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Entanglement maximization in low-energy neutron-proton scattering
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The entanglement properties of neutron-proton scattering are investigated using a measure that counts the
number of entangled pairs produced by the action of a scattering operator on a given initial neutron-proton state.
All phase shifts relevant for scattering at laboratory energies up to 350 MeV are used. Entanglement is found
to depend strongly on the initial state. Entanglement is maximized in very low energy scattering if the initial
spin state is |↑↓〉, but not if the initial state is |↑↑〉. At such energies the Hamiltonian obeys Wigner SU(4)
symmetry, and an entanglement maximum is a sign of that symmetry. At higher energies the angular dependence
of entanglement is strong and the entanglement is large for many scattering angles. The tensor force is shown to
play a significant role in producing entanglement at laboratory kinetic energies greater than about 50 MeV.
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Stimulated by the connection with quantum computing,
resting on the possibility that entanglement may enhance
capabilities, the implications of entanglement in quantum
mechanics and quantum field theory have recently been stud-
ied in many papers. For a long list of recent references see
Ref. [1]. Ideas related to quantum entanglement provide a new
way of looking at old problems and may provide insights into
deep connections with underlying symmetries. For example,
Refs. [2,3] argued that a principle of maximum entanglement
is responsible for the particular sets of coefficients that define
quantum electrodynamics. Similarly Refs. [4–7] argue that
high-energy interactions involve maximally entangled states.
Maximum entanglement is a property of nucleon valence
quark distributions [8], and large entanglement entropy is a
property of the nucleon state vector [9].

On the other hand, Refs. [10,11]. proposed that nucleon-
nucleon scattering is described by entanglement suppression
that is correlated with Wigner SU(4) symmetry [12]. See also
[13]. Wigner used this symmetry, based on the approximate
spin-isospin invariance of the nucleon-nucleon strong interac-
tion and on the analogy with electron shell structure, where
the spin-orbit interaction is less than the spin-spin one, to
describe the low-lying spectra of light nuclei. Interactions of
the form M0 + M1σ1 · σ2 + M2τ1 · τ2 + M3τ1 · τ2σ1 · σ2 obey
the symmetry. The group SU(4) is generated by 15 operators.
See, e.g., Refs. [14–16] and Eq. (20) below.

Here, I aim to provide a more detailed study of entangle-
ment entropy in neutron-proton scattering. To see why this is
worthwhile let us begin with some basic issues. The textbook
[17] definition of entropy, the von Neumann entropy, is given
by S = −Tr[ρ log ρ], where ρ is the density matrix. The oper-
ator ρ can be diagonalized, with eigenvalues designated as pn

and
∑

n pn = 1. In this diagonal representation S is expressed
as

S = −
d∑

n=1

pn log pn, (1)

where d is the dimension of the space.

The quantity S is maximized when all of the probabilities
are equal: pn = 1/d . In that case Smax = log d. The value of
d = 2 for a particle of spin 1/2. This situation of maximum
entropy is one of no entanglement. If all of the probabil-
ity eigenvalues are the same, the density matrix is given by
ρmax = Î

d where Î is the identity operator. This is known as
the classical or “garbage state” [18].

Instead the amount of entanglement of a state, |φ〉, of two
spin = 1/2 particles is measured by computing the amount of
overlap with completely entangled Bell states:

|e1〉 = 1√
2

(|↑↑〉 + |↓↓〉), (2)

|e2〉 = i√
2

(|↑↑〉 − |↓↓〉), (3)

|e3〉 = i√
2

(|↑↓〉 + |↓↑〉), (4)

|e4〉 = 1√
2

(|↑↓〉 − |↓↑〉). (5)

Expanding in this complete set of functions one has

|φ〉 =
4∑

j=1

α j |e j〉. (6)

The reduced density matrix is defined by taking the trace of
the operator |φ〉〈φ| of either of the two particles. The entan-
glement, E , of |φ〉 can then be computed as the von Neumann
entropy of the reduced density matrix of either of the two
particles. Reference [18] found that the entanglement of φ can
be expressed in terms of the entanglement entropy,

H (x) ≡ −x log2(x) − (1 − x) log2(1 − x), (7)

which has a maximum of unity at x = 1/2 and vanishes for
x = 0, 1. One computes. the concurrence,

C =
∣∣∣∣∣
∑

j

α2
j

∣∣∣∣∣, (8)
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where one squares the complex numbers α j , and the result is
that

E (C) = H

(
1

2
(1 +

√
1 − C2)

)
. (9)

The state of maximum entropy has C = 0 and E (C) =
H (1) = 0, and so has no entanglement. On the other hand,
taking |φ〉 = |ei〉, with i being any one of the numbers from
1 to 4, gives C = 1 and E (C) = H (1/2) = 1, the maximum
entanglement.

Beane, Kaplan, Klco and Savage (BKKS) Ref. [10] defined
the entanglement power of the S matrix in a two-particle spin
space [19] by the action of the S matrix on an incoming two-
particle tensor product state with randomly oriented spins,

|ψin〉 = R̂(�1)|↑〉1 ⊗ R̂(�2)|↑〉2, (10)

where R̂(� j ) is the rotation operator acting in the jth spin- 1
2

space. This initial state is achieved in experiments by hav-
ing a polarized beam impinge on a polarized target with all
possible orientations available. No present experimental setup
can achieve that situation. The two-particle density matrix
of the final state is then given by ρ̂12 = |ψout〉〈ψout| with
|ψout〉 = Ŝ|ψin〉. The entanglement power, E , of the S matrix,
Ŝ, is then [10]

E (Ŝ) = 1 −
∫

d�1

4π

d�2

4π
Tr1

[
ρ̂2

1

]
, (11)

where ρ̂1 = Tr2[ ρ̂12 ] is the reduced density matrix for parti-
cle 1 that acts in a space of dimension d = 2.

At sufficiently low energies the action of the S matrix
changes the amplitudes of the two states with total spin S =
0, 1, in the 1S0 and 3S1 channels. BKKS studied the spin-space
entanglement of two distinguishable particles, the proton (1)
and neutron (2). Neglecting the tensor-force-induced mixing
of the 3S1 channel with the 3D1 channel, the S matrix was
expressed in terms of the 1S0 and 3S1 phase shifts δ0,1, the
entanglement power of Ŝ was calculated to be

E (Ŝ) = 1
6 sin2 (2(δ1 − δ0)), (12)

which vanishes when δ1 − δ0 = m π
2 for any integer m. But

E (Ŝ) is maximal when the difference in phase shifts is π/4.
The triplet phase shift at 0 energy is π because of the presence
of the deuteron bound state and decreases with increasing
energy. The singlet phase shift vanishes at 0 energy and in-
creases as the energy increases. Using the phase shifts of
[20] the difference passes through π/4. at a laboratory energy
of around 8.7 MeV and E (Ŝ) is maximized at that energy,
according to Eq. (12).

The quantity E (Ŝ) was evaluated as a function of the center-
of-mass nucleon momentum, p, (up to a laboratory energy
of 350 MeV) using a phase shift analysis [20] and results
of nucleon-nucleon potentials. BKKS focused on values of
p between about 250 and 350 MeV/c, there finding that
the E (Ŝ) ≈ 0.05 and thus suppressed. However, the maxi-
mum value of E (Ŝ) is only 1/6 so that E/Emax ≈ 0.3, which
is not very small. Moreover, including s-wave scattering is
not sufficient because all of the measured phase shifts are
needed to describe scattering at those values of p. Neverthe-
less, BKKS concluded that “Entanglement suppression in the

strong-interaction S matrix is shown to be correlated with ...
the Wigner SU (4) symmetry for two flavors.”

However, there is a problem with using Eq. (11) to de-
termine entanglement. Suppose the density matrix is that of
maximum entropy, ρmax. Then

Tr2ρmax = Î1

2
, (13)

where Î1 is the identity operator of the subspace of particle 1.
On the other hand, defining ρi ≡ |ei〉〈ei| and taking Tr2 yields
also

Tr2ρi = Î1

2
, (14)

which is the same as that of the state of maximum entropy and
zero entanglement. The use of either ρmax or ρi in Eq. (11)
would yield the same value, namely E = 1/2.

Here, I present an alternative analysis using the precise
measurement of entanglement power of Ref. [18]. This is done
by starting with an initial pure state of 0 entanglement:

|φi〉 = |↑↓〉 = −i|e3〉 + |e4〉. (15)

Here, C = 0 and H = 0 from Eqs. (8) and (9).
The action of scattering produces a normalized density

matrix of the form

ρ f = M|φ〉〈φ|M†

Tr[M|φ〉〈φ|M†]
, (16)

where M(p f , pi ) is the neutron-proton scattering operator
acting in the two-nucleon spin space. This expression has
been used ubiquitously to analyze nucleon-nucleon, nucleon-
nucleus, pion-nucleon scattering, and many other reactions
involving nuclei. It is the text-book [17] method to compute
the density matrix, the present method for analyzing quantum
entanglement [3] and the time-honored method to analyze
nucleon-nucleon scattering data [21].

Use of invariance principles (parity, time reversal, and
isospin) [22] shows there are five independent amplitudes
needed to capture the scattering amplitude. In particular [21],

M(p f , pi ) = a + c (σ̂1 + σ̂2) · n̂ + m σ̂1 · n̂σ̂2 · n̂

+ g[σ̂1 · P̂σ̂2 · P̂ + σ̂1 · K̂σ̂2 · K̂]

+ h[σ̂1 · P̂σ̂2 · P̂ − σ̂1 · K̂σ̂2 · K̂]. (17)

The Hoshizaki coordinate system is used:
P̂ = (sin θ/2, 0, cos θ/2), n̂ = (0, 1, 0), K̂ = (cos θ/2, 0,

− sin θ/2), with θ as the c.m. scattering angle. The results
presented here use the amplitudes from the NN online
website: Ref. [23] that are computed from the measured
phase shifts of Ref. [20].

The first result, for laboratory kinetic energy of 1 MeV is
shown in Fig. 1 finds that entanglement is maximized at all
scattering angles. This result can be understood by assuming
that only s-waves contribute, approximately true at 1 MeV. In
that case, c = 0, h = 0, and m = g, which means that M can
be expressed as ML = a + mσ1 · σ2. Then using Eq(13.2) of
Ref. [21] the operator M can be expressed in terms of Bell
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FIG. 1. Entanglement at 1 MeV Computations use the phase
shifts of Ref. [20]. The state is M|↑↓〉.

states as

M|φi〉 = −i√
2

(a + m)|e3〉 + 1√
2

(a − 3m)|e4〉. (18)

At very low energies a + m ∝ eiδ1 sin δ1, and a − 3m ∝
eiδ0 sin δ0. Then a direct computation leads to the result

1 − C2 = 4 sin2 δ1 sin2 δ0 cos2(δ1 − δ0)

sin2 δ0 + sin2 δ1
, (19)

so that C = 1 and H = 1 when the phase shifts differ by
π/2. The triplet phase shift is π at 0 energy because of the
deuteron bound state in that channel. It drops rapidly with
increasing laboratory energy. The singlet phase shifts vanishes
at 0 energy and increases rapidly with energy. Thus a phase
shift difference of π/2 is inevitable and occurs at about 1 MeV
as shown in Fig. 2.

The result of Fig. 1 can be interpreted in terms of Wigner
SU(4) symmetry [12,14]. A nuclear Hamiltonian consistent
with SU(4) symmetry obeys[

H,
∑

i

�τi

]
=

[
H,

∑
i

�σi

]
=

[
H,

∑
i

�τi �σi

]
= 0. (20)

At sufficiently low energies for which the scattering is de-
scribed using s-wave phase shifts as the matrix ML, and the
two-nucleon potential can be expressed in the same way [24].
In that case, the Hamiltonian satisfies SU(4) symmetry and
that symmetry is consistent with maximum entanglement.
However at higher energies, all of the terms of Eq. (17) enter
into the two-nucleon potential and SU(4) symmetry is broken.
Then one expects to different values of E (C).

The results for laboratory kinetic energies up to 50 MeV
are shown in Fig. 3. Observe that the angular dependence
varies rapidly as the laboratory kinetic energy is increased

FIG. 2. The phase shift difference �δ ≡ δ1 − δ0 varies with en-
ergy. The line at π/2 is shown for comparison. The phase shifts of
Ref. [20] are used.

FIG. 3. E (C) of Eq. (9) for several laboratory kinetic energies (5,
10, 20, 50 MeV) as a function of center of momentum angles. The
state is M|↑↓〉.

from 1 to 50 MeV. This is due to the rapid dependence of the
s-wave phase shifts on energy and the increasing importance
of d , p, and f waves.

The results for laboratory kinetic energies between 100
and 350 MeV are shown in Fig. 4. Observe the persistent
prominent peak at around 90◦. It is useful to interpret this peak
in terms of the underlying interaction. It has long been known
[25] that one-pion exchange is important for these energies.
Forward-angle charge exchange allows n-p scattering to peak
at backward angles and thus provide a signature.

I therefore compute the entanglement effect of the tensor
operator in a qualitative effort to interpret the persistent peak.
This operator is given by the expression

S12 = 3σ1 · K̂σ2 · K̂ − σ1 · σ2 (21)

FIG. 4. E (C) of Eq. (9) for several laboratory kinetic energies
(100, 150, 200, 250, 300 MeV) as a function of center of momentum
angles. The state is M|↑↓〉.
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on the state |↑↓〉. The operator S12 acts only on triplet states,
so the state |↑↓〉 is projected to the triplet state with magnetic
quantum number 0, |χ0〉/

√
2 = −i|e3〉/

√
2. Then a calcula-

tion yields

S12|e3〉 = i√
2

[(3 cos θ − 1)|e3〉 + 3 sin θ |e2〉], (22)

a completely entangled state that has E (C) = 1. Thus it is
reasonable to suggest that the large values of E (C) seen in
Fig. 4 for nonzero values of θ result from the tensor force in
combination with the other components of the nuclear force.
The effects of the tensor force are significant but not domi-
nant. The expression (22) is only a qualitative reproduction of
the full calculation.

One could also start with the state |↑↑〉 = 1√
2
(|e1〉 − i|e2〉).

This is also a direct product state with C = 0 and 0 entangle-
ment entropy. In the s-wave limit the action of the scattering
operator leaves the state invariant because this state is a spin
eigenstate. The computed values of E (C) essentially vanish
for laboratory kinetic energies below about 50 MeV. This is
because orbital angular momentum must be involved to for
an operator to change the state |↑↑〉 to another S = 1 state
with the same total angular momentum. For this reason the
entanglement must vanish at θ = 0, π . For higher energies
there is an interesting angular dependence that displays sig-
nificant entanglement. The results, obtained using all terms of
the scattering matrix, are shown in Fig. 5.

Observe that the entanglement is generally large. The ef-
fects of the tensor force again seem to be prominent because

√
2S12|↑↑〉 = 2|e1〉 + i(3 cos θ + 1)|e2〉) + 3i sin θ |e3〉,

(23)

a state that by itself has C = 3 cos2 θ/2/(2 + 3 cos2 θ/2). This
expression shows that the tensor force matters, but it is not
complete because all terms of M are needed to obtain the 0’s
at forward and backward angles.

A summary is in order. Entanglement is computed here
using a technique [18] that literally counts the number of
entangled pairs produced by the neutron-proton interaction.
Simply taking the trace of the two-particle density matrix
on particle 2 to obtain a one-body density matrix and com-
puting the resultant entropy does not yield the entanglement
entropy because very completely entangled and completely
unentangled two-nucleon density matrices can yield the same
one-particle density matrix.

Computations of E (C) of Eq. (9) show that entanglement
is large for low-energy neutron-proton scattering. At such en-
ergies the nuclear potential satisfies Wigner SU(4) symmetry,

FIG. 5. E (C) of Eq. (9) laboratory kinetic energies (50, 100, 150,
200, 250, 300 MeV) as a function of center of momentum angles. The
state is M|↑↑〉.

so entanglement maximization is a sign of that symmetry. At
higher energies the angular dependence of entanglement is
strong and is generally not suppressed. The tensor force is
shown to play a significant role in producing entanglement.

Additional commenting is worthwhile. The operators of
Eq. (17) are symmetric under the interchange (1, 2) → (2, 1)
and therefore conserve the spin quantum number. Violations
of other symmetries would lead to additional operators that
connect singlet and triplet states, potentially changing the an-
gular dependence of the entanglement entropy. For example,
charge symmetry breaking, a violation of isospin invariance
of high order in chiral power counting [26], leads to (class IV)
operators of the form (τ1 − τ2)z(σ1 − σ2) · n̂ [27]. Violations
of parity would lead to operators of the form, for example,
(τ1 − τ2)z(σ1 − σ2) · (pi + p f ) [28] and time reversal viola-
tion would allow terms of the form (τ1 − τ2)z(σ1 × σ2) · n̂
[29]. Study of the effects of such operators is a subject for
future investigation because there could be a strong connec-
tion between entanglement and the fundamental symmetries
of the standard model.
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