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Neutron-rich Nd and Sm isotopes are known to exhibit shape phase transition as a function of neutron number.
Among them, 150Nd and 150Sm are important not only because they are transitional nuclei but also because they
are the parent and daughter nuclei of double-β decay. We performed large-scale shell-model calculations of
even-even Nd and Sm isotopes, including the spherical-deformed shape transition. The quasiparticle vacua shell
model enables us to perform shell-model calculations with sufficiently large model space with the 110Zr inert
core. The shell-model result well reproduces the experimental excitation energies and quadrupole properties of
the yrast and nonyrast states. The nuclear matrix element of neutrinoless double-β decay of 150Nd is evaluated
showing its modest enhancement by shape mixing.
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Atomic nuclei show various shapes of their surfaces as the
proton number (Z) and the neutron number (N) change, for
example, from a sphere to a weakly distorted ellipsoid to a
strongly distorted one. The Nd and Sm isotopes of N � 82 are
one of the clear examples of this change, or evolution, from
spherical shapes to ellipsoidal deformed shapes [1]. While this
shape evolution is an interesting and important subject, sys-
tematic studies covering both spherical and deformed cases on
equal footing must handle two different many-body structures,
spherical and deformed, which correspond to significantly dif-
ferent types of mean-field solutions [1]. Besides this difficulty,
the situations between these two limits, usually called transi-
tional, must be described equally well, which likely requires
more sophisticated multinucleon treatments.

The interacting boson model (IBM) [2] provides the eigen-
solution of its Hamiltonian within empirical approaches and
was applied to the shape evolution of Sm isotopes [3], nicely
describing it as a U(5)-SU(3) transition. Plenty of theoreti-
cal works have been devoted to understanding this evolution
[4–8]. Besides this, the shell model is, in principle, an ideal
approach, because it solves the multinucleon Schrödinger
equation with a given effective nucleon-nucleon (NN) inter-
action, without referring to the specific features (e.g., shape)
of the solutions to be obtained. On the other side, the practical

*shimizu@nucl.ph.tsukuba.ac.jp

application of the conventional shell-model calculations is
limited by the number of valence nucleons and/or the num-
ber of valence single-particle orbits, which can result in the
exploding dimension of the Hamiltonian matrix to be diago-
nalized. This limitation emerges for the study of the Nd-Sm
shape evolution. Quite recently, however, a breakthrough was
made by using the Monte Carlo shell model (MCSM) (see
reviews [9–11]) as a different formulation of the shell-model
calculation, and the description of the shape evolution in Sm
isotopes was given in the light of realistic NN interactions
[12].

In recent years, neutrinoless double-β decay has attracted
keen and broad interests, as it is a crucial key to elucidating
whether the neutrino is a Majorana particle or not [13]. The
double-β decay from 150Nd to 150Sm may be used to extract
the nuclear matrix element (NME) of the neutrinoless double-
β (0νββ) decay, which is sensitive to the structure of involved
nuclei [14]. This letter presents a new value of the NME of this
decay.

Many experiments to search for neutrinoless double-β de-
cay have been planned and undergone. Each of them has
employed one of a dozen of the nuclides which can undergo
double-β decay and has provided us with the lower limit of the
half-life for 0νββ decay. To derive the information on neu-
trino mass from the half-life, the NME value for each nuclide
has to be estimated theoretically. However, this estimation
brings about large uncertainties of factor 2 [15]. Currently,
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the smallest upper limit of the effective neutrino mass reaches
around 0.1 eV by the experiment with 136Xe [16]. If we
restrict ourselves to the case of 150Nd, there have been quite
a few efforts to evaluate its NME, such as the IBM [17],
the quasiparticle random-phase approximation (QRPA) [18],
and the generator coordinate method (GCM) [14,19–22]. An-
other GCM study employing a relativistic density functional
revealed that the contribution of the octupole correlations can-
cels 7% of the NME [20]. The recent study of the projected
shell model showed the importance of triaxial deformation
[23]. Thus, various many-body correlations indeed need to be
treated for the precise estimation of the NME.

The earlier MCSM calculation successfully describes the
yrast states of Sm isotopes [12]. However, the precise eval-
uation of the NME of the 0νββ decay requires an improved
efficiency towards more precise treatment of pairing correla-
tions. In the present work, the quasiparticle vacua shell model
(QVSM) [24] is adopted for this purpose, as its high efficiency
towards high precision really pays for heavier computer re-
sources needed. We made a test calculation of the present
NME in Ref. [24] using the QVSM and found, in terms of
moment of inertia, that the model space had to be enlarged. In
the present study, we enlarge the model space by including the
breaking of the 132Sn core so that the experimental moment of
inertia of the Nd and Sm isotopes can be reproduced well, and
we evaluate the 0νββ-decay NME of 150Nd.

In the QVSM framework, a shell-model eigen wave
function is described as a linear combination of the angular-
momentum-, parity-, and number-projected quasiparticle
vacua [1] as

|�Nb〉 =
Nb∑

n=1

J∑

K=−J

f (Nb)
nK PJπ

MK PZ PN |φn〉, (1)

where PZ , PN , and PJπ
MK denote, respectively, the projectors

of the proton number, the neutron number, and the angular
momentum and parity combined. |φn〉 = |φ(π )

n 〉 ⊗ |φ(ν)
n 〉 is a

product of the quasiparticle vacua of protons and neutrons [1].
The coefficient f (Nb)

nK is an amplitude in the linear combination,
and its value is determined by solving the generalized eigen-
value problem:

Nb∑

n=1

J∑

K=−J

〈φm|HPJ
MK PZ PN |φn〉 f (Nb)

nK

= E (Nb)
Nb∑

n=1

J∑

K=−J

〈φm|PJ
MK PZ PN |φn〉 f (Nb)

nK , (2)

with E (Nb) being the energy eigenvalue. The quasiparticle
vacua |φn〉 are determined so that E (Nb) is minimized. In
the case of Nb = 1, it corresponds to the Hartree-Fock-
Bogoliubov (HFB) calculation with the variation after the
angular-momentum, parity, and number projection. In that
sense, the QVSM is an extension of the variation after pro-
jection with the superposition. It is stressed that each QVSM
basis vector can carry pairing correlations in it to good extents,
but the pairing correlations are incorporated mainly through
superpositions among different basis vectors in the MCSM
(by Slater determinants). As the present NME has features

common with pairing correlations, the QVSM is expected to
yield NME values that are more precise for a given number
of basis vectors than the MCSM, meaning a faster conver-
gence. It was shown in Ref. [24] that the 0νββ-decay NME
converged smoothly even with a small number of the QVSM
basis vectors.

The model space and the interaction are taken from our
previous MCSM study [12] with a minor modification. The
model space consists of the sdg shell, 0h11/2, 1 f7/2, and
2p3/2 orbits for protons, and the p f h shell, 0i13/2, 1g9/2,
2d5/2, and 3s1/2 orbits for neutrons, so that it contains � j =
�l = 2 pairs in the respective upper shells. The Hamiltonian
is constructed by combining the monopole-based universal
(VMU) interaction [25], whose proton-neutron interaction is
multiplied by a factor of 0.94 to its isoscalar central part
(as in Ref. [12]), and the G-matrix-based interaction for
the proton-proton and neutron-neutron interactions [26]. The
proton-pairing (neutron-pairing) matrix elements are multi-
plied by a factor of 0.9 (0.7) and some of the single-particle
energies are slightly tuned from Ref. [12]. The pairing corre-
lations are handled more efficiently by the QVSM compared
to the MCSM with Slater determinants. For heavy nuclei,
previous MCSM calculations may have led to stronger pair-
ing interactions, because of a fit with a finite number of
the basis vectors. Thus, the weaker pairing interactions sug-
gested by the QVSM are natural consequences for heavy
nuclei. The contamination of the center-of-mass excitation is
removed by adding the Lawson term with βCMh̄ω/A = 1.0
MeV, resulting in its quanta O(10−3), which is sufficiently
small.

In the present calculation for the 84 � N � 92 nuclei, 24
QVSM basis states are optimized so as to lower the two
lowest energy eigenvalues of 0+, 2+, and 4+. The many-body
subspace is then spanned by these 72 basis states and the
eigenvalue problem in Eq. (2) is solved. For N = 82 and
94, 16 QVSM basis states are used to optimize the lowest
energy eigenvalues of 0+, 2+, and 4+, and totally 48 basis
states are used to make up the QVSM wave function. The
effective charges are taken as (ep, en) = (1.6, 0.6)e through-
out the present work. Figure 1 shows the evolution of the
excitation energies, the E2 transition probabilities, and the
spectroscopic quadrupole moments of the Nd isotopes. At
the N = 82 semimagic nucleus, the 2+ and 4+ excitation
energies are rather large, and the seniority scheme is expected
to work. With increasing neutron number, the excitation en-
ergies gradually decrease, and the ratio of the 4+

1 and 2+
1

energies indicates the transition from the spherical vibrator to
the rotational band. The gradual increase of the E2 transition
probabilities and quadrupole moments supports this inter-
pretation. The theoretical excitation energies of the nonyrast
states of 152Nd (N = 92) are a few hundred keV lower than the
experimental values, suggesting possible unmeasured levels.
In the previous MCSM study [12], the gradual change of
the excitation energies of 2+ and 4+ states was not perfectly
reproduced because of the underestimation of the pairing
correlation in the MCSM, and the nonyrast states were out
of scope. The QVSM framework enables us to estimate the
pairing correlation correctly and to give a unified description
of these states.
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FIG. 1. (a) Excitation energies, (b) B(E2; 2+
1 → 0+

1 ) and
B(E2; 4+

1 → 2+
1 ) values, and (c) spectroscopic quadrupole moments

of the 2+
1 and 4+

1 states of Nd isotopes against the neutron number.
(a) The red (lower) and blue (upper) solid lines denote the theoretical
values of the 2+

1 and 4+
1 states, respectively. The red circles and

blue triangles denote the experimental ones. The green, red, and
blue dotted lines (open diamonds, circles, and triangles) denote the
theoretical (experimental) values of the 0+

2 , 2+
2 , and values of the

0+
2 , 2+

2 , and 4+
2 states, respectively. [(b), (c)] The solid red (dashed

blue) lines are theoretical values of the 2+
1 (4+

1 ) states, while symbols
denote the experimental values.

Figure 2 shows the excitation energies, B(E2) values,
and spectroscopic quadrupole moments of Sm isotopes. The
2+

1 and 4+
1 excitation energies gradually decrease, and the

quadrupole collectivity grows as N increases. The Nd iso-
topes show similar trends. The most remarkable difference
between Nd and Sm isotopes is seen at the nonyrast states:
the excitation energies of the 0+

2 , 2+
2 , and 4+

2 states drop
down abruptly between N = 86 and 88 for the Sm isotopes,
whereas such change occurs between N = 88 and 90 in the
Nd isotopes. This tendency is nicely reproduced in the present
results.

The QVSM wave function can be analyzed by using the
T-plot figures, in which its component is visualized as scat-

FIG. 2. (a) Excitation energies, (b) B(E2) values, and (c) spec-
troscopic quadrupole moments of Sm isotopes. See the caption of
Fig. 1.

tered circles on the energy surface in the same way as the
MCSM [27,28]. Figure 3 shows the T plots of the 0+

1 states
of the Nd and Sm isotopes. The ground-state energy is drawn
as contour lines given by the constrained number-projected
HFB calculations with the constraints given by the usual in-
trinsic quadrupole moments, Q0 = 〈φ|Q̂20PZ PN |φ〉 and Q2 =
〈φ|Q̂22PZ PN |φ〉, where Q̂20 and Q̂22 are the quadrupole op-
erators [1]. The shell-model Hamiltonian is taken for this
calculation. The positions and areas of the circles on the
energy surface represent, respectively, the deformation and
the overlap probabilities between |φi〉 and |�Nb〉 in Eq. (1). At
N = 84 and 86, the minimum of the energy surfaces is close
to 〈Q0〉 = 〈Q2〉 = 0 and their T-plot points are concentrated
around the spherical shape. As N increases, the minimum of
the energy surface and T-plot distributions gradually move
toward prolate deformation. Among them, the T plots of 150Nd
and 150Sm show a characteristic feature: the distribution is di-
vided into two groups. We focus on their structures since these
nuclides are the parent and daughter nuclei of the double-β
decay.

Figure 4 shows the partial level scheme of the QVSM
in comparison with the experimental ones. The nucleus
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FIG. 3. T plots of the 0+
1 states of 144−152Nd and 146−154Sm by the QVSM wave functions. On the figures of 150Nd and 150Sm, the green

diamonds and red squares denote the “S” and “L” groups, respectively. See the main text for details.

150Nd has been considered a candidate for the critical point
symmetry X(5) [29,30]. This model assumes that the energy
surface is flat in the direction of β on the prolate side, while
the present work gives a shallow minimum by ≈4 MeV at
the prolate deformation [see Fig. 3(d)]. Figure 4 includes the
result of the X(5) model. These three results agree with each
other reasonably well, up to B(E2) values.

The NME of 0νββ decay is evaluated with the closure
approximation as

M0ν = 〈0+
f |Ô|0+

i 〉 = M0ν
GT − g2

V

g2
A

M0ν
F + M0ν

T , (3)

where GT, F, and T denote, respectively, the contributions of
the Gamow-Teller type, the Fermi type, and the tensor type
[31]. Here, |0+

i 〉 and |0+
f 〉 are ground-state wave functions

of 150Nd and 150Sm, respectively. The intermediate energy
of this approximation is taken from the empirical formula
Ec = 1.12A1/2 MeV [32] and gA/gV = 1.27 is adopted. The

FIG. 4. Partial level schemes of 150Nd obtained by the QVSM,
the experiment, and the X(5) critical point symmetry [29,30]. The
arrow widths are proportional to the B(E2) values. Only those
>10 W.u. are displayed. The X(5) results are scaled so that it re-
produces the experimental values of Ex(2+

1 ) and B(E2; 2+
1 → 0+

1 ).

two-body current contribution to the transition operator is not
included. Figure 5 displays the convergence of the 0νββ-
decay NME of 150Nd as a function of the number of the
QVSM basis vectors. It shows rather good convergence at
Nb = 72. The present result for Nb = 1 is similar to but be-
yond the HFB calculation, because the variation after the
angular-momentum, parity, and number projections is per-
formed. The contribution of the effect of configuration mixing
in the QVSM framework increases the NME by 20% in com-
parison with the value of Nb = 1. The QVSM basis vectors
are obtained so that the two low-lying energies are mini-
mized. Even if three low-lying energies are optimized, the
resultant NME shows a difference of less than 5%. The NME
calculated without short-range correlation becomes 4.00 as
shown in Table I. In addition, we applied three types of short-
range correlations (SRCs): Miller-Spencer [33], CD-Bonn,
and Argonne [34]. The Miller-Spencer short-range correlation
quenches the NME by ≈20%, and the CD-Bonn and Argonne
correlations give 10% uncertainty. The tensor contributions
are negligibly small like other theoretical studies.

In other theoretical methods, e.g., the quasiparticle
random-phase approximation gives the 0νββ-decay matrix
element as 2.71 [35]. The interacting boson model provides
2.32 [17], which is close to the value of the QRPA. The NME

 0

 1

 2

 3

 4

 0  10  20  30  40  50  60  70  80

N
M

E

Nb

FIG. 5. 0νββ-decay NME of 150Nd without short-range correla-
tion, M0ν , against the number of QVSM basis vectors.
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TABLE I. Nuclear matrix elements of neutrinoless double-β de-
cay with various short-range correlations.

SRC M0ν
GT M0ν

F M0ν
T M0ν

None 3.32 −1.11 −0.01 4.00
Miller-Spencer 2.65 −0.91 −0.01 3.21
CD-Bonn 3.40 −1.16 −0.01 4.11
Argonne 3.21 −1.10 −0.01 3.88

values given by the latest GCM based on the relativistic en-
ergy density functional are 5.6 [36] and 5.2 [20]. On the other
hand, the NME by the GCM with the nonrelativistic Gogny
functional is a rather small value, 1.71 [21]. It was indicated
that the large difference in the quadrupole deformations of the
initial and final states would suppress the NME [18,19,21].
Thus, the predictions of the NME vary from 1.7 to 5.6 and our
NME value is around the middle of them.

Since the decay life of 2νββ decay of 150Nd to the 0+
2 state

of 150Sm has been experimentally measured [37], the 0νββ

NME to the 0+
2 state might be possible and worth mentioning.

The 0νββ-decay NME from the ground state of 150Nd to
the 0+

2 state of 150Sm is 1.1, which is smaller than that of
the ground state. This situation is similar to the prediction
of the relativistic energy density functional [NME = 5.2 (0+

1 )
and 0.72 (0+

2 )] [20] and that of the interacting boson model
[NME = 2.321 (0+

1 ) and 0.395 (0+
2 )] [17]. For comparison,

the experimental 2νββ-decay NME is obtained as 0.055(3)
for the ground state and 0.044(5) for the excited state [38]. To
evaluate the 2νββ-decay NME in the shell-model framework,
we have to compute the intermediate states of 150Pm since
the closure approximation is not justified in this case. This is
not feasible and is left for future work. Figure 6 shows the
decomposition of the angular momentum J and the parity π

of the NME of 150Nd. The decomposition of Jπ intermediate
states is defined in the same way as in Refs. [39,40] as

M0ν =
∑

J,π

〈0+
f |

∑

i� j,k�l

MJ,π
i, j,k,l

[(
c†

i ⊗ c†
j

)(J,π )

× (ck ⊗ cl )
(J,π )](0)|0+

i 〉. (4)

FIG. 6. Jπ decomposition of the 0νββ-decay NME of 150Nd.
The open red (solid blue) bars denote positive-parity (negative-
parity) components.

The contribution of the 0+ pair plays a dominant role, while
the 2+ and 4+ pairs have a certain negative contribution.
In previous shell-model studies of the 0νββ decays of 48Ca
[39], 82Se, and 130Te [40], the contribution of the 2+ pair is
rather large (around −2) and cancels most of the contribution
of the 0+ pair. In the present case, the contribution of the
2+ pair is rather small and its cancellation is not strong.
The contribution of the intermediate negative-parity states is
negligible.

We here mention the effect of the enlargement of the model
space to the 0νββ-decay NME. In Ref. [39], we demonstrated
that the shell-model NME value of 48Ca increases by about
30% by adding the sd shell to the conventional p f -shell
model space. This is because the 48Ca nucleus has a spherical
shape and the pair excitation from the sd shell to the p f
shell enhances the pairing correlation and, consequently, the
NME also increases. On the other hand, in the 150Nd case,
the shell-model study assuming the 132Sn core underestimates
the quadrupole deformation, which causes the underestima-
tion of the NME [24]. The present work employs sufficiently
large model space so that the moment of inertia is correctly
reproduced and thus the 30% reduction of the NME value
is found.

Now we discuss the nuclear structures of 150Nd and 150Sm,
utilizing more details of the T plots. The T plots in Fig. 3
show that the points are concentrated in two regions: the two
groups of different deformations form the ground-state wave
functions, where one group is for weaker deformation (green
diamonds) and the other group is for stronger deformation (red
squares). The group composed only of smaller (larger) ones is
referred to by the index “S” (“L”) hereafter. The ground-state
wave functions are their linear combinations:

|0+
1 ;150 Nd〉 = 0.50|S;150 Nd〉 + 0.86|L;150 Nd〉,

|0+
1 ;150 Sm〉 = 0.65|S;150 Sm〉 + 0.76|L;150 Sm〉. (5)

These two components with different deformations are almost
degenerate in energy and are strongly mixed. The second
0+ states are also described approximately as their linear
combinations, which are orthogonal to the ground states, and
show excitation energies lower than those of the neighboring
isotopes. The NME 〈S;150 Sm|Ô|S;150 Nd〉 turns out to be 3.87
without the SRC, which is largest among NMEs of other com-
binations. 〈L;150 Sm|Ô|L;150 Nd〉, 〈L;150 Sm|Ô|S;150 Nd〉, and
〈S;150 Sm|Ô|L;150 Nd〉 are 2.81, 2.70, and −0.28, respectively.
〈S;150 Sm|Ô|L;150 Nd〉 is small because the deformation of the
bra and ket states is significantly different. One sees that the
mixing amplitudes in Eq. (5) modestly enhance the NME to
4.00, and the present calculation appears to treat this feature
appropriately.

In summary, we present a shell-model description of the
spherical-to-deformed shape evolution of Nd and Sm isotopes
including the nonyrast states in a unified way. The ground
states of 150Nd and 150Sm are transitional in this shape-
evolution scenario. They are characterized by two components
of different prolate shapes and are mixed. This situation may
be regarded to be a “double-prolate-shape coexistence with
mixing.” The 0νββ-decay NME of 150Nd is affected by this
mixing and is evaluated as 4.1 with the CD-Bonn short-range
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correlations. A more sophisticated 0νββ-decay NME opera-
tor is expected to be derived for future studies, for instance,
an additional short-range matrix element like that proposed in
Refs. [41,42].
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