [59]. In contrast, the single-
neutron separation energy in its mirror nucleus 22F is 5.230
MeV. Indeed, our GSM calculation predicts that all excited
states in 22Al are resonances, while 22F has bound low-lying
states, as shown in Fig. 2. The experiment [54] detected pro-
ton emissions from the two 1+ states in 22Al, indicating the
resonances of the 1+ states. Both data and calculations show
significant TES in the observed 1+

1 and 1+
2 states between

mirror nuclei 22Al and 22F, which has already been shown in
Fig. 1 by MED. Besides the 1+ levels, the GSM calculations
in Fig. 2 also predict the TES phenomenon appearing in other
low-spin states in which the s1/2 component is significant.

The experiment [54] has also observed the mirror asym-
metry in the GT β decays from 22Si and 22O into the 1+

1 states

TABLE I. GT transition matrix elements |MGT| calculated by
standard SM with USDC and EM1.8/2.0, and by GSM with
EM1.8/2.0 for mirror nuclei 22Si and 22O decaying into the 1+

1 and
1+

2 states of their mirror daughters 22Al and 22F, compared with data
and calculations given in Ref. [54].

SM GSM Ref. [54]

USDC EM EM Expt. Cal.

22Si → 22Al 1+
1 0.236 0.343 0.257 0.176(16) 0.242

1+
2 0.721 1.042 1.012 0.750(41) 0.863

22O → 22F 1+
1 0.198 0.569 0.497 0.310(32) 0.428

1+
2 0.719 1.092 1.068 0.775(77) 0.848

of their daughters 22Al and 22F. The standard SM calculation
can reproduce the β-decay asymmetry by adjusting the INC
interaction matrix elements related to the s1/2 orbit [54]. The
GT transition matrix element is calculated by the wave func-
tions of initial and final states. Therefore, one should properly
handle the asymptotic behavior of the weakly bound or quasi-
bound states. Indeed, the GSM can well provide valence-space
wave functions with resonance and continuum coupling taken
into account.

The calculated magnitude of the GT transition matrix ele-
ment, |MGT|, is given in Table I for the decays of the mirror
nuclei 22Si and 22O into the first and second 1+ states of their
daughters 22Al and 22F. In both nuclei, the calculated |MGT|
decaying into the 1+

1 state is significantly smaller than that
into the 1+

2 state, which is consistent with data. The isospin
asymmetry in the GT transitions into the 1+

1 states is indeed
seen in both SM and GSM calculations with the EM1.8/2.0
interaction. Similar to data, the |MGT| value in 22O → 22F(1+

1 )
is almost twice as large as that in 22Si → 22Al(1+

1 ), while this
does not happen in the decays into the 1+

2 states, as shown
Table I. The GSM calculation with the continuum effect con-
sidered improves the agreement with data. The last column of
Table I gives the theoretical |MGT| values given in Ref. [54],
obtained by the standard SM with adjusting INC interactions.
We have also run a standard SM calculation with USDC,
showing excellent agreement with data for the decays into the
1+

2 sates, see Table I. However, the calculation gives too small
|MGT| value for the 22O decay into the 22F 1+

1 state to correctly
reproduce the asymmetry in the decays to the 1+

1 states.
To further understand the isospin asymmetry in the GT

transitions, we compare the configurations of the states. The
SM calculation with EM1.8/2.0 shows that the initial state in
the mother nucleus 22Si has a dominant configuration with the
proton occupation number 5.40 (totaling six valence protons)
in the π0d5/2 orbital. According to the selection rule of the GT
transition, a large occupation in d orbitals in the daughter 22Al
leads to a large transition matrix element. The SM calculation
shows that the 1+

1 state in 22Al has the proton occupation
(3.66, 1.18, 0.16) and neutron occupation (0.85, 0.13, 0.02) in
(0d5/2, 1s1/2, 0d3/2) respectively. Conversely, the 1+

2 state in
22Al has the proton occupation (4.26, 0.35, 0.40) and neutron
occupation (0.77, 0.16, 0.07) in (0d5/2, 1s1/2, 0d3/2), respec-
tively. The main difference between the two 1+ states then
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FIG. 3. A ≈ 20 GT transition matrix elements calculated by
GSM and SM with EM1.8/2.0, compared with data [54,57].

clearly appears: the 1+
1 state has a large proton occupation

in 1s1/2 but a small proton occupation in 0d3/2. In contrast,
the 1+

2 state has a reduced proton 1s1/2 occupation but an
enhanced proton 0d3/2 occupation. Therefore, the transition
density and the matrix element of the GT transition into the
1+

2 state are larger than those into the 1+
1 state because of a

larger occupation in d orbitals for the 1+
2 state. This result is

consistent with the data, as shown in Table I. The situation is
similar in the SM calculation with USDC. The GSM calcu-
lation with EM1.8/2.0 also gives similar results but a further
enhanced proton 1s1/2 occupation of 1.39 in the 1+

1 state of
22Al, which is from the continuum coupling. However, the
enhancement is not seen in the mirror β− transition in which
the ν1s1/2 occupation in the 22F 1+

1 state is 1.11. As the
continuum coupling improves the asymptotic behavior of the
resonant π1s1/2 orbital, a better description of the large differ-
ence in MGT between the decays into those two 1+

1 states of the
mirror nuclei 22Al - 22F is obtained in the GSM calculation.

We have systematically investigated the GT transitions for
A ≈ 20 nuclei, as shown in Fig. 3. Calculated |MGT| matrix el-
ements are in reasonable agreement with data. For nuclei near
the β stability, the MGT values by GSM are almost the same as
those by SM. This should be expected because the continuum
effect in stable mass regions can be neglected. However, for
exotic nuclei far from the β stability, one can observe that
the continuum effect can be visible in the calculations of MGT

and isospin asymmetry, e.g., for the mirror nuclei 22Si - 22O
and their mirror daughters 22Al - 22F. As seen from Fig. 3, the
experimental |MGT| values are almost the same for the 22Si

and 22O β decays whose final state is 1+
2 . However, in the

case of the 1+
1 final state, the |MGT| values between the mirror

nuclei differ, thus revealing the isospin asymmetry. Also, one
can notice that the continuum coupling evidently improves the
calculations of the |MGT| decaying into the 1+

1 states in the
mirror transitions 22Si → 22Al and 22O → 22F.

In summary, we have extended the ab initio many-body
perturbation theory to the complex Berggren basis to de-
vise valence-space effective operators for the Gamow shell
model which takes the continuum coupling into account.
The Berggren basis is generated by the Gamow Hartree-
Fock method with the same realistic interaction used as in
the Gamow shell-model calculation, which leads to the self-
consistent treatments of spectra and other observables within
the MBPT framework. In the presence or absence of the
continuum coupling, we have calculated spectra and Gamow-
Teller transition matrix elements for sd-shell nuclei. Mirror
nuclei 22Al and 22F exhibit significant isospin asymmetry
in the associated GT transitions and spectra, where the s1/2

partial wave plays a crucial role.
As expected, the continuum coupling barely affects the

GT transitions of nuclei close to the β stability. However,
the continuum coupling is necessary to properly describe the
spectra and GT transitions of nuclei in the vicinity of driplines.
A suitable mirror energy difference between 22Al and 22F can
be provided by the calculation with the continuum coupling
present. The Thomas-Ehrman shift can be explained by the
continuum effect which increases the occupation of the s1/2

orbital.
The decay into the 1+

2 state has a larger GT matrix element
than that into the 1+

1 state in the mirror transitions 22Si → 22Al
and 22O → 22F. This results from the larger d-orbital occu-
pation in the 1+

2 state, which increases the |MGT| value. The
resonant proton 1s1/2 orbital is crucial for a proper description
of observables related to the 1+

1 excited state in 22Al. The
absence of a centrifugal barrier for the 1s1/2 orbital results
in an extended wave function in the coordinate space, and
hence a lower |MGT| value. The proper asymptotic behavior
of the quasibound 1+

1 state in 22Al can then provide a better
description of the GT transition.
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