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Precise approach to determining the 3He neutron incoherent scattering length bi
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We report the first results from a new approach for measuring the 3He neutron incoherent scattering length
bi. bi is directly proportional to the difference �b = b+ − b− in the two low-energy s-wave neutron-nucleus
scattering amplitudes b+ and b−, corresponding to the singlet J = 0 and triplet J = 1 states of the neutron-
3He interaction, respectively. An accurate measurement of bi can help distinguish among different models of
three-nucleon interactions by comparison to ab initio nuclear theory calculations. The neutron birefringence
caused by �b results in neutron spin rotation around the nuclear polarization. We measured �b using polarized
neutron spin rotation and the transmission of neutrons through a 3He gas target polarized in situ by spin-exchange
optical pumping. This brief test measurement performed on the J-NSE Phoenix neutron spin echo spectrometer,
yielded �b = [−5.27 ± 0.05 (stat.) −0.05 (syst.)] fm. We argue that this method can be improved in precision to
resolve the discrepancies between two prior measurements of bi which are dependent on the polarized absorption
cross section σp. With absolute 3He polarization measurement via nuclear magnetic resonance (NMR) (in a
properly shaped cell) concurrent with accurate neutron transmission measurements, σp can be measured to obtain
independent values of b+ and b−.
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Precision measurements of the scattering amplitudes in
n + 3He provide important tests for ab initio theoretical
calculations of the properties of few-nucleon systems. Three-
body (3N) interactions among nucleons are now estimated
to provide about 5% of the total binding energy of stable
nuclei [1]. The development of a global model of bound
nuclei that can both explain the binding energies of stable nu-
clei and also make reliable predictions out to the extremes of
nuclear stability is a major long-term goal for nuclear physics,
with important scientific applications for astrophysics and for
our understanding of the process of formation of the heavy
elements [2]. Although theoretical models for the possible
forms of nuclear three-body forces exist and give a rough
estimate for the relative sizes and spin/isospin dependence
of three- and higher-body effects compared to two-nucleon
forces, more precise experimental data on systems with few
nucleons is needed to determine the relative strengths of
these forces. The binding energies of 3H, 3He, and 4He are
essential data for this purpose in the A = 4 system and are
measured with high precision. Theoretical calculations of
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the binding energy of 4He using the Green’s function Monte
Carlo technique [3] including some using phenomenological
three-nucleon interactions [4–7] differ from experiment by
1%. Theoretical analysis also shows that the information on
the nuclear three-body force from the binding energy of 4He
is not independent of that from three-body bound systems
and is mainly sensitive to the spin-independent component
of the nuclear three-body force [8–11]. To better constrain
the spin-dependent parts of the nuclear three-body force, data
are required on the spin-dependent scattering of three- and
four-body systems with precision at the subpercent level.

The two best measurements of bi using neutron spin echo
[12] and neutron interferometry [13] are inconsistent based
on quoted errors, as are the three measurements of the n −
3He coherent scattering length bc using neutron interferom-
etry [14–16]. Different theoretical calculations of b1 and b0

then available for comparison employing NN + 3N interac-
tions, such as the standard potential models AV18 + UIX,
AV18 + UIX +V3 [17,18], and AV18 + LL2 [19], were also
not in agreement. Improved precision on both bi and bc can
also help distinguish among different models of few-nucleon
interactions. Description of the 4He continuum just above
the n + 3He threshold is challenging for existing theory, and
changes to existing 3N force models are proposed as a possi-
ble solution to existing discrepancies. Fortunately several new
theoretical techniques have been developed to tackle nuclear
four- and five-body systems [20–25] including chiral effective
theory [9,26]. Different ab initio calculational methods for
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nucleon scattering in A = 3 systems deliver internally consis-
tent results [27,28], and the resonating group method (RGM)
has been applied in the past to A = 4 systems [29,30] thus the
prospects for improved theoretical calculations in the n + 3He
system are good.

The total free n-nucleus scattering length is given by
a = a′ + ia′′, where a′ and a′′ are real. The imaginary term
arises from absorption, which is very large for n − 3He. For
the forward scattering amplitudes of this work, the bound
scattering lengths b = a(A + 1)/A are observed, where A is
the nucleus to neutron mass ratio. The two s-wave neutron-
nucleus scattering amplitudes b+ and b−, correspond to the
total nucleus plus neutron angular momentum J = I + s and
J = I − s scattering channels from a nucleus of spin I and
neutron of spin s = 1/2. These can be expressed as

b = bc + 2bi√
I (I + 1)

s · I. (1)

The coherent scattering length is thus

bc = (I + 1)b+ + Ib−
(2I + 1)

(2)

and the incoherent scattering length is

bi = I
√

I + 1(b+ − b−)

(2I + 1)
. (3)

The two values J = 0, 1 of the total spin for I = 1/2 imply
b+ ≡ b1 and b− ≡ b0 for the triplet and singlet scattering
lengths, respectively.

�b can be measured by observing the precession of the
neutron spin as neutrons pass through a polarized nuclear
target [31]. Although this phenomenon was initially described
[31,32] in terms of a fictitious “pseudomagnetic field” inside
the medium, �b originates from neutron-nucleus scattering.
The optical theorem [33] relates the spin dependence of the
neutron optical potentials associated with the scattering am-
plitudes b+ and b− to a two-valued neutron index of refraction
(n+, n−) depending on the relative orientation of the neutron
spin and the nuclear polarization:

n2
± = 1 − 4π

k2
N (bcoh + b±),

�n = (n+ − n−) ≈ −2π

k2
N (b+ − b−), (4)

where N is the number of nuclei per unit volume, k = 2π/λ

is the neutron wave number, and the approximation in the
second expression is valid in our case as the neutron index of
refraction is �1. �n makes the medium optically birefringent
for neutrons so that the two helicity components of the neutron
spin accumulate different phases, kn±d , in the forward direc-
tion as neutrons propagate a distance d through the target.
Therefore neutron spins orthogonal to the nuclear polarization
direction of the target precess around the nuclear polarization
by an angle φ∗ = k�nd .

The neutron precession angle φ∗ from the incoherent scat-
tering length bi ∝ �b of the 3He [12,13] is

φ∗ = −1

2
λP3Nd�b = −2λP3Nd√

3
bi, (5)

where P3 is the 3He polarization, N is the 3He density, and d
is the neutron path length through the 3He. For nuclei such as
3He which possess a very large spin-dependent component to
the neutron cross section, one can determine the constant of
proportionality λP3Nd and write the measured quantity �b as
follows:

�b = 2φ∗

λP3Nd
= σp

λth.

2φ∗

cosh−1R
. (6)

Here, R is the ratio of unpolarized neutron transmission of
polarized 3He, T (P3), to the transmission of unpolarized 3He,
T (0), σp is the polarized 3He spin dependent neutron absorp-
tion cross section, and λth. = 1.798 Å is the thermal neutron
wavelength used for neutron absorption cross sections. The to-
tal n − 3He absorption cross section σa = (4π/k)b′′ obtained
from the imaginary part of b by the optical theorem [33]
in terms of the polarization-independent and polarization-
dependent terms is

σa = σun ∓ P3σp, (7)

where the sign convention ∓ is for P3 parallel (−) or antipar-
allel (+) to the neutron spin. Here, σun = (5333 ± 7) b is the
total unpolarized neutron absorption cross section, and σp can
be expressed as σp = (1 − σ1/σun)σun. Both σa and σun are
measured to be proportional to the neutron wavelength λ to
high precision [34–36]. For an unpolarized neutron beam of
n neutrons with half-spin-up (n+) and half-spin-down (n−)
neutrons the corresponding transmission of Eq. (7) is

T ± = n±

n
= 1

2
exp

(
−(σun ∓ P3σp)

λNd

λth.

)
. (8)

Thus, the transmission of unpolarized neutrons through polar-
ized 3He is

T (P3) = exp

(
− σun

λth.

λNd

)
cosh

(
σp

λth
λP3Nd

)
. (9)

Since the unpolarized transmission is simply

T (0) = exp

(
− σun

λth.

λNd

)
(10)

with two neutron transmission measurements giving R =
T (P3)/T (0) one directly experimentally obtains the product
σp

λth.
λP3Nd from cosh−1R, leading to Eq. (6).
One still needs to determine σp. If the triplet absorption

rate σ1 were zero, i.e., only absorption in the singlet state
σ0, then σp = σun, where σun is known to � 0.1%. However
the upper bound on σp from previous experiments is several
percent [35,37] and limits the precision of this technique.
There is no reason to expect that σ1 is zero, as theoretical
calculations show [17,18]. Reference [12] used an average of
the experimental determinations [35,37] to arrive at a value
that can be reinterpreted as σ1 = 57 b, conversely Ref. [13]
used a combination of theoretical predictions and the mea-
sured thermal absorption cross section to estimate σ1 = 24 b
[13]. For lack of better knowledge of σ1, we use the latter
value in our analysis but also present the result independent of
σ1 as in [13] for comparisons.

3He can also enable a measurement of σp. An inde-
pendent 0.1% measurement of P3 combined with accurate

L031001-2



PRECISE APPROACH TO DETERMINING THE 3He … PHYSICAL REVIEW C 108, L031001 (2023)

measurements of R(λ) through an in situ polarized 3He sample
using the time-of-flight (TOF) method as in Ref. [38] could
provide a � 0.1% accuracy for σp, allowing determination of
σ1 to ≈5 b accuracy. Atomic physics methods have deter-
mined P3 to high precision [39–42] so this approach should
be feasible.

To determine P3 on a neutron beamline, we propose to
use the “self-magnetometry” of a polarized 3He sample in
a defined shape, e.g., a long tube parallel or perpendicular
to the applied B0 field. The 3He magnetization M3 = μ3P3N
generates a magnetic field of

B3 = μ0M3

(
1 − 2

3

)
= μ0

M3

3
(11)

when the tube’s axis is parallel to B0 and

B3 = μ0M3

(
1

2
− 2

3

)
= μ0

−M3

6
(12)

when the tube’s axis is perpendicular to B0 [39,43]. Here,
the first term is the magnetization minus the demagnetization
factor and the −2/3 term, the field from a spherical volume,
arises from the scalar contact term, meaning the 3He spins
are nonoverlapping and cannot “see” one another so the self-
field must be subtracted [44,45]. The magnetic moment of
3He μ3/h = −16217050 Hz/T is known to the ppb level [46],
and the geometric correction factor for finite length is very
well known and is about 2% for a length to diameter ratio �5
for the field parallel case [47,48]. At one bar pressure at 25 ◦C
there are 2.43 × 1025 atoms m3 and the gyromagnetic ratio
γ /2π = γ ′ of 3He is γ ′

3 = 3.24 × 107 Hz/T, so the product
f3 = μ0μ3P3Nγ ′

3 = 10.6 Hz for P3 = 1 and N = 1 bar. Thus
for field-parallel upon an adiabatic fast passage (AFP) reversal
of P3 an NMR frequency shift of

� f3 = 2B3γ
′
3 = 2μ0

M3

3
γ ′

3 = 2

3
μ0μ3P3Nγ ′

3 � 5 Hz (13)

will be observed for P3 = 0.70 at 1 bar pressure. λNd of
Eq. (9) can be calibrated by unpolarized T (0, λ) measure-
ments using the well-known σun and since one can expect
<5 Hz NMR line widths, 0.1% accuracy in P3 and σp should
be attainable for normal pressures by signal averaging. No
new on-beamline techniques are needed, just a specialized
3He cell. In situ polarization of the 3He with AFP and a TOF
neutron beamline are preferred.

Since a recent measurement of bc in n + 4He using perfect
crystal neutron interferometry [49] reached 10−3 precision
using a technique that can be directly applied to 3He, our ideas
to improve bi are the key additional input needed to confront
theory. Therefore we intend to perform a higher precision
measurement of �b/σp and a measurement of σp to obtain an
absolute value for bi, which could then also approach a 10−3

precision.
We tested a precise method to determine the real part

of �b/σp on the J-NSE Phoenix instrument [50] during an
experiment to measure bi for n − 129Xe and n − 131Xe [51].
Our approach builds on the pioneering work of Zimmer et al.
[12] by taking advantage of technical improvements in neu-
tron spin echo spectroscopy and by exploiting the improved
time stability and performance of polarized 3He gas targets
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FIG. 1. Schematic of the J-NSE neutron spin echo spectrometer
showing field configuration and the SEOP-polarized 3He cell.

created using in situ spin-exchange optical pumping (SEOP)
[52,53]. Measurements of neutron birefringence in polarized
nuclei were originally performed using the Ramsey method
of separated oscillatory fields [54,55]. This “pseudomagnetic
precession” method [31] uses two oscillating fields before and
after a solid-state nuclear-polarized sample to measure the
additional phase in the precession caused by it. We employ a
variation that also uses orthogonally precessing polarized neu-
trons moving through a nuclear polarized 3He gas sample but
in a neutron spin-echo (NSE) spectrometer [56] to quantify the
resulting phase shifts in the neutron precession. NSE is similar
to NMR spin echo [57] but the neutron spin is precession-
encoded in space for the traveling beam as opposed to in time
with static nuclei for NMR spin echo.

In a NSE spectrometer, polarized neutrons are first flipped
by π/2 to induce precession in the orthogonal plane, they then
pass through a high-field flight path with an over 1 T m field
integral encoding a large number of spin precessions; this step
is followed by a π flip reversal of the neutron polarization
and then by a second high-field flight path identical to the
first to decode the spins. The sample is typically near the
middle either before or after the π flipper and the additional
precession it creates can be quantified by matching it to the
precession in additional phase (compensation) coils placed
around the neutron flight path. The NSE method is like the
Ramsey technique but the addition of the central π flipper
allows the sample-induced phase shift to be quantified by DC
phase coils rather than phase-matching of an oscillating RF
field. NSE has the benefit that, because the phase coils have
field integrals accurate to nT m compared to total instrument
field integrals of 1 T m or more, it can encode the spins
very precisely and measure very small changes in the neutron
precession [50].

A schematic of the NSE spectrometer is shown in Fig. 1.
The nuclear spins of the 3He sample were polarized in situ
using SEOP in the sample area of the NSE spectrometer
after the π flipper. The BSEOP field is oriented perpendicular
(vertical) to the neutron flight path and main fields B1 or B2

of the NSE spectrometer, which are longitudinal (horizontal).
The phase coils producing Bphase are on either side of the π

flipper, the location of which defines the two NSE precession
regions L1 and L2.

In situ polarization turned out to be advantageous by de-
coupling time-dependent instrumental drifts from changes
in P3. Using NMR free-induction decay detection, we were
able to determine that fractional changes to P3 were below
0.3%. The in situ polarization equipment used also enables
on-beam AFP flipping of P3 during continuous pumping and
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FIG. 2. Spin echo signals from polarized 3He versus the phase
coil current for one pixel of the neutron detector. The two profiles
correspond to P3 parallel and antiparallel to BSEOP.

is described in Ref. [53]. The time-dependent phase drifts in
the NSE spectrometer are thus fit as a time-dependent back-
ground, and the AFP flipping eliminates systematics due to
possible non-perfect neutron spin-flips or nonadiabatic trans-
port of the neutron polarization.

A 5 cm diameter cylindrical 3He SEOP cell made of
GE180 glass with about 0.4 bar of 3He was used [53]. This
cell has rounded ends with a path length of 4.8 cm through its
center. In contrast to the neutron polarizer device described
in [53,58], here, the vertical magnetic field for SEOP was
provided by a set of 70 cm diameter Helmholtz coils for
added flexibility and to satisfy space constraints on the J-NSE
Phoenix instrument. High-fidelity data were obtained for a
6 cm2 area, corresponding to 36 detector pixels, through the
neutron-illuminated central portion of the cell where the path
length is approximately uniform.

A typical NSE scan is made by measuring the amplitude
of the neutron polarization vector as the phase-coil is scanned
in small steps around the point where the two NSE precession
regions are balanced. This action produces a spin echo en-
velope that shifts in proportion to precession angle φ∗ of the
sample. The J-NSE Phoenix spectrometer employs a position-
sensitive detector allowing independent determination of �b
for approximately each 0.5 cm × 0.5 cm region of the 3He
cell, which can then be averaged. This limits corrections that
would arise from varying neutron path lengths though the
3He cell. A pair of NSE scans for the two states of the 3He
polarization from one such pixel is shown in Fig. 2.

The NSE signal, I (�iphase ), is the detected transmitted in-
tensity after the neutron polarization analyzer as a function
of the difference in the phase coil currents �iphase. In the
expression

I (�iphase ) = I0

[
1 − p

∫
dλ f (λ)cos(φ1 − φ2)

]
, (14)

φ1 and φ2 are the total accumulated precession angles from
region L1 and L2, respectively, f (λ) is the neutron wavelength
distribution, p is the loss of contrast of the interference pattern
from neutron polarization efficiencies, and I0 is the transmit-
ted intensity far from the NSE balance point. In addition to
the accumulated phase from the field integral of the respec-
tive NSE coil B1 or B2 and phase coil, φ2 also includes the
phase from the field integral of BSEOP and φ∗ from the sample.

FIG. 3. Phase evolution due to alternating 3He polarizations from
one pixel of the NSE detector. The slow drift in φ is attributed to the
stability of the BSEOP as its location after the π flipper creates an
asymmetry in the field integral of L1 and L2.

The phase coils can be independently tuned to find the center
of the NSE where φ1 = φ2.

The current in one phase coil is held constant and the NSE
data acquisition system records the position sensitive neutron
intensity as the other phase coil is scanned. The neutron
wavelength distribution transmitted by the velocity selector is
well fit by a triangular function so this form is used to obtain∫

dλ f (λ). The resulting NSE signals were fit for each pixel
according to Eq. (14) to obtain φ∗, an example of a pair of
NSE signals and data fits used for analysis are shown in Fig. 2.

The 3He bi data reported here were obtained to verify the
method for the Xe measurement [51], thus the 3He could only
be measured for 12 h. Data were taken in the pattern: two
NSE scans with P3 positive; two scans with P3 flipped to the
negative state; two in the positive state; and six hours of scans
with P3 = 0. Although not needed for the determination of
bi, P3 = 70.6 ± 1.6% was determined using R and a value
of [He] = 0.3556 ± 0.001 bar from a separate transmission
measurement using neutron TOF on the FIGARO instrument
[59]. A graph of the phase versus time for one pixel is shown
in Fig. 3. These data were then fit to a step function with a
linear time-dependent background to determine the measured
shift �φ = 2φ∗ for +P3 to −P3 for each of the 36 pixels used.

R is determined by taking the weighted average of the mean
intensity value of the NSE signal during the NSE scans for the
+P3 and −P3 states to determine T (P), and the mean intensity
of the unpolarized 3He NSE scans to determine T (0). This
process was also performed for each pixel of the NSE scan
over our region of interest to account for any variations in d
resulting from the cell’s shape and alignment in the neutron
beam. Using the mean value compensates for the small differ-
ence in transmission of the positive versus negative P3 due to
a small residual neutron polarization along BSEOP.

The measured �φ value has a small correction from the
magnetic dipole field of the polarized gas which causes an
extra precession signal in the neutron phase that is also propor-
tional to P3. This effect was discussed in Ref. [12], however
that work did not account for the scalar-contact term that one
must include for real particles [44,45], which is different than
one would expect from the classical result where it is assumed
that one can have noninteracting and overlapping point-like
particles. For n − 3He the contact interaction should be 0 for
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any reasonable first order approximations. Therefore along
their flight path neutrons do not sample the classical field of
the individual polarized 3He nuclei inside the cell. The field
experienced will consist of the long range dipole fields caused
by a nonspherical geometry inside the polarized cell and, since
the neutron precession also integrates the field along their
entire flight path, the classical field of a polarized (magne-
tized) volume outside of the cell. For our geometry this would
lead to a correction <0.07% and is not yet relevant. Fields
experienced by nonzero spin particle beams passing through
polarized volumes is of interest for precision measurements
and is discussed in the Supplemental Material [60].

The triangular wavelength distribution from the neu-
tron velocity selector leads to a correction because of the
wavelength-dependent attenuation of the 3He target. Using the
arguments of Ref. [12] this leads to a negligible correction
factor of 1.0003 due to the small Nd of the cell used. This
correction is not needed for an instrument that uses TOF
to determine the transmitted spectrum. Our global detector
count rates were 1% or less of the total detector deadtime of
400 ns (e.g., maximum count rate of 2.5 MHz) so deadtime
corrections are also negligible.

Using this analysis we obtain �b = [−5.27 ± 0.05 (stat.)
−0.05 (syst.)] fm using the values of σun = 5333(7) barn and
an estimated σp = σun − σ1 = 5309 b. From Eq. (5) �b =
4bi/

√
3 gives the 3He neutron incoherent scattering length.

Writing the result independent of σp we obtain

�b

σp
= (−9.93 ± 0.09(stat.) − 0.09(syst.)) × 10−4 fm

b
.

(15)

This value compares to �b = [(−10.1929 ± −.0760) ×
10−4 fm/b]σp in Ref. [13] and �b = [(−10.3628 ±
−.0180) × 10−4 fm/b]σp in Ref. [12]. These preliminary
data show we can readily obtain our target of 10−3 precision
for �b/σp with a longer measurement. The difference of
this preliminary result from previous measurements could
be attributed to slow experimental drifts since we were only
able to reverse the P3 once. The cell windows were slightly

curved, and a minor shift in the cell position could lead to a
one-sided error. Our estimate of the positioning precision of
the cell dominate our reported systematic error.

We implemented improvements to the technique of [12]
including in situ polarization of the 3He gas and the abil-
ity to reverse the 3He polarization using AFP. The in situ
polarization approach decouples the measured φ∗ from time-
dependent drifts that could falsely correlate with P3, and
prevents possible inconsistencies induced by removal and
replacement of the 3He cell. The position-sensitive determi-
nation of the cross section reduces possible path length errors,
which could be further reduced by using a flat-windowed
3He SEOP cell to eliminate variations over time, and the
AFP flipping cancels errors from small residual longitudinal
neutron polarization. Use of a TOF NSE instrument such as
the SNS-NSE [61] will eliminate the neutron velocity selector
correction. Since the 0.9% error on our reported value is
limited by neutron counting statistics, increasing the measure-
ment time to 1 week (a 14-fold increase) and using a cell with
an optimized Nd to minimize error from cosh−1(R) one could
reach a statistical accuracy of <0.1% (or 0.005 fm). Previous
work [62] shows that the transmission measurements needed
to measure the proportionality factor between φ∗ and �b/σp

can indeed be conducted with the required precision. With
the additional measurement of σp to a comparable precision,
a total 10−3 precision on bi for 3He can be attained.

H.L. and W.M.S. had support from US National Sci-
ence Foundation (NSF) Grants No. PHY-1913789 and No.
PHY-2209481 and the Indiana University Center for Space-
time Symmetries. H.L. received a short-term grant, 2019 No.
57442045 from DAAD the German Academic Exchange Ser-
vice. B.M.G. had support from the NSF (CHE-1905341),
DoD (W81XWH-15-1-0272, W81XWH2010578), and a Cot-
trell Scholar SEED Award from Research Corporation for
Science Advancement. P. Guthfreund (ILL) and K. Zher-
nenkov performed a calibration measurement of N (i.e., [He])
on FIGARO [59] aiding this work. We thank G. M. Schrank
for discussions and M. Huber for detailed discussions of NIST
work on bi and estimates of σ1 for 3He [13].

[1] M. C. Atkinson, W. H. Dickhoff, M. Piarulli, A. Rios, and R. B.
Wiringa, Phys. Rev. C 102, 044333 (2020).

[2] C. W. Johnson, K. D. Launey, N. Auerbach, S. Bacca, B. R.
Barrett, C. R. Brune, M. A. Caprio, P. Descouvemont, W. H.
Dickhoff, C. Elster et al., J. Phys. G 47, 123001 (2020).

[3] H. Kamada, A. Nogga, W. Glockle, E. Hiyama, M. Kamimura,
K. Varga, Y. Suzuki, M. Viviani, A. Kievsky, S. Rosati et al.,
Phys. Rev. C 64, 044001 (2001).

[4] R. B. Wiringa, S. C. Pieper, J. Carlson, and V. R.
Pandharipande, Phys. Rev. C 62, 014001 (2000).

[5] A. Nogga, H. Kamada, W. Glockle, and B. R. Barrett, Phys.
Rev. C 65, 054003 (2002).

[6] R. Lazauskas and J. Carbonell, Phys. Rev. C 70, 044002 (2004).
[7] M. Viviani, A. Kievsky, and S. Rosati, Phys. Rev. C 71, 024006

(2005).

[8] B. S. Pudliner, V. R. Pandharipande, J. Carlson, and R. B.
Wiringa, Phys. Rev. Lett. 74, 4396 (1995).

[9] R. Machleidt and D. R. Entem, Phys. Rep. 503, 1 (2011).
[10] J. Carlson, S. Gandolfi, F. Pederiva, S. C. Pieper, R. Schiavilla,

K. E. Schmidt, and R. B. Wiringa, Rev. Mod. Phys. 87, 1067
(2015).

[11] A. Baroni, R. Schiavilla, L. E. Marcucci, L. Girlanda, A.
Kievsky, A. Lovato, S. Pastore, M. Piarulli, S. C. Pieper,
M. Viviani, and R. B. Wiringa, Phys. Rev. C 98, 044003
(2018).

[12] O. Zimmer, G. Ehlers, B. Farago, H. Humblot, W. Ketter, and
R. Scherm, EPJ Direct 4, 1 (2002).

[13] M. G. Huber, M. Arif, W. C. Chen, T. R. Gentile, D. S. Hussey,
T. C. Black, D. A. Pushin, C. B. Shahi, F. E. Wietfeldt, and L.
Yang, Phys. Rev. C 90, 064004 (2014).

L031001-5

https://doi.org/10.1103/PhysRevC.102.044333
https://doi.org/10.1088/1361-6471/abb129
https://doi.org/10.1103/PhysRevC.64.044001
https://doi.org/10.1103/PhysRevC.62.014001
https://doi.org/10.1103/PhysRevC.65.054003
https://doi.org/10.1103/PhysRevC.70.044002
https://doi.org/10.1103/PhysRevC.71.024006
https://doi.org/10.1103/PhysRevLett.74.4396
https://doi.org/10.1016/j.physrep.2011.02.001
https://doi.org/10.1103/RevModPhys.87.1067
https://doi.org/10.1103/PhysRevC.98.044003
https://doi.org/10.1007/s1010502a0001
https://doi.org/10.1103/PhysRevC.90.064004


H. LU et al. PHYSICAL REVIEW C 108, L031001 (2023)

[14] H. Kaiser, H. Rauch, G. Badurek, W. Bauspiess, and U. Bonse,
Z. Phys. A 291, 231 (1979).

[15] P. R. Huffman, D. L. Jacobson, K. Schoen, M. Arif, T. C. Black,
W. M. Snow, and S. A. Werner, Phys. Rev. C 70, 014004 (2004).

[16] W. Ketter, W. Heil, G. Badurek, M. Baron, E. Jericha, R. Loidl,
and H. Rauch, Europhys. J A 27, 243 (2006).

[17] H. M. Hofmann and G. M. Hale, Phys. Rev. C 68, 021002(R)
(2003).

[18] H. M. Hofmann and G. M. Hale, Phys. Rev. C 77, 044002
(2008).

[19] J. Kirscher, H. W. Griesshammer, D. Shukla, and H. M.
Hofmann, Eur. Phys. J. A 44, 239 (2010).

[20] K. M. Nollett, S. C. Pieper, R. B. Wiringa, J. Carlson, and G. M.
Hale, Phys. Rev. Lett. 99, 022502 (2007).

[21] A. Kievsky, S. Rosati, M. Viviani, L. E. Marcucci, and L.
Girlanda, J. Phys. G 35, 063101 (2008).

[22] P. Navratil, S. Quaglioni, G. Hupin, C. Romero-Redondo, and
A. Calci, Phys. Scr. 91, 053002 (2016).

[23] J. E. Lynn, I. Tews, J. Carlson, S. Gandolfi, A. Gezerlis,
K. E. Schmidt, and A. Schwenk, Phys. Rev. Lett. 116, 062501
(2016).

[24] R. Lazauskas and J. Carbonell, Front. Phys. 7, 251 (2020).
[25] A. R. Flores and K. M. Nollett, arXiv:2209.00093 [Phys. Rev.

C (to be published)].
[26] M. Piarulli and I. Tews, Front. Phys. 7, 245 (2020).
[27] M. Viviani, A. Deltuva, R. Lazauskas, J. Carbonell, A. C.

Fonseca, A. Kievsky, L. E. Marcucci, and S. Rosati, Phys. Rev.
C 84, 054010 (2011).

[28] M. Viviani, A. Deltuva, R. Lazauskas, A. C. Fonseca, A.
Kievsky, and L. E. Marcucci, Phys. Rev. C 95, 034003 (2017).

[29] S. Quaglioni and P. Navrátil, Phys. Rev. Lett. 101, 092501
(2008).

[30] P. Navrátil, R. Roth, and S. Quaglioni, Phys. Rev. C 82, 034609
(2010).

[31] V. Baryshevsky and M. Podgoretsky, Zh. Eksp. Teor. Fiz. 47,
1050 (1964).

[32] A. Abragam and M. Goldman, Nuclear Magnetism: Order and
Disorder (Clarendon Press, Oxford, 1982).

[33] V. F. Sears, Neutron Optics: An Introduction to the Theory of
Neutron Optical Phenomena and Their Applications (Oxford
University Press, New York, 1989).

[34] J. Als-Nielsen and O. Dietrich, Phys. Rev. 133, B925
(1964).

[35] S. B. Borzakov, K. Maletski, L. B. Pikelner, M. Stehmpinski,
and E. I. Sharapov, Sov. J. Nucl. Phys. 35, 307 (1982).

[36] C. D. Keith, Z. Chowdhuri, D. R. Rich, W. M. Snow, J. D.
Bowman, S. L. Penttilä, D. A. Smith, M. B. Leuschner, V. R.
Pomeroy, G. L. Jones, and E. I. Sharapov, Phys. Rev. C 69,
034005 (2004).

[37] L. Passell and R. I. Schermer, Phys. Rev. 150, 146 (1966).
[38] T. Chupp, K. Coulter, M. Kandes, M. Sharma, T. Smith, G. L.

Jones, W. Chen, T. Gentile, D. Rich, B. Lauss et al., Nucl.
Instrum. Methods Phys. Res. A 574, 500 (2007).

[39] M. V. Romalis and G. D. Cates, Phys. Rev. A 58, 3004 (1998).
[40] E. Babcock, I. A. Nelson, S. Kadlecek, and T. G. Walker, Phys.

Rev. A 71, 013414 (2005).
[41] P. Nikolaou, A. Coffey, K. Ranta, L. Walkup, B. Gust, M.

Barlow, M. Rosen, B. Goodson, and E. Chekmenev, J. Phys.
Chem. B 118, 4809 (2014).

[42] E. Wilms, M. Ebert, W. Heil, and R. Surkau, Nucl. Instrum.
Methods Phys. Res. A 401, 491 (1997).

[43] A. Vlassenbroek, J. Jeener, and P. Broekaert, J. Magn. Reson.
A 118, 234 (1996).

[44] M. V. Romalis, D. Sheng, B. Saam, and T. G. Walker, Phys.
Rev. Lett. 113, 188901 (2014).

[45] M. E. Limes, N. Dural, M. V. Romalis, E. L. Foley, T. W.
Kornack, A. Nelson, L. R. Grisham, and J. Vaara, Phys. Rev.
A 100, 010501(R) (2019).

[46] A. Schneider, B. Sikora, S. Dickopf, M. Müller, N. Oreshkina,
A. Rischka, I. Valuev, S. Ulmer, J. Walz, Z. Harman et al.,
Nature (London) 606, 878 (2022).

[47] D.-X. Chen, E. Pardo, and A. Sanchez, J. Magn. Magn. Mater.
306, 135 (2006).

[48] R. I. Joseph, J. Appl. Phys. 37, 4639 (1966).
[49] R. Haun, F. E. Wietfeldt, M. Arif, M. G. Huber, T. C. Black, B.

Heacock, D. A. Pushin, and C. B. Shahi, Phys. Rev. Lett. 124,
012501 (2020).

[50] S. Pasini, O. Holderer, T. Kozielewski, D. Richter, and M.
Monkenbusch, Rev. Sci. Instrum. 90, 043107 (2019).

[51] H. Lu, M. J. Barlow, D. Basler, P. Gutfreund, O. Holderer,
A. Ioffe, S. Pasini, P. Pistel, Z. Salhi, K. Zhernenkov, B. M.
Goodson, W. M. Snow, and E. Babcock, arXiv:2301.00460.

[52] T. G. Walker and W. Happer, Rev. Mod. Phys. 69, 629 (1997).
[53] Z. Salhi, E. Babcock, P. Pistel, and A. Ioffe, J. Phys.: Conf. Ser.

528, 012015 (2014).
[54] N. F. Ramsey, Molecular Beams (Oxford University Press, Ox-

ford, 1956).
[55] N. F. Ramsey, Rev. Mod. Phys. 62, 541 (1990).
[56] F. Mezei, Z. Phys. A 255, 146 (1972).
[57] E. L. Hahn, Phys. Rev. 80, 580 (1950).
[58] Z. Salhi, E. Babcock, K. Bingol, K. Bussmann, H. Kammerling,

V. Ossovyi, A. Heynen, H. Deng, V. Hutanu, S. Masalovich
et al., J. Phys.: Conf. Ser. 1316, 012009 (2019).

[59] R. A. Campbell, H. P. Wacklin, I. Sutton, R. Cubitt, and G.
Fragneto, Eur. Phys. J. Plus 126, 107 (2011).

[60] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevC.108.L031001 for a description of the cor-
rection due to the magnetic field integral of a polarized particle
beam through a polarized target.

[61] M. Ohl, M. Monkenbusch, N. Arend, T. Kozielewski, G. Vehres,
C. Tiemann, M. Butzek, H. Soltner, U. Giesen, R. Achten et al.,
Nucl. Instrum. Methods Phys. Res. A 696, 85 (2012).

[62] M. M. Musgrave, S. Baessler, S. Balascuta, L. Barron-Palos, D.
Blyth, J. D. Bowman, V. Cianciolo, C. Crawford, K. Craycraft,
N. Fomin et al., Nucl. Instrum. Methods Phys. Res. A 895, 19
(2018).

L031001-6

https://doi.org/10.1007/BF01409188
https://doi.org/10.1103/PhysRevC.70.014004
https://doi.org/10.1103/PhysRevC.68.021002
https://doi.org/10.1103/PhysRevC.77.044002
https://doi.org/10.1140/epja/i2010-10939-5
https://doi.org/10.1103/PhysRevLett.99.022502
https://doi.org/10.1088/0954-3899/35/6/063101
https://doi.org/10.1088/0031-8949/91/5/053002
https://doi.org/10.1103/PhysRevLett.116.062501
https://doi.org/10.3389/fphy.2019.00251
http://arxiv.org/abs/arXiv:2209.00093
https://doi.org/10.3389/fphy.2019.00245
https://doi.org/10.1103/PhysRevC.84.054010
https://doi.org/10.1103/PhysRevC.95.034003
https://doi.org/10.1103/PhysRevLett.101.092501
https://doi.org/10.1103/PhysRevC.82.034609
https://doi.org/10.1103/PhysRev.133.B925
https://doi.org/10.1103/PhysRevC.69.034005
https://doi.org/10.1103/PhysRev.150.146
https://doi.org/10.1016/j.nima.2007.02.091
https://doi.org/10.1103/PhysRevA.58.3004
https://doi.org/10.1103/PhysRevA.71.013414
https://doi.org/10.1021/jp501493k
https://doi.org/10.1016/S0168-9002(96)01220-X
https://doi.org/10.1006/jmra.1996.0032
https://doi.org/10.1103/PhysRevLett.113.188901
https://doi.org/10.1103/PhysRevA.100.010501
https://doi.org/10.1038/s41586-022-04761-7
https://doi.org/10.1016/j.jmmm.2006.02.235
https://doi.org/10.1063/1.1708110
https://doi.org/10.1103/PhysRevLett.124.012501
https://doi.org/10.1063/1.5084303
http://arxiv.org/abs/arXiv:2301.00460
https://doi.org/10.1103/RevModPhys.69.629
https://doi.org/10.1088/1742-6596/528/1/012015
https://doi.org/10.1103/RevModPhys.62.541
https://doi.org/10.1007/BF01394523
https://doi.org/10.1103/PhysRev.80.580
https://doi.org/10.1088/1742-6596/1316/1/012009
https://doi.org/10.1140/epjp/i2011-11107-8
http://link.aps.org/supplemental/10.1103/PhysRevC.108.L031001
https://doi.org/10.1016/j.nima.2012.08.059
https://doi.org/10.1016/j.nima.2018.03.055

