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Nuclear three-body short-range correlations in coordinate space
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We study the effects of three-nucleon short-range correlations on nuclear coordinate-space densities. For this
purpose, novel three-body densities are calculated for ground-state nuclei using the auxiliary-field diffusion
Monte Carlo method. The results are analyzed in terms of the generalized contact formalism, extended to include
three-body correlations, revealing the universal behavior of nucleon triplets at short distances. We identify
the quantum numbers of such correlated triplets and extract scaling factors of triplet abundances that can be
compared to upcoming inclusive electron-scattering data. We also show that the dynamics of these triplets is
sensitive to three-body forces, and, therefore, the short-range part of three-body force models could be tested
against appropriate exclusive electron-scattering data.
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Short-range correlations (SRCs) are an integral part of
the description of strongly interacting many-body quantum
systems. Strong SRCs lead to significant deviations from
noninteracting models, e.g., by inducing high-momentum
components in the wave function, and, therefore, pose a chal-
lenge in the description of such systems.

The largest effects of SRCs are due to pairs of particles
that are found close together inside the many-body sys-
tem. Such pairs have been studied thoroughly in the past
decades in different systems. The so-called contact theory
was developed and used to reveal universal relations between
quantities affected by SRCs assuming zero-range interaction
[1–5], which were verified experimentally in ultracold atomic
systems [6–10]. SRCs were also studied for the case of he-
lium atoms [11]. In nuclear systems [12–14], SRC pairs have
been studied mainly via large-momentum-transfer quasielas-
tic electron- and proton-scattering experiments [15–35], and
ab initio many-body calculations [36–45], establishing the
universal features of such pairs and the dominance of neutron-
proton (np) pairs.

The properties of SRC pairs in different systems are sim-
ilar. Generally, two particles at short distances behave as an
isolated system, unaffected by the remaining particles in the
system. In momentum space, they are mostly in back-to-back
configuration and are the leading source of high-momentum
particles in the system. Accounting for their effects is im-
portant for an accurate description of different observables,
like electron- and neutrino-scattering cross sections [46–50]
and neutrinoless ββ-decay matrix elements [51–53] in nuclear
systems, or the structure factor of liquid 4He [11].

Unlike pairs, the features and importance of SRC triplets
are much less understood. Some properties of triplets have
been studied for the case of zero-range interactions [54,55]
and helium atoms [11]. For nuclei, there are currently
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significant efforts to study such correlated triplets experimen-
tally [56–58], but there has been no clear identification of
three-nucleon SRCs. Similarly, nuclear many-body ab ini-
tio calculations that allow direct access to triplet properties
have not been performed so far. Theoretical studies of three-
nucleon SRCs are important for guiding the experimental
efforts and data analysis and for revealing the properties and
impact of such triplets. In this work we focus on nuclear
systems, but like the case of two-body SRCs, the conclusion
and methods of this work should be relevant also for other
systems.

Following the development of the contact theory for zero-
range interactions [1–5], the generalized contact formalism
(GCF) was introduced to study nuclear SRCs [59–63]. The
GCF is based on the realization that, when two nucleons
are close to each other in a nucleus with A nucleons, the
many-body wave function � factorizes to a two-body part,
describing the correlated pair, and a function describing the
rest of the nucleons in the system [60],

� −−−→
ri j→0

∑
α

ϕα (ri j )A
α (Ri j, {rk}k �=i, j ). (1)

Here, rk denotes the single-nucleon coordinate, ri j ≡ r j −
ri and Ri j ≡ (ri + r j )/2 are the relative and center-of-mass
(c.m.) coordinates, and α denotes the quantum numbers of
the pair. ϕα (ri j ) describes the dynamics of the correlated pair
and is defined as the solution of the zero-energy two-body
Schrödinger equation. As such, it is universal, i.e., nucleus
independent, but depends on the nucleon-nucleon interaction
model. The function Aα describes the rest of the particles in
the system when particles i and j are close together. This fac-
torization was verified using ab initio calculations [60,64–66]
and is supported by renormalization-group arguments [67–69]
and the coupled-cluster expansion [70].

The factorization of � is useful for describing the impact
of two-nucleon SRCs on different observables. If we consider
a short-range two-body operator Ô, its expectation value 〈Ô〉
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would be of the form

〈�|Ô|�〉 =
∑
α,β

〈ϕα|Ô|ϕβ〉Cαβ

2 , (2)

where Cαβ

2 ≡ A(A − 1)/2 × 〈Aα|Aβ〉 are the nuclear contacts;
they measure the probability of two particles to be close
together. Notice that Cαβ

2 is independent of Ô. Therefore,
different observables are all described with the same con-
tact parameters. The matrix elements 〈ϕα|Ô|ϕβ〉 provide
the contribution of the pair to this observable. This ma-
trix element is nucleus independent and involves only the
two-body problem. One simple example is the two-body
density ρ2(r), obtained by Ô = δ(ri j − r). Based on this
approach, a comprehensive and consistent description of dif-
ferent quantities sensitive to two-body SRCs was obtained
[25,33–35,48,53,59–61,64,65,71–73].

We want to extend this description to three-body correla-
tions in nuclear systems. The above two-body factorization is
valid when none of the remaining A − 2 nucleons are close
to the correlated pair. If one nucleon is close enough to such
a pair, i.e, when three nucleons are close to each other, we
expect the many-body nuclear wave function to factorize in
the following way:

� −−−−−→
xi j ,xi jl →0

∑
β

ϕ
β

i jl (xi j, xi jl )B
β

i jl (Ri jl , {rm}m �=i, j,l ). (3)

We used here the Jacobi coordinates xi j ≡ r j − ri and xi jl ≡
rl − (ri + r j )/2 and the triplet c.m. coordinate Ri jl ≡ (ri +
r j + rl )/3. ϕ

β

i jl describes the dynamics of the SRC triplet
and is defined as a zero-energy solution of the three-body
Schrödinger equation with quantum numbers given by β (with
the same nuclear-interaction model used to define �). The
connection of three-nucleon SRCs to the zero-energy three-
body eigenstates is discussed also in Ref. [70]. The function
Bβ

i jl describes the rest of the particles in the system when
particles i, j, and l are close together.

For realistic nuclear interactions, each channel β is defined
by the quantum numbers β = (πβ, jβ, mβ, tβ, tz,β ), where πβ

is the parity, jβ and mβ are the total angular momentum and its
projection, and tβ and tz,β are the total isospin of the triplet and
its projection (isospin is equivalent to spin for the description
of protons and neutrons as identical particles with internal
isospin degrees of freedom). At short distances, we expect
to see a dominant contribution of zero angular-momentum
(	 = 0) states. Due to Pauli blocking, proton-proton-proton
(ppp) and neutron-neutron-neutron (nnn) (t = 3/2) triplets
are expected to be suppressed at short distances compared
to proton-proton-neutron (ppn) and proton-neutron-neutron
(pnn) (t = 1/2) triplets. Spin-3/2 triplets are similarly sup-
pressed. Therefore, we expect π = +, j = 1/2, t = 1/2 (and
m = ±1/2 and tz = ±1/2) to be the dominant channel for
SRC triplets. This corresponds to the quantum numbers of
3He and 3H ground states. Notice that, while np dominance
of two-body SRCs is caused by the tensor force [36,37], here
it is the Pauli principle that leads to t = 1/2 dominance for
three-body SRCs. More details regarding the structure of ϕ

β

i jl
and the dominant channels can be found in the Supplemental
Material [74].

Similar to the two-body case, and based on Eq. (3), we can
now define the three-nucleon contact matrix

Cβγ

3 = A(A − 1)(A − 2)

6

〈
Bβ

123

∣∣Bγ

123

〉
. (4)

The combinatorial factor is suitable assuming � is fully an-
tisymmetric. Three-body contacts were similarly defined for
the zero-range limit [54,55] and for helium atoms [11]. These
three-body contacts describe the probability of finding three
nucleons in close proximity inside a nucleus. More details
regarding the properties of the three-nucleon contact matrix
can be found in the Supplemental Material [74].

To study the implications of such SRC triplets, we would
like to derive relations similar to those derived for the case
of two-body SRCs, based on Eq. (2). We consider in this
work three-body densities in coordinate space. Specifically,
we consider the three-body density describing the probability
of finding three nucleons inside a nucleus in a triangle with
sides of lengths r12, r13, and r23:

ρ3(r12, r13, r23) =
(

A

3

)〈
3∏

i< j=1

δ(|ri − r j | − ri j )

〉
. (5)

In the limit of r12, r13, r23 → 0, we can use Eqs. (3) and (4) to
obtain

ρ3 → Ct=1/2
3 〈ϕt=1/2|

3∏
i< j=1

δ(|ri − r j | − ri j )|ϕt=1/2〉. (6)

We have considered here the contribution of the leading
isospin-half channel, with the relevant contact denoted as
Ct=1/2

3 and the universal function as ϕt=1/2. Based on this
result, we expect to find a universal behavior of ρ3 at short
distances for all nuclei, i.e., the same r dependence with only
a global scaling factor that depends on the nucleus. We can
also consider isospin-projected densities ρt

3, by inserting the
appropriate three-body projection operator in Eq. (5). For
these quantities, we expect to see a dominance of t = 1/2 over
t = 3/2 as discussed above.

To verify these GCF predictions regarding three-nucleons
SRCs, we now turn to ab initio calculations of ρ3(r12, r13, r23)
for the ground-state nuclei 3He, 4He, 6Li, and 16O. We use
the auxiliary-field diffusion Monte Carlo (AFDMC) method
[75,76] combined with next-to-next-to-leading-order (N2LO)
local chiral interaction with the E1 parametrization of the
three-body force [76–79]. We focus here on the R0 = 1.0 fm
cutoff but show also some results for R0 = 1.2 fm.

We first start with investigating ρt
3 in order to compare the

t = 1/2 and t = 3/2 densities. The three-body density for 6Li
is shown in Fig. 1 for equilateral triangles, i.e., ρ3(r, r, r) as
a function of r. We can clearly see that at short distances the
t = 1/2 component is indeed dominant. As r increases the
contribution of t = 3/2 triplets grows, and a similar behavior
is seen for other geometries, e.g., isosceles triangles, and also
for 16O (see Supplemental Material [74]).

Based on Fig. 1, we can also see that the total number of
t = 3/2 triplets in 6Li is much smaller than the total number
of t = 1/2 triplets. In addition, 3He and 4He include only
t = 1/2 triplets. This could have implications for the fitting
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FIG. 1. 6Li three-body density for equilateral triangles as a
function of the triangle side using the AFDMC method and the
N2LO(1.0) interaction. Projections to t = 1/2 and t = 3/2 triplets
are shown together with the total density.

of three-nucleon forces. In fact, in most of the cases, three-
nucleon interactions are fitted to such light systems where the
t = 3/2 component is either zero or very small (see, for ex-
ample, Refs. [79–81]). To account for t = 3/2 physics, fitting
to larger nuclei like 16O could be beneficial as the t = 3/2
component is larger (see Supplemental Material [74]). This
can be relevant for the description of the equation of state
inside neutron stars and properties of neutron-rich nuclei, for
which nnn physics is important.

We can now focus on the t = 1/2 component and compare
the behavior of different nuclei. We present in Fig. 2 the
density ρ

t=1/2
3 for all available nuclei for both equilateral and

isosceles triangle geometries using the N2LO(1.0) interaction.
For the isosceles triangle, we fix the base to be of length
a = 0.85 fm. The 4He, 6Li, and 16O calculations are rescaled
so that their shape at short distances can be compared to

FIG. 2. AFDMC ρ
t=1/2
3 densities for 3He, 4He, 6Li, and 16O for

both equilateral triangles and isosceles triangles using the N2LO(1.0)
interaction (circles). For the latter, the base is fixed at a length of 0.85
fm and the densities are multiplied by −1 (see text for details). The
4He, 6Li, and 16O densities are each multiplied by a scaling factor
(the same factor for both geometries). The 3He equilateral-triangle
density is shown also for the N2LO(1.2) interaction (dashed line).

3He. Only for plotting purposes, the densities of the isosce-
les triangle are multiplied by −1 to separate them from the
equilateral-triangle results. We can see that, for each of the
geometries, the r dependence of ρ

t=1/2
3 is the same at short

distances (r � 1.1 fm) for all nuclei, as all densities coincide
with the 3He density. This shows the universal behavior of
SRC triplets as predicted by the GCF. Indeed, a single t = 1/2
channel is dominant here (otherwise the densities would not
coincide) due to the dominance of 	 = 0 at short distances. It
should be emphasized that the same scaling factor is applied
to both the equilateral and isosceles cases for each nucleus, in
agreement with Eq. (6). The same behavior is seen for other
configurations involving three particles close together. This
result is an important validation of the asymptotic three-body
factorization of the many-body wave function, Eq. (3). We
also include in Fig. 2 the 3He equilateral-triangle density using
the N2LO(1.2) interaction. We can see that the short-distance
behavior in this case is different. This shows that the three-
body wave functions of the GCF ϕ

β

i jl indeed depend on the
model of the interaction. We note that universal behavior is
also seen in the t = 3/2 density, indicating that asymptotic
factorization holds also for t = 3/2 triplets with a single dom-
inant channel (see Supplemental Material [74]).

The scaling factor used in Fig. 2 is equal to the contact
value of Eq. (6) (relative to 3He). As mentioned above, such
contact values are proportional to the probability of find-
ing correlated triplets in a given nucleus. There are ongoing
experimental efforts to extract such probabilities using large-
momentum-transfer quasielastic inclusive electron-scattering
experiments [56]. For this purpose, a cross section ratio can
be defined as [58]

a3(A, Z ) = 3

A

σeA

(σe3He + σe3H)/2
, (7)

where σeA is the inclusive electron-scattering cross section of
nucleus A (with A nucleons and Z protons) at kinematics
dominated by three-body SRCs. Interpreting a3 as the ratio
of three-nucleon SRC abundances, we obtain

a3(A, Z ) = 3

A

Ct=1/2
3 (A)

Ct=1/2
3 (3He)

(8)

for a symmetric nucleus A. We consider here only the lead-
ing contribution of t = 1/2 triplets. It should be noted that,
similar to the case of two-body SRCs [72], different effects
can influence this interpretation of a3, such as the c.m. motion
of triplets, the excitation energy of the A − 3 system, and the
contribution of t = 3/2 triplets. In addition, for the case of

TABLE I. Per nucleon three-body contact ratio for t = 1/2 (with

respect to 3He) and for t = 3/2 (with respect to 6Li), i.e., 3
A

Ct=1/2
3 (A)

Ct=1/2
3 (3He)

and 6
A

Ct=3/2
3 (A)

Ct=3/2
3 (6Li)

, respectively.

Contact ratio A = 4 A = 6 A = 16

t = 1/2 3.8 ± 0.3 3.1 ± 0.3 4.2 ± 0.5
t = 3/2 — — 5.4 ± 0.8
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FIG. 3. Ratios of AFDMC calculations of ρ
t=1/2
3 for equilateral

triangles using the N2LO(1.0) interaction. Calculations in which the
three-body force is not included are denoted by NN. The ratios
were rescaled to be approximately 1 at short distances (using the
contact values of Table I for the 6Li/4He ratio). 4He was chosen
as the reference nucleus (i.e., in the denominator) due to the small
associated uncertainties.

nonsymmetric nuclei or if using only the 3He cross section in
the denominator, a more careful analysis of the reaction is
needed because of different contributions of ppn and nnp
triplets in the numerator and the denominator.

Contact ratios extracted from the AFDMC calculations are
presented in Table I. Their values were fitted to the equilateral
three-body density based on Eq. (6) and its equivalent for the
t = 3/2 component. Because we are looking at contact ratios,
there is no need to calculate the functions ϕ

β

i jl . Uncertainties
were estimated by varying the lower and upper limits of the
fitting range between 0.1–0.4 fm and 1–1.2 fm, respectively.
The t = 1/2 contact ratio provides a prediction for the value
of a3 for 4He, 6Li, and 16O. We can see that the per-nucleon
t = 1/2 ratios for 4He and 16O are similar, consistent with a
4He-cluster structure of 16O. It is also interesting to note that
the per-nucleon t = 1/2 ratio for 6Li is smaller than that of
4He. Results for additional nuclei are needed in order to study
the A dependence of a3.

In a recent work [58,82,83], Sargsian et al. suggested a
connection between two-body and three-body abundances,
leading to a value of a3(4He) ≈ 3.15. This is smaller than
the value we obtained here (Table I). We emphasize that in
the GCF approach three-nucleon abundances are generally
independent of two-nucleon abundances. Large-momentum-
transfer quasielastic inclusive electron-scattering experiments
sensitive to three-nucleon SRCs might be able to clear up this
issue.

One of the interesting questions about three-body SRCs is
their connection to the three-body force. We investigate here
this question by comparing calculations with and without a
three-body force. The ratio of such calculations for an equi-
lateral triangle is shown in Fig. 3. We can see that there is
no plateau at short distances (blue squares), showing that the

universal function ϕt=1/2 is affected by the three-body force.
In other words, the three-body force impacts the dynamics of
SRC triplets. Ratios in which the three-body force is included
(or not included) in both the numerator and the denominator
are shown for comparison. In these cases a plateau is seen.
Similar results are obtained for other geometries (see Sup-
plemental Material [74]). We can, therefore, conclude that
the three-body force plays an active role in the formation of
three-nucleon SRCs. This also means that the theoretical de-
scription of exclusive electron-scattering reactions, in which
the momentum dependence of SRC triplets can be measured,
will depend on the model of the three-body force at short
distances.

To summarize, we have studied here the properties of three-
nucleon SRCs in coordinate space. The GCF was extended to
include correlated triplets, described as an isolated and univer-
sal subsystem within the many-body nucleus. The leading t =
1/2 channel was identified and three-nucleon contacts were
defined. Using novel AFDMC ab initio calculations of three-
body densities, the t = 1/2 dominance and universality of
such triplets at short distances were established numerically.
Specifically, we found that three nucleons at short distances
behave like the bound 3He wave function. We have also ex-
tracted the values of the leading t = 1/2 and t = 3/2 contact
ratios, describing the scaling of SRC triplet abundances. The
connection to inclusive electron-scattering cross sections was
discussed.

Finally, we have also shown that the three-body force
affects the dynamics of SRC triplets. This provides fur-
ther motivation for exclusive electron-scattering experiments
in kinematics sensitive to three-nucleon SRCs. Such ex-
perimental data will be sensitive to the short-range part
of the three-nucleon force, important, e.g., for neutron-star
properties [84].

This work opens the path for additional studies of
SRC triplets, including their impact on two-body densi-
ties, momentum distributions, spectral functions, electron-
and neutrino-scattering off nuclei, and neutrinoless ββ-decay
matrix elements. This is also an important step towards a sys-
tematic short-range expansion of the nuclear wave function.
The methods used in this work could be relevant also for
studies of SRCs in other systems like ultracold atomic gases.

We thank J. Carlson, J. Martin, S. Novario, I. Tews,
N. Barnea, B. Bazak, S. Beck, and E. Piasetzky for help-
ful discussions. The work of R.W. was supported by the
Laboratory Directed Research and Development program
of Los Alamos National Laboratory under Project No.
20210763PRD1. The work of S.G. was supported by the U.S.
Department of Energy, Office of Science, Office of Nuclear
Physics, under Contract No. DE-AC52-06NA25396; by the
DOE NUCLEI SciDAC Program; and by the DOE Early
Career Research Program. Computer time was provided by
the Los Alamos National Laboratory Institutional Comput-
ing Program, which is supported by the U.S. Department
of Energy National Nuclear Security Administration under
Contract No. 89233218CNA000001.

L021301-4



NUCLEAR THREE-BODY SHORT-RANGE CORRELATIONS … PHYSICAL REVIEW C 108, L021301 (2023)

[1] S. Tan, Energetics of a strongly correlated Fermi gas, Ann.
Phys. 323, 2952 (2008).

[2] S. Tan, Large momentum part of a strongly correlated Fermi
gas, Ann. Phys. 323, 2971 (2008).

[3] S. Tan, Generalized virial theorem and pressure relation for a
strongly correlated Fermi gas, Ann. Phys. 323, 2987 (2008).

[4] E. Braaten, Universal relations for fermions with large scat-
tering length, in The BCS-BEC Crossover and the Unitary
Fermi Gas, edited by W. Zwerger (Springer, Berlin, 2012),
pp. 193–231.

[5] S. Gandolfi, K. E. Schmidt, and J. Carlson, BEC-BCS crossover
and universal relations in unitary Fermi gases, Phys. Rev. A 83,
041601(R) (2011).

[6] J. T. Stewart, J. P. Gaebler, T. E. Drake, and D. S. Jin, Verifica-
tion of Universal Relations in a Strongly Interacting Fermi Gas,
Phys. Rev. Lett. 104, 235301 (2010).

[7] Y. Sagi, T. E. Drake, R. Paudel, and D. S. Jin, Measurement of
the Homogeneous Contact of a Unitary Fermi Gas, Phys. Rev.
Lett. 109, 220402 (2012).

[8] G. B. Partridge, K. E. Strecker, R. I. Kamar, M. W. Jack,
and R. G. Hulet, Molecular Probe of Pairing in the BEC-BCS
Crossover, Phys. Rev. Lett. 95, 020404 (2005).

[9] F. Werner, L. Tarruell, and Y. Castin, Number of closed-channel
molecules in the BEC-BCS crossover, Eur. Phys. J. B 68, 401
(2009).

[10] E. D. Kuhnle, H. Hu, X.-J. Liu, P. Dyke, M. Mark, P. D.
Drummond, P. Hannaford, and C. J. Vale, Universal Behavior
of Pair Correlations in a Strongly Interacting Fermi Gas, Phys.
Rev. Lett. 105, 070402 (2010).

[11] B. Bazak, M. Valiente, and N. Barnea, Universal short-range
correlations in bosonic helium clusters, Phys. Rev. A 101,
010501(R) (2020).

[12] C. Ciofi degli Atti, In-medium short-range dynamics of nucle-
ons: Recent theoretical and experimental advances, Phys. Rep.
590, 1 (2015).

[13] O. Hen, G. A. Miller, E. Piasetzky, and L. B. Weinstein,
Nucleon-nucleon correlations, short-lived excitations, and the
quarks within, Rev. Mod. Phys. 89, 045002 (2017).

[14] J. Arrington, N. Fomin, and A. Schmidt, Progress in un-
derstanding short-range structure in nuclei: An experimental
perspective, Annu. Rev. Nucl. Part. Sci. 72, 307 (2022).

[15] L. L. Frankfurt and M. I. Strikman, High-energy phenomena,
short range nuclear structure and QCD, Phys. Rep. 76, 215
(1981).

[16] L. L. Frankfurt and M. I. Strikman, Hard nuclear processes and
microscopic nuclear structure, Phys. Rep. 160, 235 (1988).

[17] L. L. Frankfurt, M. I. Strikman, D. B. Day, and M. Sargsyan,
Evidence for short range correlations from high Q2 (e, e′) reac-
tions, Phys. Rev. C 48, 2451 (1993).

[18] K. S. Egiyan et al. (CLAS Collaboration), Observation of nu-
clear scaling in the A(e, e′) reaction at xB > 1, Phys. Rev. C 68,
014313 (2003).

[19] K. S. Egiyan et al. (CLAS Collaboration), Measurement of
Two- and Three-Nucleon Short-Range Correlation Probabilities
in Nuclei, Phys. Rev. Lett. 96, 082501 (2006).

[20] N. Fomin et al., New Measurements of High-Momentum Nu-
cleons and Short-Range Structures in Nuclei, Phys. Rev. Lett.
108, 092502 (2012).

[21] J. Arrington, A. Daniel, D. B. Day, N. Fomin, D. Gaskell, and
P. Solvignon, A detailed study of the nuclear dependence of

the EMC effect and short-range correlations, Phys. Rev. C 86,
065204 (2012).

[22] B. Schmookler et al. (CLAS Collaboration), Modified structure
of protons and neutrons in correlated pairs, Nature (London)
566, 354 (2019).

[23] D. Nguyen et al. (Jefferson Lab Hall A), Novel observation of
isospin structure of short-range correlations in calcium isotopes,
Phys. Rev. C 102, 064004 (2020).

[24] S. Li et al., Revealing the short-range structure of the mirror
nuclei 3H and 3He, Nature (London) 609, 41 (2022).

[25] M. Patsyuk, J. Kahlbow, G. Laskaris, M. Duer, V. Lenivenko,
E. P. Segarra, T. Atovullaev, G. Johansson, T. Aumann, A.
Corsi et al., Unperturbed inverse kinematics nucleon knock-
out measurements with a carbon beam, Nat. Phys. 17, 693
(2021).

[26] A. Tang et al., n-p Short-Range Correlations from (p, 2p + n)
Measurements, Phys. Rev. Lett. 90, 042301 (2003).

[27] E. Piasetzky, M. Sargsian, L. Frankfurt, M. Strikman, and J. W.
Watson, Evidence for Strong Dominance of Proton-Neutron
Correlations in Nuclei, Phys. Rev. Lett. 97, 162504 (2006).

[28] R. Shneor et al. (Jefferson Lab Hall A Collaboration), In-
vestigation of Proton-Proton Short-Range Correlations via the
12C(e, e′ pp) Reaction, Phys. Rev. Lett. 99, 072501 (2007).

[29] R. Subedi et al., Probing cold dense nuclear matter, Science
320, 1476 (2008).

[30] I. Korover, N. Muangma, O. Hen et al., Probing the Repulsive
Core of the Nucleon-Nucleon Interaction via the 4He(e, e′ pN )
Triple-Coincidence Reaction, Phys. Rev. Lett. 113, 022501
(2014).

[31] E. O. Cohen et al. (CLAS Collaboration), Center of Mass Mo-
tion of Short-Range Correlated Nucleon Pairs Studied via the
A(e, e′ pp) Reaction, Phys. Rev. Lett. 121, 092501 (2018).

[32] O. Hen et al., Momentum sharing in imbalanced Fermi systems,
Science 346, 614 (2014).

[33] M. Duer et al. (CLAS Collaboration), Direct Observation of
Proton-Neutron Short-Range Correlation Dominance in Heavy
Nuclei, Phys. Rev. Lett. 122, 172502 (2019).

[34] I. Korover et al. (CLAS Collaboration), 12C(e, e′ pN ) mea-
surements of short range correlations in the tensor-to-scalar
interaction transition region, Phys. Lett. B 820, 136523 (2021).

[35] A. Schmidt et al. (CLAS Collaboration), Probing the core of the
strong nuclear interaction, Nature (London) 578, 540 (2020).

[36] M. Alvioli, C. Ciofi degli Atti, and H. Morita, Proton-Neutron
and Proton-Proton Correlations in Medium-Weight Nuclei and
the Role of the Tensor Force, Phys. Rev. Lett. 100, 162503
(2008).

[37] R. Schiavilla, R. B. Wiringa, S. C. Pieper, and J. Carlson, Tensor
Forces and the Ground-State Structure of Nuclei, Phys. Rev.
Lett. 98, 132501 (2007).

[38] H. Feldmeier, W. Horiuchi, T. Neff, and Y. Suzuki, Universality
of short-range nucleon-nucleon correlations, Phys. Rev. C 84,
054003 (2011).

[39] M. Alvioli, C. Ciofi degli Atti, L. P. Kaptari, C. B. Mezzetti,
and H. Morita, Nucleon momentum distributions, their spin-
isospin dependence, and short-range correlations, Phys. Rev. C
87, 034603 (2013).

[40] M. Alvioli, C. Ciofi Degli Atti, L. P. Kaptari, C. B. Mezzetti,
and H. Morita, Universality of nucleon-nucleon short-range
correlations and nucleon momentum distributions, Int. J. Mod.
Phys. E 22, 1330021 (2013).

L021301-5

https://doi.org/10.1016/j.aop.2008.03.004
https://doi.org/10.1016/j.aop.2008.03.005
https://doi.org/10.1016/j.aop.2008.03.003
https://doi.org/10.1103/PhysRevA.83.041601
https://doi.org/10.1103/PhysRevLett.104.235301
https://doi.org/10.1103/PhysRevLett.109.220402
https://doi.org/10.1103/PhysRevLett.95.020404
https://doi.org/10.1140/epjb/e2009-00040-8
https://doi.org/10.1103/PhysRevLett.105.070402
https://doi.org/10.1103/PhysRevA.101.010501
https://doi.org/10.1016/j.physrep.2015.06.002
https://doi.org/10.1103/RevModPhys.89.045002
https://doi.org/10.1146/annurev-nucl-102020-022253
https://doi.org/10.1016/0370-1573(81)90129-0
https://doi.org/10.1016/0370-1573(88)90179-2
https://doi.org/10.1103/PhysRevC.48.2451
https://doi.org/10.1103/PhysRevC.68.014313
https://doi.org/10.1103/PhysRevLett.96.082501
https://doi.org/10.1103/PhysRevLett.108.092502
https://doi.org/10.1103/PhysRevC.86.065204
https://doi.org/10.1038/s41586-019-0925-9
https://doi.org/10.1103/PhysRevC.102.064004
https://doi.org/10.1038/s41586-022-05007-2
https://doi.org/10.1038/s41567-021-01193-4
https://doi.org/10.1103/PhysRevLett.90.042301
https://doi.org/10.1103/PhysRevLett.97.162504
https://doi.org/10.1103/PhysRevLett.99.072501
https://doi.org/10.1126/science.1156675
https://doi.org/10.1103/PhysRevLett.113.022501
https://doi.org/10.1103/PhysRevLett.121.092501
https://doi.org/10.1126/science.1256785
https://doi.org/10.1103/PhysRevLett.122.172502
https://doi.org/10.1016/j.physletb.2021.136523
https://doi.org/10.1038/s41586-020-2021-6
https://doi.org/10.1103/PhysRevLett.100.162503
https://doi.org/10.1103/PhysRevLett.98.132501
https://doi.org/10.1103/PhysRevC.84.054003
https://doi.org/10.1103/PhysRevC.87.034603
https://doi.org/10.1142/S021830131330021X


RONEN WEISS AND STEFANO GANDOLFI PHYSICAL REVIEW C 108, L021301 (2023)

[41] R. B. Wiringa, R. Schiavilla, S. C. Pieper, and J. Carlson,
Nucleon and nucleon-pair momentum distributions in A � 12
nuclei, Phys. Rev. C 89, 024305 (2014).

[42] A. Rios, A. Polls, and W. H. Dickhoff, Density and isospin
asymmetry dependence of high-momentum components, Phys.
Rev. C 89, 044303 (2014).

[43] J. Ryckebusch, W. Cosyn, T. Vieijra, and C. Casert, Isospin
composition of the high-momentum fluctuations in nuclei from
asymptotic momentum distributions, Phys. Rev. C 100, 054620
(2019).

[44] T. Neff, H. Feldmeier, and W. Horiuchi, Short-range correla-
tions in nuclei with similarity renormalization group transfor-
mations, Phys. Rev. C 92, 024003 (2015).

[45] J. Ryckebusch, W. Cosyn, and M. Vanhalst, Stylized features of
single-nucleon momentum distributions, J. Phys. G: Nucl. Part.
Phys. 42, 055104 (2015).

[46] O. Benhar, A. Fabrocini, S. Fantoni, and I. Sick, Spectral func-
tion of finite nuclei and scattering of GeV electrons, Nucl. Phys.
A 579, 493 (1994).

[47] C. Ciofi degli Atti and S. Simula, Realistic model of the nucleon
spectral function in few- and many-nucleon systems, Phys. Rev.
C 53, 1689 (1996).

[48] R. Weiss, I. Korover, E. Piasetzky, O. Hen, and N. Barnea,
Energy and momentum dependence of nuclear short-range cor-
relations - Spectral function, exclusive scattering experiments
and the contact formalism, Phys. Lett. B 791, 242 (2019).

[49] S. Pastore, J. Carlson, S. Gandolfi, R. Schiavilla, and R. B.
Wiringa, Quasielastic lepton scattering and back-to-back nucle-
ons in the short-time approximation, Phys. Rev. C 101, 044612
(2020).

[50] L. Andreoli, J. Carlson, A. Lovato, S. Pastore, N. Rocco, and
R. B. Wiringa, Electron scattering on A = 3 nuclei from quan-
tum Monte Carlo based approaches, Phys. Rev. C 105, 014002
(2022).

[51] F. Simkovic, A. Faessler, H. Muther, V. Rodin, and M. Stauf,
The 0νββ-decay nuclear matrix elements with self-consistent
short-range correlations, Phys. Rev. C 79, 055501 (2009).

[52] V. Cirigliano, W. Dekens, J. de Vries, M. L. Graesser, E.
Mereghetti, S. Pastore, and U. van Kolck, New Leading Con-
tribution to Neutrinoless Double-β Decay, Phys. Rev. Lett. 120,
202001 (2018).

[53] R. Weiss, P. Soriano, A. Lovato, J. Menendez, and R. B.
Wiringa, Neutrinoless double-β decay: Combining quantum
Monte Carlo and the nuclear shell model with the generalized
contact formalism, Phys. Rev. C 106, 065501 (2022).

[54] E. Braaten, D. Kang, and L. Platter, Universal Relations for
Identical Bosons from Three-Body Physics, Phys. Rev. Lett.
106, 153005 (2011).

[55] F. Werner and Y. Castin, General relations for quantum gases in
two and three dimensions. II. Bosons and mixtures, Phys. Rev.
A 86, 053633 (2012).

[56] J. Arrington, D. Day, N. Fomin, and P. Solvignon-Slifer,
E12-06-105: Inclusive scattering from nuclei at x > 1 in the
quasielastic and deeply inelastic regimes (2006), https://www.
jlab.org/exp_prog/proposals/06/PR12-06-105.pdf.

[57] Z. Ye et al. (The Jefferson Lab Hall A Collaboration), Search
for three-nucleon short-range correlations in light nuclei, Phys.
Rev. C 97, 065204 (2018).

[58] M. M. Sargsian, D. B. Day, L. L. Frankfurt, and M. I. Strikman,
Searching for three-nucleon short-range correlations, Phys.
Rev. C 100, 044320 (2019).

[59] R. Weiss, B. Bazak, and N. Barnea, Nuclear Neutron-Proton
Contact and the Photoabsorption Cross Section, Phys. Rev. Lett.
114, 012501 (2015).

[60] R. Weiss, B. Bazak, and N. Barnea, Generalized nuclear con-
tacts and momentum distributions, Phys. Rev. C 92, 054311
(2015).

[61] R. Weiss, E. Pazy, and N. Barnea, Short range correlations: The
important role of few-body dynamics in many-body systems,
Few-Body Syst. 58, 9 (2017).

[62] R. Weiss and N. Barnea, Contact formalism for coupled chan-
nels, Phys. Rev. C 96, 041303(R) (2017).

[63] R. Weiss and N. Barnea, The nuclear contact formalism - the
deuteron channel, arXiv:1801.04526.

[64] R. Weiss, R. Cruz-Torres, N. Barnea, E. Piasetzky, and O. Hen,
The nuclear contacts and short range correlations in nuclei,
Phys. Lett. B 780, 211 (2018).

[65] R. Cruz-Torres, D. Lonardoni, R. Weiss, M. Piarulli, N. Barnea,
D. W. Higinbotham, E. Piasetzky, A. Schmidt, L. B. Weinstein,
R. B. Wiringa, and O. Hen, Many-body factorization and
position–momentum equivalence of nuclear short-range corre-
lations, Nat. Phys. 17, 306 (2021).

[66] M. Alvioli, C. Ciofi degli Atti, and H. Morita, Universality
of nucleon-nucleon short-range correlations: The factorization
property of the nuclear wave function, the relative and center-
of-mass momentum distributions, and the nuclear contacts,
Phys. Rev. C 94, 044309 (2016).

[67] E. R. Anderson, S. K. Bogner, R. J. Furnstahl, and R. J. Perry,
Operator evolution via the similarity renormalization group:
The deuteron, Phys. Rev. C 82, 054001 (2010).

[68] S. K. Bogner and D. Roscher, High-momentum tails from
low-momentum effective theories, Phys. Rev. C 86, 064304
(2012).

[69] A. J. Tropiano, S. K. Bogner, and R. J. Furnstahl, Short-range
correlation physics at low renormalization group resolution,
Phys. Rev. C 104, 034311 (2021).

[70] S. Beck, R. Weiss, and N. Barnea, Nuclear short-range cor-
relations and the zero-energy eigenstates of the Schrödinger
equation, Phys. Rev. C 107, 064306 (2023).

[71] J. Pybus, I. Korover, R. Weiss, A. Schmidt, N. Barnea,
D. Higinbotham, E. Piasetzky, M. Strikman, L. Weinstein,
and O. Hen, Generalized contact formalism analysis of the
4He(e, e′ pN ) reaction, Phys. Lett. B 805, 135429 (2020).

[72] R. Weiss, A. W. Denniston, J. R. Pybus, O. Hen, E. Piasetzky, A.
Schmidt, L. B. Weinstein, and N. Barnea, Extracting the number
of short-range correlated nucleon pairs from inclusive electron
scattering data, Phys. Rev. C 103, L031301 (2021).

[73] R. Weiss, B. Bazak, and N. Barnea, The generalized nuclear
contact and its application to the photoabsorption cross-section,
Eur. Phys. J. A 52, 92 (2016).

[74] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevC.108.L021301 for more details on the three-
body functions, dominant channels, contact properties, t =
1/2 dominance, t = 3/2 universality, and sensitivity to three-
nucleon forces.

[75] J. Carlson, S. Gandolfi, F. Pederiva, S. C. Pieper, R. Schiavilla,
K. E. Schmidt, and R. B. Wiringa, Quantum Monte Carlo meth-
ods for nuclear physics, Rev. Mod. Phys. 87, 1067 (2015).

[76] D. Lonardoni, S. Gandolfi, J. E. Lynn, C. Petrie, J. Carlson,
K. E. Schmidt, and A. Schwenk, Auxiliary field diffusion Monte
Carlo calculations of light and medium-mass nuclei with local
chiral interactions, Phys. Rev. C 97, 044318 (2018).

L021301-6

https://doi.org/10.1103/PhysRevC.89.024305
https://doi.org/10.1103/PhysRevC.89.044303
https://doi.org/10.1103/PhysRevC.100.054620
https://doi.org/10.1103/PhysRevC.92.024003
https://doi.org/10.1088/0954-3899/42/5/055104
https://doi.org/10.1016/0375-9474(94)90920-2
https://doi.org/10.1103/PhysRevC.53.1689
https://doi.org/10.1016/j.physletb.2019.02.019
https://doi.org/10.1103/PhysRevC.101.044612
https://doi.org/10.1103/PhysRevC.105.014002
https://doi.org/10.1103/PhysRevC.79.055501
https://doi.org/10.1103/PhysRevLett.120.202001
https://doi.org/10.1103/PhysRevC.106.065501
https://doi.org/10.1103/PhysRevLett.106.153005
https://doi.org/10.1103/PhysRevA.86.053633
https://www.jlab.org/exp_prog/proposals/06/PR12-06-105.pdf
https://doi.org/10.1103/PhysRevC.97.065204
https://doi.org/10.1103/PhysRevC.100.044320
https://doi.org/10.1103/PhysRevLett.114.012501
https://doi.org/10.1103/PhysRevC.92.054311
https://doi.org/10.1007/s00601-016-1165-2
https://doi.org/10.1103/PhysRevC.96.041303
http://arxiv.org/abs/arXiv:1801.04526
https://doi.org/10.1016/j.physletb.2018.01.061
https://doi.org/10.1038/s41567-020-01053-7
https://doi.org/10.1103/PhysRevC.94.044309
https://doi.org/10.1103/PhysRevC.82.054001
https://doi.org/10.1103/PhysRevC.86.064304
https://doi.org/10.1103/PhysRevC.104.034311
https://doi.org/10.1103/PhysRevC.107.064306
https://doi.org/10.1016/j.physletb.2020.135429
https://doi.org/10.1103/PhysRevC.103.L031301
https://doi.org/10.1140/epja/i2016-16092-3
http://link.aps.org/supplemental/10.1103/PhysRevC.108.L021301
https://doi.org/10.1103/RevModPhys.87.1067
https://doi.org/10.1103/PhysRevC.97.044318


NUCLEAR THREE-BODY SHORT-RANGE CORRELATIONS … PHYSICAL REVIEW C 108, L021301 (2023)

[77] A. Gezerlis, I. Tews, E. Epelbaum, S. Gandolfi, K. Hebeler, A.
Nogga, and A. Schwenk, Quantum Monte Carlo Calculations
with Chiral Effective Field Theory Interactions, Phys. Rev. Lett.
111, 032501 (2013).

[78] A. Gezerlis, I. Tews, E. Epelbaum, M. Freunek, S. Gandolfi,
K. Hebeler, A. Nogga, and A. Schwenk, Local chiral effective
field theory interactions and quantum Monte Carlo applications,
Phys. Rev. C 90, 054323 (2014).

[79] J. E. Lynn, I. Tews, J. Carlson, S. Gandolfi, A. Gezerlis, K. E.
Schmidt, and A. Schwenk, Chiral Three-Nucleon Interactions
in Light Nuclei, Neutron-α Scattering, and Neutron Matter,
Phys. Rev. Lett. 116, 062501 (2016).

[80] A. Baroni, R. Schiavilla, L. E. Marcucci, L. Girlanda, A.
Kievsky, A. Lovato, S. Pastore, M. Piarulli, S. C. Pieper, M.
Viviani, and R. B. Wiringa, Local chiral interactions, the tritium

Gamow-Teller matrix element, and the three-nucleon contact
term, Phys. Rev. C 98, 044003 (2018).

[81] E. Epelbaum et al. (LENPIC Collaboration), Few- and many-
nucleon systems with semilocal coordinate-space regularized
chiral two- and three-body forces, Phys. Rev. C 99, 024313
(2019).

[82] M. M. Sargsian, New properties of the high-momentum dis-
tribution of nucleons in asymmetric nuclei, Phys. Rev. C 89,
034305 (2014).

[83] D. B. Day, L. L. Frankfurt, M. M. Sargsian, and M. I. Strikman,
Toward observation of three-nucleon short-range correlations in
high-Q2A(e, e′)X reactions, Phys. Rev. C 107, 014319 (2023).

[84] D. Lonardoni, I. Tews, S. Gandolfi, and J. Carlson, Nuclear and
neutron-star matter from local chiral interactions, Phys. Rev.
Res. 2, 022033(R) (2020).

L021301-7

https://doi.org/10.1103/PhysRevLett.111.032501
https://doi.org/10.1103/PhysRevC.90.054323
https://doi.org/10.1103/PhysRevLett.116.062501
https://doi.org/10.1103/PhysRevC.98.044003
https://doi.org/10.1103/PhysRevC.99.024313
https://doi.org/10.1103/PhysRevC.89.034305
https://doi.org/10.1103/PhysRevC.107.014319
https://doi.org/10.1103/PhysRevResearch.2.022033

