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Jet measurements in heavy ion collisions can provide constraints on the properties of the quark gluon plasma,
but the kinematic reach is limited by a large, fluctuating background. We present a novel application of symbolic
regression to extract a functional representation of a deep neural network trained to subtract background from jets
in heavy ion collisions. We show that the deep neural network is approximately the same as a method using the
particle multiplicity in a jet. This demonstrates that interpretable machine learning methods can provide insight
into underlying physical processes.
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Introduction. The quark gluon plasma (QGP) is a hot,
dense, strongly interacting liquid of quarks and gluons that
is created briefly in high energy heavy ion collisions [1–4].
Measurements of jets produced by hard scatterings between
partons in heavy ion collisions can be used to investigate the
properties of the QGP [5]. Quantitative comparisons between
jet measurements and physics models can provide further con-
straints on these properties [6,7]. However, heavy ion events
are dominated by a fluctuating background of soft particles
not due to hard scatterings. The details of these fluctuations
are sensitive to correlations from hydrodynamical flow and
the shape of the single-particle spectra [8], and as such are un-
likely to be exactly the same in data and models. Mixed events
are able to successfully describe the background in measure-
ments of hadron-jet correlations by the STAR Collaboration
[9] at the Relativistic Heavy Ion Collider (RHIC). Studies
of the background at the Large Hadron Collider (LHC) by
the ALICE Collaboration found that the distribution of back-
ground energy density in random cones is well described by a
random background with correlations due to hydrodynamical
flow and Poissonian fluctuations [10]. A better understanding
of this background will facilitate more precise jet measure-
ments for comparisons between data and models.

Measurement precision and kinematic range is limited by
the ability to correct for this background and its fluctuations.
Background correction in jet measurements requires subtrac-
tion of contributions from soft particles within the jet, and
suppression of fluctuations which have been reconstructed
as combinatorial jets. At low momenta, combinatorial jets
limit the kinematic reach of the measurement. Improved back-
ground subtraction methods would increase measurements’
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sensitivity to partonic energy loss. Measurements of jet spec-
tra which extend to low momenta primarily use the area
method [11] for background subtraction. This method was
initially proposed to correct for the underlying event in p+p
collisions in high pile-up conditions [11] and has also been
applied to heavy ion collisions [12–15].

The complexity of jet background subtraction makes it an
interesting environment to apply machine learning techniques.
However, application of machine learning methods to back-
ground subtraction should be handled with care since models
are not able to fully reproduce background fluctuations in
heavy ion collisions [8]. Nuclear physics has prioritized the
continued advancement in machine learning analysis tech-
niques with a focus on interpretable methods that are robust,
provide clear uncertainty quantification, and are explainable
[16]. Applications of noninterpretable machine learning meth-
ods are insufficient when models available for training may
be inaccurate, when it may be necessary to understand the
method to interpret the results, or when a result is needed
outside of the training space.

Application of a deep neural network, i.e., a neural network
with multiple hidden layers, to jet background subtraction in
heavy ion collisions has demonstrated significant improve-
ments compared to the area method, particularly at low jet
momenta [17,18]. Deep neural networks are susceptible to
model bias because their predictions risk being unreliable
outside the domain of their training space. These methods may
break down when they are extrapolated beyond this space, and
due to their opaque nature, offer little indication where and
why this break down occurs. In addition, one cannot validate
the technique against data because we do not know the true jet
momenta in data.

Increased performance of machine learning methods over
traditional methods is an indication that there is informa-
tion accessible to the machine learning that accounts for this
improvement. We present an interpretable machine learning
technique that allows us to understand why a deep neural
network improves the jet momentum resolution in heavy ion
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collisions. We empirically derive an alternate method based on
the background described in [10,19], we call the multiplicity
method. We compare the widths of the fluctuations of the jet
momenta for this method to the area and neural network meth-
ods and estimate the impact of the methods on the kinematic
range. We apply symbolic regression to determine a functional
form describing the mapping learned by the neural network,
which was trained using TENNGEN [8] for the background and
PYTHIA [20] for the signal. We compare this functional de-
scription of the neural network to the form of the multiplicity
method.

Simulation. TENNGEN [21,22] generates heavy ion col-
lisions with π±, K±, p, and p̄ hadrons with yields [23],
momentum distributions [24,25], and azimuthal anisotropies
[26,27] matched to published data. TENNGEN was updated to
simulate collision energies per nucleon of

√
sNN = 200 GeV

collisions as well as
√

sNN = 2.76 TeV, including multiplicity
fluctuations, and improved computational efficiency. Proton-
proton collisions at

√
s = 200 GeV were simulated with the

PYTHIA 8.307 [20] Monash 2013 tune [28] in 25 phard
T bins

starting at 5 GeV, with 106 p+p events in each bin. Only final
state charged particles from PYTHIA are mixed with a TEN-
NGEN background event. Charged particles from both PYTHIA

and TENNGEN are required to have a minimum pT of 150 MeV
and be within pseudorapidity |η| < 0.9.

Jets are clustered using the anti-kT algorithm with FASTJET

3.4.0 [29] with jet resolution parameters R = 0.2, 0.4, and
0.6. To determine the true momentum, jets are reconstructed
separately in both PYTHIA and the combined event. Jets in
the combined PYTHIA and TENNGEN event are geometrically
matched to a PYTHIA jet if �R =

√
�η2 + �φ2 < 0.1, where

�η and �φ are the differences in η and φ between the jets
and there is a bijective match. Reconstructed jets are required
to have pT > 5 GeV and be within pseudorapidity |η jet | <

0.9 − R. The momentum of the PYTHIA jet is taken as the truth
momentum, pTruth

T,Jet ≡ pPYTHIA
T,Jet .

Area and multiplicity methods. For area-based background
subtraction, the jet area [30] is estimating through the use of
“ghost” particles, jets are reconstructed using the kT jet finder
[31]. The corrected jet momentum is then estimated as

pCorr,A
T,Jet = ptot

T,Jet − ρA, (1)

where A is the jet area, ρ is the background momentum den-
sity per unit area, and ptot

T,Jet is the total momentum in the jet.
The ρ in an event is approximated as the median ptot

T,Jet/A for
kT jets because kT jets are dominated by background.

To a good approximation, the standard deviation of the mo-
mentum residual δpT = pCorr

T − pTruth
T with the area method is

given by

σδpT =
√√√√Nσ 2

pT
+

(
N + 2N2

∞∑
n=1

v2
n

)
〈pT 〉2, (2)

where N is the number of background particles in the jet, σpT

is the standard deviation of the single track momentum distri-
bution, vn are the coefficients of the azimuthal anisotropies
of the single particle distributions, and 〈pT 〉 is the average
momentum of background particles [10]. This is derived by

assuming each of the N particles is drawn from a single track
momentum distribution, which is approximately a gamma
distribution, giving rise to the first term [19]. The second term
is from Poissonian fluctuations in the number of background
particles and the third term is from fluctuations in the number
of particles due to hydrodynamical flow. Deviations of the sin-
gle track momentum distribution from a gamma distribution
and momentum dependence of the vn lead to slightly larger
widths [8].

The area method is usually used instead of iterative back-
ground subtraction methods [32–34] for measurements of jets
at lower momenta. Iterative methods may suppress the fluctu-
ations described in Eq. (2) by estimating the local background
and suppress combinatorial jets by requiring high momentum
or energy constituents. At low momenta, these requirements
may impose a bias on the surviving jets. Fluctuations and the
contribution from combinatorial jets are generally higher with
the area method, but with less bias.

We propose a multiplicity-based method as an alternative
to the area method:

pCorr,N
T,Jet = ptot

T,Jet − ρMult (Ntot − Nsignal ), (3)

where Ntot is the total number of particles in the jet, Nsignal

is the number of particles in the signal, and N = Ntot −
Nsignal. This leverages the fact that the natural variable in the
background fluctuations is the number of particles, largely
eliminating the second and third terms in Eq. (2). ρMult in an
event is the mean transverse momentum per background par-
ticle, which is approximated as the median ptot

T,Jet/Ntot for kT

jets. Nsignal is roughly described by models [35] and therefore
can be estimated. Measurements of γ -h correlations [36] and
reconstructed jets [37,38] indicate that there are around 0.5
additional particles for pjet

T ≈ 10 GeV/c and 1.0 additional
particles for pjet

T ≈ 100 GeV/c in heavy ion collisions. If
this were applied as an additional uncertainty, it would be
proportional to σNsignal × ρMult, or around 0.25–0.5 GeV/c.

Machine learning methods. A sufficiently complex neural
network can interpolate any function, at the cost of trans-
parency to the user. This poses an obstacle to application of
deep neural networks in physics where understanding pre-
dictions and identifying their potential biases is crucial. Our
approach to addressing this challenge is through symbolic
regression, one example of interpretable machine learning,
to extract mathematical expressions from trained deep neural
networks. The resulting equations provide an effective de-
scription of the neural network’s mapping between the input
and output. By constraining the types of operations available,
we can impose complexity and smoothness requirements.

We train a deep neural network to predict the corrected
jet momentum from the following input features: the uncor-
rected jet momentum, jet area, jet angularity, number of jet
constituents, and seven leading constituent momenta. The ar-
chitecture and input features of the network are motivated by
previous application of neural networks to proton-proton jets
with a thermal background [17]. The deep neural network is
implemented with TENSORFLOW 2.10.0 [39]. The deep neural
network has three hidden layers consisting of 100, 100, and
50 nodes, each activated by a rectified linear unit (ReLU) [40]
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FIG. 1. Comparisons of jet pT residual width for each background subtraction method as a function of reconstructed jet momentum for
Au+Au collisions at

√
sNN = 200 GeV and Pb+Pb collisions at

√
sNN = 2.76 TeV for jet resolution parameters R = 0.2, 0.4, and 0.6.

function. The model is optimized with ADAM [40] and the loss
function is a modified mean squared error,

L = 〈∣∣∣∣pTruth
T,Jet − pDNN

T,Jet

∣∣∣∣2〉 + λ

L∑
l=1

||Wl ||2, (4)

where pDNN
T,Jet is the predicted jet momentum, pTruth

T,Jet is the truth
momentum, and the last term is an L2(λ) regularization where
λ = 0.001, Wl is the weight matrix of layer l , and the sum
is over the L layers. The regularization term penalizes redun-
dancy and encourages sparsity in the final trained network.
The network is trained using 50% of the simulated jets while
the remaining 50% are reserved for testing.

Once the neural network is trained, it represents an approx-
imate mapping between the input jet features and the truth
jet momentum. We apply a genetic algorithm to symbolically
regress a functional form which describes this mapping using
the PYSR 0.11.11 [41] package. The PYSR model samples
the phase space of analytic expressions defined by operators,
input features, and constants for minimization through genetic
programming. The input features are comparable to those of
the neural network, and the pool of operations are arithmetic,
exponential, trigonometric, and exponentiation. The model
mutates over 50 generations of 20 different population sam-
ples, with each population containing 33 individuals. The loss
function for the PYSR model,

L = 〈∣∣∣∣pDNN
T,Jet − pPYSR

T,Jet

∣∣∣∣2〉
, (5)

is the mean squared error between the prediction from PySR
pPYSR

T,Jet and the corrected jet momentum predicted by the neural
network. PYSR evaluates expressions based on a score S that
rewards minimizing the loss function L and penalizes equa-
tion complexity C:

S = −δ lnL
δC

, (6)

where the equation complexity C is defined as the total
number of operations, variables, and constants used in an
equation [42]. The simulated jets, designated for testing,

are used to sufficiently sample the neural network outputs
throughout the possible input feature space. The highest scor-
ing PYSR expression is a functional representation of the
mapping from input jet features to corrected jet momentum
learned by the deep neural network.

Unfolding. The lower threshold for unfolding is typically
set to be between 2–5 times the width of the jet momen-
tum resolution to suppress effects of combinatorial jets on
the unfolded results [12,18]. We unfold the reconstructed jet
momentum spectra using five iterations of the Bayesian un-
folding method [43] in ROOUNFOLD 2.0.0 [44]. We construct
a response matrix using PYTHIA jets (truth jets) matched to
PYTHIA + TENNGEN jets (reconstructed jets). The momentum
of the PYTHIA jet is taken as the truth momentum, pTruth

T,jet ≡
pPYTHIA

T,jet . We then unfold our reconstructed jet spectra. The
reconstructed spectra has no matching criteria between the
PYTHIA + TENNGEN jets and PYTHIA jets and no kinematic
cuts to suppress combinatorial jet contributions. We use re-
constructed jet spectra including combinatorial background to
investigate the sensitivity of the lower momentum threshold
to combinatorial background.

Results. Figure 1 shows the width of the jet momentum
residual distributions as a function of jet momentum for
each background subtraction method in both Au+Au colli-
sions at

√
sNN = 200 GeV and Pb+Pb collisions at

√
sNN =

2.76 TeV. The σδpT increases with increasing jet resolution
parameter, as expected because there is more background
when the jet is larger. The σδpT also increases with

√
sNN

because the particle multiplicity increases. As seen in [17], the
deep neural network reconstructs the momentum considerably
more accurately than the area method. The performance of
the multiplicity method is comparable to that of the deep
neural network in Au+Au collisions and small jet resolu-
tion parameter. The ability of each method to sufficiently
suppress contributions from combinatorial jets at low pT is
demonstrated with the ratios of the reconstructed jet spectra
to the true jet spectra, shown in Fig. 2. The contributions from
combinatorial jets decreases with increasing jet momentum
for all methods, with all jet resolution parameters, and for
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FIG. 2. Ratio of the reconstructed jet spectrum over the truth
spectrum for Au+Au collisions at

√
sNN = 200 GeV and Pb+Pb

collisions at
√

sNN = 2.76 TeV for jet resolution parameters R = 0.2,
0.4, and 0.6. Low momentum points for the area method for LHC
energies at R = 0.4 and R = 0.6 are off scale.

both collision energies. The ratios for the deep neural network
and multiplicity methods are both lower than those of the area
method.

The ratios of the unfolded spectra to the true jet spec-
tra are shown in Fig. 3. Fluctuations from one at lower jet
momenta are where the method becomes unstable due to
overwhelming contributions from combinatorial background.
Reconstructed jet spectra have no kinematic cuts to suppress
combinatorial jet contributions, therefore any extension in the
lower kinematic range is due to the momentum resolution
of the background subtraction method. The multiplicity and
deep neural network methods are stable to at least 10 GeV/c
lower in momentum than the area method for all jet resolution
parameters and collisions systems.

For all jet resolution parameters and both collision ener-
gies, the symbolic regression found that the best description
of the deep neural network has the functional form

pCorr,PYSR
T,Jet = ptot

T,Jet − C1(Ntot − C2), (7)

where the two parameters, C1 and C2, are optimization con-
stants defined by PYSR. These parameters are plotted in Fig. 4
and compared to the average value of the parameters used in
the multiplicity method. We find that the symbolic regression
parameters C1 and C2 are comparable to the averages of those
for the multiplicity method, 〈ρMult〉 and 〈Nsignal〉, respectively,

FIG. 3. Ratio of unfolded jet spectrum over truth spectrum for
(a) Au+Au collisions at

√
sNN = 200 GeV and (b) Pb+Pb collisions

at
√

sNN = 2.76 TeV for jet resolution parameter R = 0.4.

with greater deviations at LHC energies and larger R. This
indicates that the deep neural network is using a relationship
similar to the multiplicity method to predict jet momenta.
This approach to machine learning enables use of domain
knowledge. The optimization parameters from PYSR would
otherwise not have a clear physical interpretation. Since these
parameters are understood in the multiplicity method, it is
possible to assign a physically motivated uncertainty to them.
Assumptions inherent in the method can then be understood.

Conclusions. We have shown that interpretable machine
learning methods can learn an underlying physical correlation,
such as the multiplicity dependence for jet background, that
was previously overlooked. The dependence of the neural
network on jet multiplicity, rather than other input features,
is easily understood since the fluctuations in the background
are well described by Eq. (2) [8,10,19], where the multiplicity
is the dominant variable in the standard deviation. Using the
multiplicity instead of the the area removes the second two
terms in the standard deviation because these arise purely
from fluctuations in the number of particles. The system-
atic uncertainty on Nsignal in the multiplicity method can be
constrained by existing measurements and is therefore data
driven. The multiplicity method achieves similar performance
without the model dependence of the neural network.

We previously showed that, when we used a random forest
to classify jets as either combinatorial or signal, the optimal
selection was on the leading hadron momentum [45], already
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FIG. 4. PySR optimization constants compared to average value
of multiplicity method parameters versus jet resolution parameter for
Au+Au collisions at

√
sNN = 200 GeV and Pb+Pb collisions at

√
sNN

= 2.76 TeV for jet resolution parameters R = 0.2, 0.4, and 0.6.

used as a standard technique [12–15]. We argue that apply-
ing machine learning to scientific problems requires methods
that are interpretable. The definition of interpretability is of-
ten ambiguous or underspecified, but [46] presents several
definitions of interpretability to guide our selection of ma-
chine learning methods. We argue that for a machine learning
method to be interpretable (1) it should be applicable equiv-
alently to data and simulation, (2) the method’s output can
be understood outside the range of the training set, and (3) a
measurement uncertainty can be calculated. We argue that an
uncertainty on the method is not a proxy for a measurement
uncertainty. These stricter criteria are consistent with those
outlined in [16]. Symbolic regression satisfies these require-
ments because the output is a formula. The convergence of
the empirically based multiplicity method and the formula
produced through symbolic regression is a clear indication
of the usefulness of an interpretable method. Machine learn-
ing should be used to gain knowledge about the underlying
physical processes that drive the relationships in our data. We
must interpret the details of any method in terms of these
underlying physical processes.
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