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Information-field-based global Bayesian inference of the jet transport coefficient
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Bayesian statistical inference is a powerful tool for model-data comparisons and extractions of physical
parameters that are often unknown functions of system variables. Existing Bayesian analyses often rely on
explicit parametrizations of the unknown function. It can introduce long-range correlations that impose fictitious
constraints on physical parameters in regions of the variable space that are not probed by the experimental data.
We develop an information field (IF) approach to modeling the prior distribution of the unknown function that
is free of long-range correlations. We apply the IF approach to the first global Bayesian inference of the jet
transport coefficient q̂ as a function of temperature (T ) from all existing experimental data on single-inclusive
hadron, dihadron, and γ -hadron spectra in heavy-ion collisions at the BNL Relativistic Heavy Ion Collider and
CERN Large Hadron Collider energies. The extracted q̂/T 3 exhibits a strong T dependence as a result of the
progressive constraining power when data from more central collisions and at higher colliding energies are
incrementally included. The IF method guarantees that the extracted T dependence is not biased by a specific
functional form.
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Introduction. Recent developments in Bayesian statistical
inference have brought fruitful advances in physics research
and greatly improved our ability to constrain complex phys-
ical models with ever increasing data. Some prime examples
in high-energy nuclear physics are the nominal study of the
equation of state of the quark-gluon plasma (QGP) [1], simul-
taneous studies of initial conditions of nuclear collisions and
QGP shear and bulk viscosity [2–10], heavy quark diffusion
parameter [11–13], and jet transport coefficient for parton
energy loss in the QGP [14,15]. The pivot of these analyses is
the Bayes’ theorem: “Posterior = Prior × Likelihood”. It de-
scribes how a prior belief of the distribution of certain physical
parameters will be updated to the posterior distribution after
comparing theory with new experimental data, as encoded in
the likelihood function that quantifies the model’s descriptive
power.

Many physical quantities to be inferred from data
are unknown functions of system variables. For example,
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viscosity depends on temperature and chemical potential of
the QGP. The jet transport coefficient depends on temperature
and parton energy [15–17]. The nuclear parton distributions
can be functions of the parton momentum fraction, the renor-
malization scale and the impact parameter [18,19]. In all
recent analyses, these unknown functions are parametrized
in intuitive forms either for convenience or motivated by
physical insights. Bayesian inferences are then performed to
extract these parameters from model-data comparisons. A ma-
jor drawback of explicit parametrizations is that they often
introduce unwarranted long-range correlations in the prior
distributions of physical functions between different regions
of the variable space, where different experimental data sets
are supposed to provide independent constraints. For example,
data in peripheral heavy-ion collisions and at lower colliding
energies, which only probe QGP at low temperatures, can
lead to fictitious constraints on physical quantities at higher
temperatures as predetermined by the parametrizations.

In this work, we design a framework for Bayesian in-
ference of unknown functions based on the idea of the
information field (IF) [20–22]. The advantage of the IF ap-
proach is that it provides a nonparametric representation of
the unknown functional space and eliminates prior bias and
unnecessary long-range correlations in the prior. It can be
easily generalized to higher-dimensional functional inference.
Furthermore, it facilitates sensitivity analyses that map the
constraining power of the experimental data to the variable
space of physical functions. As a proof of principle, we apply
this IF approach to the Bayesian inference of the jet transport
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coefficient q̂(T ) from experimental data on jet quenching,
with the temperature T being the system variable.

Jet quenching is the suppression of large transverse mo-
mentum (pT ) jets and hadrons caused by energy loss of
energetic partons (quarks and gluons) as they propagate
through QGP in high-energy heavy-ion (A + A) collisions
[23–27]. Parton energy loss [28],

dE

dL
= αsNc

4
q̂L, (1)

is controlled by the jet transport coefficient q̂, defined as
the transverse momentum broadening squared per unit length
[28–34]. In QGP, it can depend on both the local temperature
along the jet propagation path and jet energy. Past efforts in
extracting q̂ from model comparisons to experimental data
relied on simple fits [35–37] or Bayesian inferences from sin-
gle inclusive hadron or jet spectra [14,15]. We will carry out
the first global Bayesian inference of q̂ with the IF approach
from combined data on suppression of single inclusive hadron
[38–44], γ -hadron [45,46], and dihadron [45–49] spectra at
both the BNL Relativistic Heavy-Ion Collider (RHIC) and
the CERN Large Hadron Collider (LHC) energies. We will
exclude data on reconstructed jets in this study, since they are
also sensitive to the modeling of jet-induced medium response
[17,50–54].

NLO parton model with energy loss. We use the next-
leading-order (NLO) parton model [55] to calculate single
inclusive hadron, dihadron, and γ -hadron spectra in proton-
proton (p + p) and A + A collisions. Cross sections are
factorized into parton distribution functions (PDF) of the pro-
ton or nuclei, partonic scattering cross sections, and parton
fragmentation functions (FF). The PDF’s of a free nucleon are
given by the CT14 parametrization [56]. The FF’s in vacuum
are given by the Kniehl-Kramer-Potter parametrization [57].
The nuclear PDF’s are from the EPPS16 [58] parametrization
with a model for the impact-parameter dependence [59–61].
In nuclear collisions, medium-modified FF’s are assumed to
be given by the vacuum ones with reduced parton energy due
to energy loss plus fragmentation of radiated gluons [62–64].

The radiative energy loss of a parton with momentum pμ =
(E , �p) within the higher-twist approach [32,33] is

�Ea

E
= 2CAαs

π

∫ ∞

τ0

dτ

∫
dl2

T

l2
T

(
l2
T + μ2

D

)
∫

dz[1 + (1 − z)2]

× pμ · uμ

E
q̂a(T (τ )) sin2

[
l2
T(τ − τ0)

4z(1 − z)E

]
, (2)

where μD is the Debye mass, CA = 3, αs the strong coupling
constant, lT the transverse momentum, and z the longitudinal
momentum fraction of the radiated gluon. The time integral
is along the jet path starting at time τ0 = 0.6 fm/c. The jet
transport coefficient of a gluon q̂A is 9/4 times that of a quark
q̂F . In this paper, the jet transport coefficient q̂(T ) always
refers to that of a quark. It is assumed to depend on the local
temperature T and negligible in the hadron phase below Tc =
165 MeV. The space-time profiles of T and the four-velocity
of the QGP fluid (uμ) are provided by the CLVisc 3+1
dimensional hydrodynamic simulations [65–67] with initial
conditions given by the TRENTo model [68] averaged over

200 events for each centrality bin.1 Parameters in the initial
condition and the QGP transport coefficients are fitted to data
on bulk hadron production. Uncertainties on the inferred q̂ due
to variations of these medium-related parameters are not the
focus of this work and are not considered.

Bayesian inference with information field. A prior distri-
bution with sufficient generality is critical for an unbiased
extraction of physical parameters [5]. However, the “general-
ity” is a subtle issue for unknown functions. Priors according
to an explicit parametrization of q̂(T ) can introduce unnec-
essary long-range correlations between different regions of
temperature. While peripheral or low energy collisions can
only provide constraints at low T , q̂(T ) at high T can only
be calibrated by data from central collisions at high colliding
energies. One can invent parametrizations with higher flexi-
bility [69], but it can become intractable for the inference of
higher-dimensional functions. We will develop an IF approach
in this study to avoid this problem.

The IF approach views the unconditioned function as a
random field. The Gaussian random field (F ) is widely used,
specified by a mean and a covariance function,

〈F (x)〉 = μ(x), 〈δF (x)δF (x′)〉 = C(x, x′), (3)

where δF (x) = F (x) − μ(x) and higher cumulants vanish.
Since q̂(T ) in QGP is proportional to T 3, we will present the
scaled quantity F (x) = ln(q̂/T 3) as a random field in variable
x = ln(T/GeV), which guarantees the positivity of q̂/T 3.2

For the scaled quantity q̂/T 3, it is reasonable to assume a prior
that has μ = const. We assume that the correlation function
takes the Gaussian form

C(x, x′) = σ 2 exp[−(x − x′)2/2l2], (4)

where σ controls the variation of the random function with
respect to the mean. The correlation length l captures the
essence of the IF approach. It states that the functional values
at inputs x and x′ are decorrelated from each other for |x −
x′| � l . For the analysis of q̂(T ), this translates to a condition
that the high-temperature prior is unaffected by data that are
only sensitive to q̂(T ) at low temperature. This is the key to
overcoming the problem of unnecessary long-range correla-
tions that troubles the approach with explicit parametrizations.

The IF prior only imposes continuity, differential prop-
erties, and local correlations on realizations of the random
function. This is compatible with most physical quantities
unless there is a discontinuity (e.g., at phase boundaries). The
prior distribution in a compact form is

P0[F ] = exp

[
−1

2

∫
dxdx′δF (x)C−1(x, x′)δF (x′)

]
. (5)

In the field theory language, the prior appears as the partition
function of a free theory with the mean field μ(x) and the

1An overall envelope function in the spatial rapidity is used to
generalized the TRENTo initial condition at middle rapidity to a 3D
distribution.

2Additional constraints can be imposed by other pre-processing
procedures.
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FIG. 1. (a) 100 prior random functions for q̂/T 3 from the IF
approach. (b) Prior random functions for q̂/T 3 at 95% CI that are
restricted to q̂/T 3 = 4 ± 0.1 at 0.15 < T < 0.2 GeV (High-T var.,
hatched) or 0.3 < T < 0.4 GeV (Low-T var., unhatched) as com-
pared to unconditioned prior (gray).

propagator C(x, x′). The posterior distribution,

P1[F ] = P0[F ] exp {− lnL(Model[F ], Data)}, (6)

will be determined by the likelihood function L that depends
on the preprocessed random function via the model and data
comparison. The marginalized distribution of y = F (x∗) can
be expressed as the path integral P(y) = ∫

[DF ]P1[F ]δ(y −
F [x∗]).

In principle, the IF parameters μ, σ and l should be treated
as hyperparameters and marginalized in the Bayesian analy-
sis. As a first application of the IF approach, we fix their values
to μ = 〈ln q̂/T 3〉 = 1.36, σ = 0.7, and l = ln(2). The values
of μ and σ are chosen so that the 95% credible interval (CI)
of the prior covers most of the range 0.8 � q̂/T 3 � 15 from
past analyses as shown (gray band) in Fig. 1(b). The choice
of l gives a smooth random function when T varies within a
factor of two while correlations beyond that are suppressed.
Smaller values of l can lead to short range oscillations in the
random functions and more samplings are required to reach
the same accuracy in the final results [61].

In our analysis, Gaussian process (GP) emulators are used
to speed up model predictions as in other studies (e.g., see
Refs. [70] and [5] for detailed descriptions). We select 100
prior random function samples, shown in Fig. 1(a), according
to the IF approach. With each q̂(T ) sample, we use the NLO
parton model to compute: 1) the nuclear suppression factor
Rh

AA(pT ) for single inclusive hadrons defined as the ratio of
normalized (by the number of binary collisions) pT spectra
in A + A and p + p collisions; 2) the nuclear modification
factor Ihh

AA of dihadron; and 3) Iγ h
AA of γ -hadron correlation,

defined as the ratio of hadron yield per trigger in A + A and
p + p collisions as a function of the associate hadron passoc

T

or fractional momentum zT = passoc
T /ptrig

T . The 100 samples
of q̂(T ) and the corresponding model calculations of Rh

AA,
Ihh
AA, and Iγ h

AA for different centralities at both RHIC and LHC
energies are used to train the GP emulators.

FIG. 2. 95% variation of the ensemble predictions for (a) Iγ h
AA (zT ),

(b) Ihh
AA(zT ) in 0–10% Au+Au collisions at

√
s = 0.2 TeV,

(c) Ihh
AA(passoc

T ) in 0–10% Pb+Pb collisions at
√

s = 2.76 TeV,
(d) Rh

AA(pT ) in 0–10% Au+Au at
√

s = 0.2 TeV (red), 0–5% and
40–50% Pb+Pb collisions at

√
s = 2.76 TeV, using q̂/T 3 sampled

from two sets of random functions, High-T var. (hatched) and Low-
T var. (unhatched) as shown in Fig. 1(b).

Information field assisted sensitivity analysis. To demon-
strate the sensitivity of different observables to the IF priors
of q̂(T ) in different temperature ranges, we create two sets
of conditional random functions, as illustrated in Fig. 1(b).
In “High-T var.” prior, the random functions are constrained
to q̂/T 3 = 4 ± 0.1 at 0.15 < T < 0.2 GeV but are allowed
to vary in the high temperature region. The “Low-T var.”
prior, on the other hand, is restricted to q̂/T 3 = 4 ± 0.1 at
0.3 < T < 0.4 GeV and can vary at low temperatures almost
in the full range of prior values of q̂/T 3. It is clear that
the prior at high T and low T are indeed uncorrelated. The
distance of decorrelation is controlled by l . The predicted
observables with these two sets of priors are shown in Fig. 2.
As expected, the sensitivities (variations) of Rh

AA and IAA to
high-T q̂ increase from RHIC to LHC energies, and from
peripheral to central collisions. Furthermore, Ihh

AA and Iγ h
AA are

slightly more sensitive to high-T q̂ than Rh
AA because of their

different geometric bias on the initial jet production location
in the transverse plane [63,64].

Global Bayesian inference of q̂(T ). Using model emula-
tors and all existing experimental data on Rh

AA, Ihh
AA, and Iγ h

AA
at both RHIC and LHC energies, we have carried out the
Bayesian inference of q̂(T ). Shown in Fig. 3 is the final
posterior q̂/T 3 (red band) in 95% CI as compared to the fit
by the JET Collaboration [35] (symbols) and the JETSCAPE
(95% CI, line-hatched) [15] and LIDO (95% CI, dot-hatched)

L011901-3
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FIG. 3. q̂/T 3 from the global IF-based Bayesian analysis at 95%
CI (red) with 20 posterior samples (lines) as compared to results from
JET Collaboration (symbols) [35] and JETSCAPE (line-hatched)
[15] and LIDO analysis (dot-hatched) [14].

[14] Bayesian analyses. In addition, we also draw 20 random
posterior samples (blue lines) to illustrate the distribution and
correlation of the posterior q̂/T 3. The IF approach can be
extended in the future to include momentum and virtuality
dependence of q̂ as in the JETSCAPE analysis. With separate
analyses in different regions of hadron’s pT , we find only mild
momentum dependence within 8 < pT < 100 GeV/c [61].

The extracted q̂/T 3 from the IF-based Bayesian inference
is consistent with the JETSCAPE result [15] at 95% CI ex-
cept at temperatures close to Tc where a stronger temperature
dependence arises from the combined constraint by experi-
mental data in central and peripheral collisions at different
colliding energies. The power of the combined constraint with
the IF-based Bayesian inference is illustrated in Fig. 4 by the
posterior q̂/T 3 at 95% CI using only Rh

AA data in (a) Au+Au
at

√
s = 0.2 TeV and (b) Pb+Pb collisions at

√
s = 2.76

TeV with data from different range of centralities. Though

FIG. 4. q̂/T 3 as a function of temperature T from IF-based
Bayesian inference at 95% CI using only data on Rh

AA(pT ) in
(a) Au+Au at

√
s = 0.2 TeV and (b) Pb+Pb collisions at

√
s = 2.76

TeV with different ranges of centralities.

FIG. 5. The same as Fig. 2 except for posterior distributions of
observables at 95% (light blue) and 60% CI (dark blue) from the
model emulator with q̂/T 3 given in Fig. 3 as compared to a subset of
experimental data [38,42,46,47].

data from peripheral collisions only provide meaningful con-
straints at lower T , q̂ is progressively more constrained at
higher T as one includes data from more central collisions
which probe higher T regions of QGP. We see the same trend
as data from low to higher colliding energies are included.
Because the IF approach strongly suppresses correlations be-
tween high and low-T prior values of q̂, it guarantees that
constraints at higher T are imposed only by combining data
from more central collisions and at higher colliding energies.
Including Ihh

AA and Iγ h
AA in the analysis does not significantly

reduce the uncertainties because of the large experimental
errors [61]. This may be improved with more accurate data
in the future.

Finally, we compare in Fig. 5 the model emulator pre-
dictions with the globally Bayesian constrained q̂ to a
representative selection of experimental data on Rh

AA, Ihh
AA, and

Iγ h
AA at both RHIC and LHC energies. A full comparison can

be found in Ref. [61]. Overall, the experimental data over a
large range of pT , centralities and colliding energies are well
reproduced by the ensemble predictions of the model emulator
at 60% and 95% CI, indicating the global descriptive power of
our analysis.

Summary. We developed an information field (IF) approach
to the Bayesian inference of unknown physical functions
of system variables from experimental data. It represents
a prior functional distribution that is free from long-range
correlations between physical parameters in different regions
of the variable space, which can be independently sensitive to
different data sets. We applied this IF approach to the first

L011901-4



INFORMATION-FIELD-BASED GLOBAL BAYESIAN … PHYSICAL REVIEW C 108, L011901 (2023)

global Bayesian inference of the jet transport coefficient q̂
from combined experimental data on Rh

AA, Ihh
AA, and Iγ h

AA in
heavy-ion collisions at both RHIC and LHC energies. We
showed the IF approach can provide progressive constraints
on q̂ from low to high T when experimental data in more
central collisions and at higher colliding energies are included
in the analysis. The extracted q̂/T 3 is consistent with previous
studies but exhibits a stronger temperature dependence. This
IF approach can be extended to also include energy depen-
dence of q̂ and analyses of other properties of QGP such as
bulk transport coefficients and equation of state.
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