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Experimental studies of nuclear matrix elements (NMEs) for neutrinoless double-β decays (DBDs) and astro-
neutrino (ν ) inverse β decays (IBDs) are crucial for ν studies beyond the standard model and the astro-ν studies
since accurate theoretical calculations of the NMEs are hard due to the high sensitivity of the NMEs to the
nuclear models and the nuclear parameters used for the models. Some of the important NMEs of electromagnetic
transition operators associated with DBD and IBD, including the effective weak couplings, are found to be
experimentally obtained by measuring the corresponding electromagnetic gamma (EM:γ ) transitions from the
isobaric analog states (IASs) of the DBD and IBD nuclei. Then the experimental NMEs and the couplings
are used for evaluating the DBD and IBD NMEs and for checking the model calculations. The EM-NMEs, the
cross sections, and the event rates for the IAS-γ transitions are estimated for DBD and IBD nuclei to show
the feasibility of the experiments.
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Introduction. Neutrinoless double-β decay (DBD ββ ) is
a sensitive and realistic probe for studying the neutrino
(ν) nature (Majorana or Dirac), the absolute ν-mass scale,
the right-handed weak current (RHC), and others, which
are beyond the standard model, as discussed in reviews
[1–3]. Astro-ν productions, astro-ν syntheses, and astro-ν-
oscillations are of great interest for physics of astro-neutrinos
and supernovae and are studied by nuclear charged-current
(CC) interaction, i.e., inverse β decay (IBD). The DBD and
IBD rates are proportional to their neutrino nuclear responses,
i.e., the squares of the nuclear matrix elements (NMEs). The
present letter addresses the NMEs, which are indispensable
for the ν studies by these rare nuclear decays.

The DBD ν-mass process involves the Majorana ν ex-
change between two nucleons in the DBD nucleus. Then the
accurate value for the NME is required to study the ν mass.
It, however, is extremely hard to calculate the NME by theo-
retical models since the NME to be studied is a tiny fraction
(≈10−4) of the total sum of the DBD responses and the NME
is very sensitive to all kinds of nuclear correlations. Thus
the calculated NMEs, including the effective axial-vector cou-
pling (geff

A ), scatter over an order of magnitude, depending on
the nuclear models and the geff

A and other parameters used
in the models [4–10]. Thus experimental inputs are crucial
to check the theoretical models and the nuclear parameters
(geff

A and others) [4,5,10–13].
Astro-νs such as the solar and supernova νs are studied

via the nuclear CC interaction since the interaction rate is
quite large. Then the astro-ν IBD NMEs for the ground and
excited states in residual nuclei are required for the astro-ν
studies. DBD nuclei and some other nuclei are used for solar-ν
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real-time measurements [14–16]. The solar-ν NMEs for the
excited states in 71Ge are critical in views of the possible ν

oscillation to the sterile ν [17]. Experimental studies for these
astro-ν NMEs are needed since accurate calculations for them
are difficult to obtain [4,5].

The DBD and IBD transition operators include mainly
the axial-vector (isospin spin τσ ) and the vector (isospin τ )
components, and their NMEs are quenched much by the non-
nucleonic τσ and τ correlations and nuclear medium effects,
which are hardly evaluated by theoretical models. Then geff

A
and geff

V are introduced to incorporate such correlation effects
that are not taken in their models. The quenching coefficients
are given by geff

A /gA and geff
V /gV with gA and gV being the cou-

plings for a free nucleon [4,5]. They are derived by comparing
the absolute experimental NME with the theoretical ones.

The DBD NME includes NMEs for all intermediate states
i and several multipoles J because of the medium energy
(100 MeV) virtual ν. The effective couplings, reflecting the
non-nucleonic nuclear medium effects, are considered to be
common for them. Then it is quite realistic and effective
to study absolute experimental values for some representa-
tive axial-vector dipole [Gamow-Teller (GT): 1+] and vector
dipole (V1: 1−) NMEs to be used to check the model calcu-
lations and to get the effective couplings [5]. In fact, recent
theoretical calculations show a simple linear dependence of
the DBD NME on the GT component, suggesting that the GT
NME represents the DBD NME [18]. The IBD NME is mainly
GT NMEs for low-lying states because of the low-energy
(<10 MeV) real ν. So the key point of the NME studies is
to find a realistic experimental probe (way) to get exclusively
the absolute GT and V1 NMEs for some representative GT
and V1 states.

This Letter shows that the electric dipole (E1) and mag-
netic dipole (M1) γ transitions from the isobaric analog states
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(IASs) of the initial DBD and IBD states are experimentally
measured to provide the absolute values for analogous V1
and GT NMEs associated with DBDs and IBDs to check
the theoretical NMEs and to provide the theories with the
experimental effective axial-vector and vector couplings to
help their model calculations.

Several experimental approaches to the DBD and IBD
NMEs are discussed [4,5,11–13]. The charge exchange nu-
clear reactions (CERs) of (3He, t ) with sub GeV 3He have
been used widely to estimate GT NMEs associated with DBD
and IBD GT NMEs. The CER, however, includes mixed
interactions of the GT(τσ ), the tensor ([σ × Y2]1), and the
vector (isospin:τ ) interactions [5,19,20], and the cross sec-
tion depends much on the nuclear distortion. Thus the CER
data do not provide theories with the reliable absolute V1
and GT NMEs for individual states relevant to the DBD and
IBD NMEs [4,5,11–13]. Accurate electron-capture (β+) data
are not available for DBD nuclei of current interests due to
the small Q value, while β−-decay data are limited to high
multipole ones, which are minor components of DBD NMEs.
Beta-decay data to be used for IBD NMEs are limited to the
ground state in some nuclei.

The unique features of the present IAS-EM study are as
follows. (i) EM transition operators are exclusive and well-
defined ones with the well-known EM couplings. Thus the
observed E1 and M1 NMEs are used to get the V1 and GT
NMEs and effective vector and axial-vector couplings. (ii)
The absolute values for the EM NMEs are obtained experi-
mentally by measuring the CER IAS cross sections, the IAS
widths, and the CER IAS-γ cross sections. (iii) The IAS
is a very sharp state, reflecting the isospin symmetry. Thus
backgrounds from non-IAS excitations are small. IAS neutron
decays are so reduced that the γ branch is enhanced by orders
of the magnitude. (iv) The small cross section due to the
small EM interaction in comparison with the large CER cross
section by the strong nuclear interaction is overcome by using
the IAS with the large cross section and the large γ branch
and by using large acceptance detectors.

DBD, IBD and IAS-EM NMEs. The DBD rate for the light
ν-mass process is expressed as [1,3,5]

R0ν = ln2 g4
AG0ν[|mνM0ν |]2, (1)

where G0ν is the phase-space factor, gA = 1.27 is the axial-
vector coupling for a free nucleon in units of the vector
coupling of gV , mν is the effective ν mass, and M0ν is the
NME. mν is replaced by the RCH term in case of the RHC
process. M0ν is given mainly by

M0ν = M0ν (GT) + (gV /gA)2M0ν (V ), (2)

where M0ν (GT) and M0ν (V ) are the axial-vector (GT)
and vector (V) NMEs, respectively. They are expressed in
terms of the model NMEs of M0ν

GT and M0ν
V as M0ν (GT) =

(geff
A /gA)2M0ν

GT and M0ν (V ) = (geff
V /gV )2M0ν

V , where the ef-
fective weak couplings are introduced to incorporate such
renormalization (quenching) effects of the τσ and τ corre-
lations that are not included in the model NMEs of M0ν

GT and
M0ν

V [5,11–13,21,22]. M0ν includes also a minor tensor NME.

The NME M0ν (δ) with δ = GT, V is given by the sum of
the NMEs M0ν

i (δ) for the intermediate states i up to around
20 MeV. The DBD proceeds as n → p and n′ → p′ with the ν

exchange between n and n′. Then the GT and V operators are
given by the double-GT (double-τσ ) and double-V (double-
τ ) operators for n → p and n′ → p′ via the ν potential h(δ)
for the medium-energy (≈100 MeV) virtual ν exchanged be-
tween the two neutrons in the nucleus. Note that h(δ) ≈ k/ri j

with ri j being the distance between the two neutrons of n
and n′. Then the DBD NME is given by M0ν (δ) = ∑

J M(δJ )
with M(δJ ) being the J-multipole component of the NME.
The single β V operator associated with the DBD V operator
with the multipolarity of J = 1 is expressed as f (ri )Y1, where
f (ri) is approximately proportional to ri. Thus it corresponds
to the E1 γ operator riY1. M(δJ ) decreases slowly as J up
to around J ≈ 6 [5]. The real photon to be measured is the
low-energy (E � 10 MeV) one, which is predominantly of
low multipolarity. So one discusses mainly the lowest-J M1
and E1 NMEs.

The astro-ν IBD rate is expressed as [4,5]

Rν = ln2 g2
AGν fν |Mν |2, (3)

where Gν is the phase-space factor, fν is the ν flux, and Mν is
the IBD NME. It is given mainly as

Mν = Mν (GT) + (gV /gA)Mν (V), (4)

where Mν (GT) and Mν (V) are the axial-vector and vector
NMEs for the astro-ν IBD of ν + n → e + p. They are ex-
pressed, as in DBD NMEs, in terms of the model NMEs
of Mν

GT and Mν
V as Mν (GT) = (geff

A /gA)Mν
GT and Mν (V) =

(geff
V /gV )Mν

V . Actually, Mν (GT) is mainly the GT(J = 1+)
NME and Mν (V) is the F (Fermi) (J = 0+) NME for low-
energy (solar) νs � 15 MeV, since the ν and electron
momenta are much smaller than the inverse of the nuclear
radius and thus the higher multipole transitions are reduced
by orders of magnitudes in all nuclei. Since the Fermi decay
is exclusively to IAS, one considers here mainly Mν (GT) to
low-lying states.

The weak NME M−(α) for the α-mode β− transition is
related to the EM(γ ) NME MIA(α′) for the analogous α′ mode
IAS-γ transition as shown first in Refs. [23,24] as

M−(α) ≈
√

2T MIA(α′), (5)

where T = (N − Z )/2 is the isospin of the initial (ground)
state A

Z X and IAS is expressed as (
√

2T )−1 T −A
ZX with T −

being the isospin lowering operator of n → p. Here A, N , and
Z are the mass, neutron, and atomic numbers. The β− NMEs
M−(α) with α = GT, V1 are derived from the analogous IAS-
γ NMEs MIA(α′) with α′ = M1, E1.

DBD, IBD, IAS-EM(γ ), and CER are schematically
shown in Fig. 1. M0ν is sensitive to the many-body nuclear and
non-nuclear τσ and τ correlations involved in the double-GT
and double-V transitions of (n → p, n′ → p′) in the DBD of
A
ZX → A

Z+1X → A
Z+2X. Likewise, Mν is sensitive to the many-

body τσ and τ correlations involved in the IBD of n → p in
A
ZX → A

Z+1X.
In fact, IAS-γ s for the first forbidden β NMEs were studied

before by using (p, γ ) reactions via the strong IAS resonance
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FIG. 1. Left: GT weak and IAS-M1γ transition diagrams. Top:
DBD with ν exchange between n and n′. Middle: Astro-ν IBD.
Bottom: (3He, t ) CER of the IAS excitation followed by EM(γ )
transition. W, weak boson; M, meson; τ , isospin; σ , spin. Green
circles: Nuclear τσ vertexes. Green ellipsoids: Nuclear CER (τ ) and
M1(σ ) vertexes. In the case of E1 the operator σ is replaced by rY1.
Right: DBD scheme for A

Z X → A
Z+2X via the intermediate nucleus

A
Z+1X and the γ decay from IAS (red lines) and the γ excitation to
IAS (blue lines). (T, Tz ) are the isospin and its z component.

with the large cross section around 10 µb [23]. However, there
are no stable target nuclei for the (p, γ ) reactions on DBD and
astro-ν nuclei.

The IAS-γ study for axial vector and vector NMEs is found
to be made by using the medium energy (3He, t ) CER with
E (3He) ≈ 0.42–0.45 GeV. Actually the CER excites strongly
the IAS and GT states and is used to study GT states in DBD
and astro-ν nuclei [25–36].

IAS is the isospin (τ−) giant resonance (GR), which is
strongly excited as a sharp peak in the τ− CER. The excitation
spectrum for a DBD nucleus of 82Se [34] is shown as an
example in Fig. 2.

The IAS differential cross section is expressed as

dσ IA/d	 = kNJ2
τ B(IAS), (6)

with k, N, Jτ , and B(IAS) being the kinematical factor includ-
ing the small effect of the momentum transfer, the distortion
factor, the interaction strength, and the IAS reduced width.
B(IAS) is given by the sum rule limit of 2Tz = (N − Z ). Thus
the dσ IA/d	 at 0◦ for the DBD nuclei with A = 70–160 gets
as large as 10 mb/sr.

The IAS-γ differential cross section is measured in coinci-
dence with the IAS CER. It is given as

dσ IA(α′)
d	

= dσ IA

d	

Γ IA(α′)
Γ (T )

, (7)

where Γ IA(α′)/Γ (T ) is the γ -branching ratio with Γ IA(α′)
being the α′ mode EM γ width and Γ (T ) being the total
IAS width. Hereafter we discuss mainly IAS-M1 and IAS-E1
(α′ = M1, E1) transitions to axial-vector GT(1+) and vector
dipole V1(1−) states.

The IAS-γ width Γ IA(α′) in units of eV for α′ = M1, E1
is expressed in terms of the γ ray energy Eα′ in units of MeV
and the γ reduced width BIA(α′) as [37,38]

Γ IA(α′) = Kα′E3
α′BIA(α′), (8)

FIG. 2. The energy spectrum of the (3He, t ) reaction on 82Se
[34]. The yield in units of 104/(msr 5 keV) is plotted against the
excitation energy in units of MeV. The IAS peak (red) at the forward
angle is overscaled. See Ref. [34] for the details. The energy scale
below 6 MeV is enlarged. Yields at the t emission angles of 0–0.5,
1–1.5, and 2–2.5, all in degrees, are shown by red, green, and blue,
respectively. IAS and GT CERs with no angular momentum transfer
are enhanced at the forward angle (red). The blue arrow is γ from
IAS.

where Kα′ is the kinematical factor. The reduced width is
expressed by using the IAS-EM NME MIA(α′) as

BIA(α′) = g2
α′ |MIA(α′)|2S−1, (9)

where S = 2Ji + 1 is the spin factor with Ji being the initial
state spin and gα′ the EM coupling. The coupling is gM1 =
(eh̄/2Mc)g with e, M, c, and g being the electron charge, the
nucleon mass, the light velocity, and M1 g factor for the M1
γ , and gE1 = e for the E1 γ . M(E1) is in units of fm. The
kinematical factor is 1.05 for E1 and 1.16 × 10−2 for M1
transitions.

The M1 and E1 γ NMEs are related to the correspond-
ing GT and V1 β NMEs. In fact, M1 transition operator
includes a contribution from the orbital term in addition
to the spin term. In case of a spin-stretched transition of
l ± 1/2 ↔ l ∓ 1/2, the M1 g factor is given effectively as
g = √

3/4π (gs/2 − gl/2) with gs and gl being the nucleon
spin and orbital g factors. Here note gs 	 gl . Actually, the ma-
jor GT transitions are the spin-streched transitions of g7/2 →
g9/2 and d3/2 → d5/2 for the present DBD nuclei with A ≈
96–116 and A ≈ 128–136, respectively. The gl contributions
from non-spin-stretched transitions are of the order of 10%
or less on the basis of the QP (quasiparticle) model. Then
the orbital l contribution to the M1 γ NME is effectively
included in the spin term by using the effective g factor and
the MIγ -NME MIA(M1) where the T (M1) = σ is used to
get the analogous GTβ-NME with the transition operator of
T (GT) = τσ .

In case of the E1 transition, the transition operator is
T (E1) = rY1 with r being the radius coordinate. Then E1γ -
NME MIA(E1) with the transition operator of T (E1) is used
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TABLE I. M1γ widths and the IAS γ cross sections for DBD
nuclei and 71Ga for the solar νs. Shown are E (IA) in units of MeV,
E (GT) in units of MeV, B(GT), BIA(M1) in units of 10−2, Γ IA(M1)
in units of 10−2 eV, and σ IA(M1) = dσ IA(M1)/d	 in units of nb
(10−9 b)/str.

A E (IA) E (GT) B(GT) BIA(M1) Γ IA(M1) σ IA(M1)

76Ge 8.31 1.07 0.14 1.45 6.4 41
82Se 9.58 0.075 0.34 3.0 30.0 150
96Zr 10.9 0.69 0.16 1.25 15.3 76
100Mo 11.1 0 0.35 2.7 43.4 170
116Cd 12.1 0 0.14 0.88 18.0 51
128Te 12.0 0 0.079 0.41 8.2 17
130Te 12.7 0 0.072 0.35 8.2 17
136Xe 13.4 0.59 0.23 1.03 25 45
150Nd 14.4 0.11 0.13 0.54 18.0 35

71Ga 8.91 0 0.085 1.2 9.8 51

to get the analogous V1β-NME with the transition operator of
T (V 1) = τ rY1.

Actual procedures to get the β NMEs associated with the
DBD and IBD NMEs are (i) excite the IAS by the (3He, t)
reaction on A

ZX (see Fig. 1) and measure the IAS differential
cross section dσ IA/d	 and the IAS total width Γ (T ), (ii)
obtain the IAS-γ differential cross section dσ IA(α′)/d	 with
α′ = M1, E1 for low-lying 1+ and 1− states in A

Z+1X by
measuring the γ -rays in coincidence with the IAS CER, (iii)
obtain the reduced γ widths Γ IA(α′) by using the measured
IAS and IAS-γ differential cross sections and the measured
total width Γ (T ) in Eq. (7), (iv) obtain the reduced γ width
BIA(α′) from the measured γ width Γ IA(α′) in Eq. (8) and the
γ NME MIA (α′) by using the BIA(α′) in Eq. (9), and (v) get
the β− NMEs M−(α) with α = GT,V1 from the MIA(α′) with
α′ = M1, E1 in Eq. (5).

IAS-γ cross sections. The IAS-γ cross sections for realistic
cases of the GT and V1 transitions and the experimental
counting rates are estimated to show the feasibility of the
experiment.

The IAS-M1 widths ΓM1 for GT states in DBD and IBD
nuclei are estimated by using the NMEs M(GT) for low-
lying states in the DBD and astro-ν nuclei. One uses the
GT states with relatively large B(GT) of the order of 10−1,
which are considered to be the spin-stretched GT transitions.
The reduced widths BIA(M1) are estimated by assuming the
CER B(GT) derived without considering the tensor term in-
terference [25,28–36]. The IAS-M1 γ widths Γ IA(M1) are
estimated as shown in Table I.

The IAS-E1 γ widths Γ IA(E1) for V1 1− states in DBD
nuclei are estimated by using the QP model V1 NMEs M(V 1)
since the V1 β reduced widths in DBD nuclei are not known
experimentally. The V1 NMEs for QP states in medium heavy
nuclei have been shown to be approximately given by the
QP model with experimental effective coupling of geff

E1/gE1 ≈
0.2–0.25 [23,24,38]. So the V1 NMEs for the typical V1
transitions of n(1h11/2) → p(1g9/2) in 3 DBD nuclei are es-
timated by using the QP NMEs with the effective coupling of
geff

E1/gE1 = 0.225. They are shown in Table II.

TABLE II. E1γ widths and the IAγ cross sections. Shown are
E (IAS) and E (V1) in units of MeV, QP model B(V1), BIA(E1)
in units of 10−2, Γ IA(E1) in units of 10−2 eV, and σ IA(E1) =
dσ IA(E1)/d	 in units of nb (10−9 b)/str.

A E (IAS) E (V1) B(V1) BIA(E1) Γ (E1) σ IA(E1)

96Zr 10.9 3 6.8 43 220 1080
100Mo 11.1 3 7.5 47 260 1020
130Te 12.7 3 1.0 3.8 36 75

The IAS-γ branching ratio Γ IA(α′)/Γ (T ) is obtained by
using the estimated Γ IA(α′) and the total width Γ (T ) mea-
sured experimentally. The total widths for the DBD nuclei are
derived from the high-energy-resolution CERs [25,28–36] as
shown in Fig. 3, together with other experimental widths [39].
They are given by

Γ (T ) ≈ 3.5Tz keV, Tz = (N − Z )/2. (10)

The IAS width is indeed very small in comparison with a
typical neutron width of the order of MeV.

Then the IAS-M1γ and IAS-E1γ cross sections at 0◦ are
estimated by using the measured IAS cross section at 0◦, the
experimental Γ (T ) and the estimated BIA(M1) and BIA(E1)
values as given in Tables I and II. The IAS-M1γ and IAS-E1γ

cross sections are of the orders of 10–100 nb and 100–1000
nb/sr, respectively. The estimated IAS-γ cross sections for
the M1 and E1 transitions are about 10−6–10−4 of the IAS
ones of 10 mb, reflecting the M1 and E1 γ branching ratios to
the total IAS width. The E1 cross sections are larger by one
to two orders of magnitude than the M1 cross sections be-
cause of the larger kinematical factor in Eq. (8). The very
small d IAσ (E1)/d	 for 130Te is due to the small U (vacancy
coefficient). The cross sections are shown in Fig. 4.

IAS-γ event rates under typical experimental conditions
are estimated to show the feasibility of the experimental stud-
ies. Using a target of 40 mg/cm2, a 3He beam of 20 npA, and
a spectrometer of a solid angle of 3.2 msr, the IAS-γ event

FIG. 3. Experimental IAS widths as a function of the isospin
Tz = (N − Z )/2. Blue squares for IASs in DBD nuclei derived in
the present work. Light blue triangles from Ref. [39].
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FIG. 4. Differential cross sections at 0◦ for DBD and astro-ν
nuclei. Green diamonds: IAS excitations. Blue inverse triangles:
IAS-E1γ s to 1− states. Light blue triangles: IAS-M1γ s to 1+ states.

rate per day is

Rγ = 8A−1102(dσ IA(α′)/d	)εγ , (11)

where A, dσ IA(α′)/d	, and εγ are the target mass number,
the differential cross section with α′ = M1, E1 in units of
nb/sr, and the γ detection efficiency. Recent developments of
γ detectors have made it possible to measure γ rays with the
efficiency around 5–10% [40–42]. Then one gets Y ≈ 50 per
day in case of ε ≈ 6% and dσ IA(α′)/d	 ≈ 100 nb at the solid
angle window. Then the IAS-γ experiments to get accurate
(±10% or so) NMEs are quite feasible.

Concluding remarks. The IAS-EM(γ ) study opens a new
experimental way to access the DBD and IBD NMEs, which
are crucial for neutrino studies in complex nuclei. It provides
absolute values for M1−E1 NMEs with well-defined EM
operators and the EM couplings. They are used to obtain the
corresponding weak GT-V1 NMEs and the effective weak
couplings, which are associated with DBD and IBD NMEs.
They are free from uncertainties due to the other interfering
NMEs due to other interactions [43] and the distortion poten-
tial as in the CERs used so far. The IAS-γ coincidence leads
to background-free measurements. The event rates estimated

for GT and V1 states in DBD and IBD nuclei indicate the
feasibility of the experiments with available detectors.

Then DBD and IBD nuclear models and their nuclear pa-
rameters (geff

A , geff
V , gpp, etc.) are well checked by comparing

the calculated GT and V1 (IAS-M1 and IAS-E1) NMEs by
using the DBD and IBD models with the experimental GT and
V1 (IAS-M1 and IAS-E1) NMEs derived from the IAS-EMγ

experiments. The experimental geff
M1 and geff

E1 help evaluate the
geff

A and geff
V used for DBD and IBD models since calculations

for them are hard.
The experimental GT and V1 NMEs studied by the IAS-

EM(γ ), together with the experimental β and 2νββ NMEs
and the experimental GT and SD (spin-dipole) GRs studied
by CERs [13], are very powerful in pinning down the DBD
and astro-ν NMEs.

EM(γ ) excitations to IAS are used for studying the n′-p′
M ′(α) (right leg) NMEs associated with DBDs and astro-ν̄s as
shown in Fig. 1 (blue lines) [44]. The measured EM NMEs for
low-lying states are used to check the DBD and IBD models
and to provide them with the effective geff

A /gA and geff
V /gV to

be used. Then the product of M × M ′ gives the product of
the couplings relevant to the DBD NME. Actually the Fermi
surface quasiparticle model with experimental inputs of the
NMEs of M(GT) and M ′(GT) reproduces the observed 2νββ

NMEs [45].
Studies of EM(γ ) decays from GT-GR excited by CER

provide the GT NME and the geff
A for the GT GR. Comparison

of GT NMEs derived from the IAS-M1 (γ ) studies and the
GT NMEs derived from CERs may show the possible tensor
interference effect.

The present low-energy (<10 MeV) IAS-EM(γ ) probe
emphasizes realistic measurements of the accurate absolute
values for the GT(1+) and V1(1−) NMEs, which are key
ingredients for the DBD and IBD NMEs and their effective
axial-vector and vector couplings. Note that medium-energy
(E ≈ 100 MeV) ν, μ+, and γ probes might excite in principle
very many states in wide ranges of the multipoles (J ) and
excitation energies (Ei ) as the DBD virtual ν, but the cross
sections would be formidably small and selections of states
with specific J and Ei would not be experimentally possible.
Double CERs and double γ s are interesting challenges in the
future [18,46,47].
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