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The electric-dipole (E1) photon strength function (PSF), which is a key input in the statistical model
calculations for astrophysical neutron-capture reaction rates, has been studied with a focus on the important
energy ranges of the emitting γ rays. Comparing the available experimental data of the E1 PSF with the strength
predicted by microscopic models, we find that the uncertainties in the E1 PSF below the neutron separation
energy have a great impact on the neutron-capture reaction rates. A further study on the sensitivities of the
reaction rate to the variations of the E1 PSF at different γ -ray energies indicates that there is an effective
energy window in which the E1 PSF contributes greatly to the neutron-capture reaction rates. We propose two
functions to describe this window, which can be applied to the nuclei with dominant transitions to the continuum
levels and is applicable to the general astrophysical environments of neutron captures. Employing the Gaussian
approximation function of the effective window, we can conveniently get several specific effective energy ranges
according to the contributions to the astrophysical rate. It is found that currently available experimental data of
the E1 PSF do not completely cover these important energy ranges. Further theoretical and experimental studies
are needed in the proposed energy ranges to improve the descriptions of the E1 PSFs.
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I. INTRODUCTION

About half of the nuclei with A > 60 observed in nature
are formed by the rapid neutron-capture process (r-process)
occurring in explosive stellar events [1]. The r-process is
believed to take place in environments characterized by high
neutron density (Nn > 1020 cm−3), so that successive neutron
captures proceed into neutron-rich regions well off the β sta-
bility valley forming exotic nuclei that cannot be produced and
therefore studied in the laboratory. When the temperature or
the neutron density required for the r-process is low enough
to break the equilibrium of (n, γ )-(γ , n), the distribution of
the r-process abundance depends directly on the neutron
capture rates of the so-produced exotic neutron-rich nuclei
[2]. Carbon-enhanced metal-poor (CEMP) r/s stars demon-
strate surface-abundance distributions characteristic of the
nucleosynthesis of the intermediate neutron capture process
(i-process). About 70% of the neutron-capture rates involved
during i-process nucleosynthesis are not known experimen-
tally. It is found that the uncertainties of these unknown
capture reaction rates introduce significant discrepancies in
the predicted surface abundance enrichment of the AGB star,
especially for the isotopes in the 75 < Z < 80 region [3,4].
The neutron-capture rates are commonly evaluated within the
framework of the statistical model of Hauser-Feshbach, which
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makes the fundamental assumption that the capture process
takes place with the intermediary formation of a compound
nucleus in thermodynamic equilibrium [5]. In this approach,
the Maxwellian-averaged neutron-capture rate at temperatures
of relevance in r-process or i-process environments strongly
depends on the PSF.

Over the past decades, a large number of experimental ef-
forts have been devoted to measure photon strength functions
(PSFs) by using the photon, neutron, and charged-particle
beams [6,7]. Quite often, different experimental techniques
have led to discrepant results, so a coordinated effort has been
made to compile and assess the existing experimental data
on PSFs from the giant dipole resonance region to energies
below the neutron separation energy [8]. However, there are
still considerable uncertainties in the experimental data for
PSFs, especially at the energies around or below the neutron
separation energy which are critically important for astrophys-
ical neutron-capture reaction rates.

Large-scale calculations of the dipole PSF have tradition-
ally been performed on the basis of the phenomenological
Lorentzian model [8,9]. The Lorentzian model and its gen-
eralized forms are widely used to describe experimental data
well with conveniently adjustable parameters. However, this
approach is unable to predict the enhancement of the dipole
PSF at low energies and lacks reliability when dealing with
exotic nuclei [8]. On the other hand, the reliability of large-
scale predictions of the dipole PSF can be greatly improved by
the use of microscopic (or semimicroscopic) models [10–14].
Combined with the simple analytical expressions to account
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for the missing strength at the lowest energies approaching
zero, the microscopic approach based on the finite-range D1M
Gogny force is quite successful in describing the low-energy
enhancement [15] and effectively explaining the experimen-
tal results from the Oslo-type experiments [16–18]. Provided
satisfactory reproduction of available experimental data, the
more microscopic the underlying theory, the greater the con-
fidence in the extrapolations out towards the experimentally
unreachable regions. Nevertheless, microscopic approaches
also have some limitations, such as the fine tuning required
to accurately reproduce a large experimental data set, which
is very delicate and time consuming.

The E1 transition generally dominates the electromagnetic
transition of the nuclei, and the uncertainties of the E1 PSF in
experimental measurements and theoretical predictions pre-
vent us from giving a sufficiently accurate description of the
astrophysical neutron-capture reaction rates. According to the
description of Hauser-Feshbach model, it is known that the
astrophysical neutron-capture reaction rate is mainly governed
by the γ width which strongly depends on the PSF, as the
larger particle width cancels with the total width, leaving only
the smaller γ width remaining [19]. Therefore, it is quite nec-
essary to quantify the impacts of the uncertainties in PSFs on
the astrophysical rates. Furthermore, it is expected to obtain
an effective energy window of the E1 PSF, which can suggest
to both nuclear experimentalists and theoreticians to focus on
improving the uncertainties of the PSF in the most important
γ -ray energy.

In this paper, we investigate the impact of the uncertainties
in the E1 PSF on the astrophysical neutron-capture reaction
rates, and analyze the sensitivities of the reaction rates to
the variations of the E1 PSF at different γ -ray energies. An
effective energy window is proposed to describe the effective
energy range in which the E1 PSF has great contributions
to the neutron-capture reaction rate. All relevant calculations
of the cross section and the reaction rate about the neutron-
capture reaction are performed within the framework of the
Hauser-Feshbach statistical model using the TALYS reaction
code [20–22]. The rest of this article is organized as follows.
In Sec. II, the uncertainties of the E1 PSF and the sensitiv-
ities of the reaction rate to the variations of the E1 PSF are
analyzed. In Sec. III, the effective energy window is proposed
and discussed. In Sec. IV, the conclusions are given.

II. UNCERTAINTIES AND SENSITIVITIES
ABOUT THE E1 PSF

A. Impact of the uncertainties in the E1 PSF on the reaction rate

In order to investigate how much the uncertainties in the
E1 PSF impact on the reaction rate, we will analyze this
problem using available experimental data below the neutron
separation energy acquired from the PSF database provided
by the International Atomic Energy Agency (IAEA) [23], and
their corresponding microscopic theoretical predictions.

In the astrophysical environment, due to the very low
incident energy compared with the Q value in a neutron-
capture reaction, the maximum value of the γ -decay energy
is generally around the neutron separation energy. Various

experimental methods can be used to measure E1 PSFs
below the neutron separation energy, such as the discrete
resonance capture (DRC) method, the inelastic proton scat-
tering (PP) method, and the nuclear resonance fluorescence
(NRF) method [8]. The experimental data obtained from
these approaches, along with the theoretical predictions of
the microscopic Hartree-Fock-Bogoliubov (HFB) plus quasi-
particle random-phase approximation model, based on the
BSk7 Skyrme force (BSk7 + QRPA) [11] and the D1M
Gogny force (D1M + QRPA) complemented by low-energy
enhancement [15], are both shown in Fig. 1. In the energy
ranges where the experimental data are available, differences
between the predictions and the experimental results can still
be found. Below the neutron separation energy, both mi-
croscopic predictions exhibit a similar increasing trend with
rising energies, except for the lowest energies just above zero
where an enhancement is added to the D1M PSF. To assess
the impact of the uncertainties in the E1 PSF on the astro-
physical rate, we combine the BSk7 + QRPA predictions and
the experimental data by two schemes, as shown in Fig. 1.
Considering that the theoretical extrapolation out towards un-
known regions often relies on the data points at the tails of
the experimental data, we adopt a scheme (Scheme I) that
employs experimental data when available, and, out of the
experimental energy range, scales the microscopic prediction
respectively to the last point at each end of experimental data.
On the other hand, to see the consequences derived from the
discrepancy between the theoretical and experimental results,
we adopt another scheme (Scheme II) that employs the ex-
perimental data when available, and when no data exist, the
microscopic predictions are directly employed.

Figure 2 shows the ratios of neutron-capture reaction rates
calculated with the two schemes of the E1 PSF described in
Fig. 1, respectively, to the one calculated with the BSk7 +
QRPA predictions. It can be seen that reaction rates calculated
by Scheme I with a combination of the experimental data and
the extrapolations are generally larger than the results of using
the microscopic PSF by a factor ranging from one to four, and
for the nucleus 54Cr even up to 20 times. The differences of
the reaction rates between using Scheme II by inserting the
experimental data into the microscopic prediction and using
only the microscopic PSF are also remarkable, and apparently
these differences are partially depend on the number of exper-
imental data points.

NRF method aims at determining the photoabsorption
cross section and the total dipole PSF through the photon
scattering experiments. It provides some experimental data
of the total dipole PSF below the neutron separation energy.
From these data, We can extract the E1 PSF fE1 using an
empirical expression proposed by the RIPL-3 library [9],

fE1/ fM1 = 0.0588 · A0.878, (1)

where fM1 is the magnetic-dipole (M1) PSF, and A is the
atomic mass. The resulting E1 PSFs extracted from the NRF
data are shown in Fig. 3. As in Fig. 2, the theoretical pre-
dictions from the microscopic model and the results from
Schemes I and II are also shown in Fig. 3. As can be seen,
there are also differences between the experimental data ex-
tracted from the NRF approach and the theoretical predictions.
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FIG. 1. Comparisons between the theoretical E1 PSFs and the experimental data. Between the experimental data points (black squares)
the linear interpolations are implemented for continuity. Dotted and dash-dotted lines are the microscopic theoretical E1 PSFs based on
the Skyrme force and the Gogny force, respectively. Green solid lines (Scheme I) and red dashed lines (Scheme II) are two schemes that
combine the theoretical and the experimental results. Dark and light green shaded areas are the effective energy ranges at [E0 − σ, E0 + σ ]
and [E0 − 2σ, E0 + 2σ ], respectively. Experimental data are taken from Refs. [25–39].

Correspondingly, the ratios of neutron-capture reaction rates
calculated with the E1 PSFs of Schemes I and II, respectively,
to the one calculated with the BSk7 + QRPA PSF are shown
in Fig. 4. It is found that the uncertainties in the E1 PSF de-
rived from NRF data also have a great impact on the reaction
rates with ratios ranging from one to four.

B. Sensitivities of the reaction rate to the E1 PSF

Significant impacts of the uncertainties in the E1 PSF
on neutron-capture reaction rates are found as described in
Sec. II A. However, it is not clear which energy range of the

E1 PSF can give the major contributions to the astrophysical
neutron-capture reaction rate.

In order to quantify the impact of a variation of a model
quantity q on the final calculated results �, the relative sensi-
tivity �Sq is defined in Ref. [24] as

�Sq = v� − 1

vq − 1
, (2)

where v� = �new/�old is a changed factor in � as a result of
a change in q by the factor of vq = qnew/qold. Relative sen-
sitivities of the astrophysical neutron-capture reaction rates
to the variations of the E1 PSF are performed as follows.
We successively scale the E1 PSF, which is a function of
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FIG. 2. Ratios of the neutron-capture reaction rates calculated with the E1 PSF of Scheme I (green lines) and Scheme II (red lines),
respectively, to the one calculated with the microscopic E1 PSF.

the γ -ray energy Eγ , by a factor of 10 (vq = 10) within an
energy interval �Eγ = 0.5 MeV from Eγ = 0 MeV to 10
MeV. As a result, we obtain the changed factors of the reac-
tion rate and the corresponding sensitivities to the variations
of the E1 PSF at different Eγ regions. At the temperature
T = 1 GK, sensitivities of neutron-capture reaction rates to
the variations of E1 PSF are shown in Fig. 5 for the Sn
isotopes. It can be seen that all of the sensitive energy regions
are unsurprisingly below the neutron separation energy. For
most of the Sn isotopes, even with a variation at a small
energy interval (0.5 MeV), the neutron-capture rates are quite
sensitive to the variations of the E1 PSF. The reaction rate
sensitivity of each nucleus in Fig. 5 represents an energy
distribution which has a certain width and position. It indi-
cates that there probably exists an effective energy window
in which the E1 PSF is significant important to the calcu-
lations of the neutron-capture reaction rate. Obviously, these

windows are closely related to the productions of the emitted
photons.

III. EFFECTIVE ENERGY WINDOW

A. Theoretical framework

To find out the effective energy window of the E1 PSF
and formulate it, we start from the formula of the reaction
rate with focus on the dominant dependence on the energy,
especially on the energy of the emitting primary γ rays. In the
astrophysical environment, the thermonuclear reaction rate of
two nuclei is expressed by the Maxwellian-averaged rate 〈σv〉
times the Avogadro number NA,

NA〈σv〉 =
(

8

πμ

)1/2 NA

(kBT )3/2

∫ ∞

0
Eσ (E )e−E/kBT dE , (3)
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FIG. 3. Same as Fig. 1 for the experimental E1 PSF extracted from the total dipole PSF of the NRF data [40–54].

in which E is the incident energy, μ is the reduced mass,
kB is the Boltzmann constant, and T is the temperature.
The neutron-capture cross section σ (E ) is usually estimated
within the framework of the statistical Hauser-Feshbach
model [5]. In this model, σ (E ) depends on the formation
cross section of the compound nucleus σC (E ) and the pri-
mary γ -decay probability Pγ (E , Eγ ) which is a function of
the γ -ray energy Eγ and the incident energy E . Pγ (E , Eγ )
is determined by the transmission coefficient T (Eγ ) of the
photon and the level density ρ(E , Eγ ) of the residual nucleus
after the primary γ transition,

Pγ (E , Eγ ) ∝ T (Eγ )ρ(E , Eγ ). (4)

With respect to the electric-dipole transition, the relationship
between the transmission coefficient and the E1 PSF fE1(Eγ )

can be expressed as

T (Eγ ) ∝ E3
γ fE1(Eγ ). (5)

The phenomenological Fermi gas model [55] and its general-
ized forms [56–58] are most frequently used in describing the
nuclear level density. The prominent feature of these models
is the exponential dependence on the excitation energy. With
this feature retained, the level density can be approximately
expressed as

ρ(E , Eγ ) ∝ e2
√

a(E+Q−Eγ ), (6)

where a is the level density parameter of the residual nuclei
and Q is the Q value of a reaction. Then the characteristic
dependence of the γ -decay probability on the energy can be
written as

Pγ (E , Eγ ) ∝ E3
γ fE1(Eγ )e2

√
a(E+Q−Eγ ). (7)
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FIG. 4. Same as Fig. 2 for the E1 PSF taken from Fig. 3.

In the astrophysical situation, the effective incident energy
window of a nuclear reaction with a neutron bombarding is
mainly decided by the Maxwell-Boltzmann (MB) distribution
with a peak at EMB = kBT [59]. The important temperature
at which production yields of r-process and i-process become
sensitive to the neutron-capture cross section is less than 1.5
GK [4,60]. As a result, EMB is far less than the Q value, and
consequently the incident energy E in Eq. (7) can be omitted,

Pγ (Eγ ) ∝ E3
γ fE1(Eγ )e2

√
a(Q−Eγ ). (8)

The Brink-Axel hypothesis in the standard Lorentzian model
[61,62] is widely used to calculate the dipole γ strength.
Various generalized Lorentzian-type models of the E1 PSF
have been developed to take into account the no-zero limit for
the vanishing γ -ray energy and the energy-dependent width
in the γ -ray strength [2,7,63–67]. Although these models
behave differently in some aspects, their rising trends with

respect to the increasing γ -ray energy are basically similar
below the neutron separation energy [9]. The improved de-
scription of the E1 PSF can be obtained using the microscopic
model derived from the effective nucleon-nucleon interac-
tion. Considerable differences between the microscopic PSF
and the Lorentzian-type PSF can be found for the extreme
neutron-rich nuclei, while for other isotopes, the microscopic
predictions are close to the Lorentzian profile [10,11]. A
recent study [67] indicates that the E1 PSF predicted by
Lorentzian-type model is of versatility and flexibility for most
nuclei. Therefore, we use the phenomenological standard
Lorentzian form

fE1(Eγ ) ∝ Eγ(
E2

γ − E2
r

)2 + E2
γ 	2

r

, (9)

where 	r and Er are the width and the centroid energy of the
giant dipole resonance, respectively. Because both the width
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FIG. 5. (Blue bars) Sensitivities of the neutron-capture reaction rate to the variations of the E1 PSF at different Eγ energies from 1 MeV to
10 MeV for Sn isotopes, at the temperature T = 1 GK. Element annotations in each subgraph are the compound nuclei and grey dashed lines
are the locations of their neutron separation energies. Green and red lines are the functions I (Eγ ) and G(Eγ ) of the effective energy window,
respectively.

	r and the γ -ray energy Eγ are generally much smaller than
the centroid energy Er under the environment encountered in
astrophysics, the E1 PSF can be approximated as

fE1(Eγ ) ∝ Eγ

E4
r + E2

γ 	2
r

≈ Eγ

E4
r

. (10)

Substituting the fE1(Eγ ) in Eq. (8) with Eq. (10), we finally
obtain the predominant dependence on the emitted photon
energy, and define this relationship as a function

I (Eγ ) = ImE4
γ e2

√
a(Q−Eγ ), (11)

where Im is a constant. This function, to a certain extent,
represents the production of the photons at different emitted
energies.

In general, variations of the E1 PSF at the energy region
with larger photon production should have more impact on
the reaction rates than variations in other energy regions. It
implies that the function I (Eγ ) should be a description of the
contributions of the E1 PSF at different photon energies to the
reaction rates. Additionally, I (Eγ ) is a confined function with
the maximum at the energy

E0 = 4

a
(
√

4 + aQ − 2). (12)

065805-7



BING WANG, YI XU, AND XIAODONG TANG PHYSICAL REVIEW C 108, 065805 (2023)

FIG. 6. Comparisons between the effective energy windows (green and red solid lines) and the primary γ -ray energy spectra (blue circles)
for neutron-capture reactions on Sn isotopes, at an incident energy of 0.086 MeV. Element annotations in each subgraph are compound nuclei.
Grey dashed lines are neutron separation energies. Yellow dashed lines are emitted photon energies for transition to the maximum discrete
level.

Therefore the function I (Eγ ) represents an effective energy
window in which the contributions of the E1 PSF to the
reaction rate at E0 reach to the maximum, and decrease grad-
ually on either side of the peak. This function, however, is

not symmetrical around E0. In order to easily distinguish
different energy ranges according to their contributions and
conveniently get the width of the effective energy window, a
Gaussian function G(Eγ ) is used to approximate the function
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I (Eγ ) with setting their peaks at the same E0,

G(Eγ ) = Gm exp

[−4(Eγ − E0)2

�2

]
, (13)

where Gm and � are the maximal value and the full width
at the 1/e of the maximum, respectively. Assuming that the
curvatures of these two functions are same at Eγ = E0, one
can obtain

�2 = 4E2
0

2 + E0/(Q − E0)
. (14)

The standard deviation σ of the Gaussian function can be
expressed as σ = �/

√
8.

As a result, we obtain an effective energy window charac-
terized by a peak at E0 and a width � wherein the contribution
of the E1 PSF greatly impacts the astrophysical neutron-
capture reaction rates. As the reaction energy Q can be
obtained from experimental data or the mass formula, the
values of E0 and � depend only on the adjustable level density
parameter a, in MeV−1. In the theoretical framework of the
Fermi gas model for level density, the parameter a is related
to the density of single-particle states on the Fermi surface
and can be approximated as a = αA, where A is the mass
number and α is a free parameter [9]. The parameters Im and
Gm in Eqs. (11) and (13), characterizing the height of the
window, can be arbitrarily selected in the present discussions,
because we are focused on the relative contributions from the
E1 PSF to the reaction rate at different γ -ray energies. In the
following analysis, these two parameters will be chosen to
match the height of the window to the maximum values of
the sensitivities or the primary γ -ray energy spectra.

B. Results and discussions

In order to test the reliability of the effective energy
window, the following calculations, for comparisons, are per-
formed by using the microscopic nuclear ingredients which
differ from the phenomenological models and assumptions
used to derive the window. These ingredients include the
BSk7 + QRPA model for the E1 PSF, the HFB plus a combi-
natorial approach [68] for the level density, and the Bruyères
Jeukenne-Lejeune-Mahaux optical model [69,70] for the nu-
clear potential.

The comparisons between the effective energy window
defined by the functions I (Eγ ) and G(Eγ ) and the sensitivities
of the reaction rate to the E1 PSF for Sn isotopes are shown in
Fig. 5. Here, the parameter α is taken as 1/18 MeV−1 for the
optimal description of the sensitivities for most Sn isotopes,
and this value will be used in the following calculations.
One can see that the functions I (Eγ ) and G(Eγ ) exhibit good
agreement with each other for all isotopes, thereby affirming
the reliability of the Gaussian approximation to the effective
energy window. Furthermore, as illustrated in Fig. 5, the sensi-
tivities, although calculated based on the microscopic models
of the PSF and the level density, can be effectively described
by the effective energy window with consistent widths and
positions for most Sn isotopes.

The primary γ -ray energy spectra are the experimental
observables that represent the joint contributions from the PSF
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FIG. 7. Ratio of the cross section for transitions to discrete levels
to the total cross section as a function of mass number for the Sn
isotopic chain, at an incident energy of 0.086 MeV.

and the nuclear level density to the reaction cross sections (or
reaction rates). Meanwhile, the effective energy window is
obtained based on the product of the PSF and the level density.
Hence, it is interesting to compare the primary γ -ray energy
spectra calculated by microscopic nuclear ingredients with
the effective energy window deduced from phenomenological
models, and such comparison can further verify the reliability
of this window. In Fig. 6, we calculate the primary γ -ray
energy spectra of the neutron-capture reaction on Sn isotopes
at an incident energy of 0.086 MeV, which corresponds to the
peak of the Maxwell-Boltzmann distribution at the tempera-
ture T = 1 GK. In these calculations, the level density model
is applied to the description of nuclear level spectrum, and
ten discrete experimental levels are adopted for the low-lying
levels if available.

It can be seen in Fig. 6 that for most isotopes, the effec-
tive energy windows well explain the shapes of the energy
spectra of primary γ -ray transitions to the continuum levels
(below the yellow dashed line). However, the energy spectra
of transition to the discrete levels (between the yellow dashed
line and the grey dashed line) are different from the windows.
That is because the effective energy window is derived from
the level density formula based on statistical assumptions and
does not account for the discrete levels. Figure 7 shows the
ratios of the cross section of the transitions to discrete levels
to the total cross section in the neutron-capture reaction on
Sn isotopes. One can see that, for most isotopes not near the
neutron magic numbers, discrete levels contribute less than
25% to the total cross section. However, around N = 50 and
82, these contributions become highly significant and even
dominant, primarily due to the challenges of exciting the
nuclei near the magic numbers. These effects of the discrete
levels are considered to be responsible for the discrepancies
between the effective energy windows and the sensitivities in
Fig. 5 (or the spectra in Fig. 6) for the nuclei near the magic
numbers, such as 131–133Sn. In summary, because of the purely
statistical assumptions and models employed in the theoretical
derivation of the effective energy window, it is clear that this
effective energy window can be applied to the neutron-capture
reactions in which the contributions from continuum levels are
dominant.
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FIG. 8. Comparisons between the effective energy window of
the E1 PSF and several primary γ -ray energy spectra for the reac-
tion 117Sn(n, γ ) 118Sn. Green and red solid lines are the functions
I (Eγ ) and G(Eγ ) of the effective energy window, respectively. Five
temperatures in the range of T9 = 1.0 to 10.0 correspond to the
primary γ -ray energy spectra with taking the incident energies at five
Maxwell-Boltzmann peaks kBT9, respectively.

To investigate the applicability of the effective energy win-
dow in various astrophysical environments of the neutron
capture, we calculate the primary γ -ray energy spectra for the
reaction 117Sn(n, γ ) 118Sn at five incident energies, which cor-
respond to the peaks of five Maxwell-Boltzmann distributions
within the temperature range of 1 GK to 10 GK. Comparisons
between these spectra and the effective energy window are
shown in Fig. 8. As can be seen, the widths of these spectra,
as well as the locations of their peaks, are nearly identical at
five typical incident energies in astrophysical environments,
and they can be described by the effective energy window.
These facts indicate that the effective energy window is an
effective extraction of some common features from the energy
spectra and can be applied to the general astrophysical envi-
ronments of neutron captures due to the weak dependence on
temperature.

Seventeen most critical and uncertain neutron-capture re-
actions for i-process nucleosynthesis between Ba and Pb are
proposed in Ref. [3]. Most of these reaction rates are not
known experimentally. The precision of these reactions is
significantly impacted by the uncertainties of the PSFs. We
predict the effective energy windows for these reactions in

FIG. 9. Predictions of the effective energy window (green and red solid lines) for the most critical and uncertain neutron-capture reactions
between Ba and Pb along the i-process path. Blue circles are the primary γ -ray energy spectra at an incident energy corresponding to the
Maxwell-Boltzmann peak at a temperature of T = 250 MK.
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Fig. 9. As can be seen, the windows agree well with the cal-
culated primary γ -ray energy spectra for all these nuclei. This
means that for the critical nuclei in i-process, the important
energy range of the E1 PSF can be reasonably predicted using
the effective energy window.

Using the Gaussian function G(Eγ ) of the effective en-
ergy window, we can conveniently get several specific energy
ranges of the E1 PSF centered around the Gaussian peak. Both
one σ and two σ energy ranges are depicted in Figs. 1 and 3,
compared with the measured E1 PSF data. It can be seen that
the experimental data only partially fall into these important
ranges. More efforts are needed in the future to expand the
experimental measurements of the E1 PSFs into these energy
ranges.

IV. CONCLUSIONS

The impacts of uncertainties in the E1 PSFs on as-
trophysical neutron-capture reaction rates are investigated
systematically through combining available experimental data
with theoretical predictions by two schemes. It is found that
large uncertainties in the E1 PSF significantly affect the
precision of neutron-capture reaction rate estimates. In or-
der to find out the most important energy range of the E1
PSF, we analyze the sensitivities of the neutron-capture re-
action rate to variations in the E1 PSF at different γ -ray
energies for the Sn isotopes. The results indicate that there
probably exist an effective energy window with a certain
width and position within which variations in the E1 PSF
have a significant impact on the astrophysical neutron-capture
reaction rate.

We derive a function I (Eγ ) from the reaction rate formula
to describe the effective energy window and approximate it
with a Gaussian function G(Eγ ), for the convenience of draw-
ing the width of this window. The consistency between the
effective energy windows and the sensitivities of astrophys-
ical rates is found for most Sn isotopes. Further analysis on
the primary γ -ray energy spectra for Sn isotopes indicates

that the effective energy window can be applied to the nu-
clei which have dominant transitions to the continuum levels
in the neutron-capture reactions. Several primary γ -ray en-
ergy spectra for the reaction 117Sn(n, γ ) 118Sn are calculated
specifically at five typical incident energies corresponding to
five astrophysical temperatures. It is found that the energy
spectra are weakly dependent on the incident energies and
thus the effective energy window can be used to the general
astrophysical environments of neutron captures. Furthermore,
we test the effective energy windows for critical reactions
in the i-process and find that reasonable predictions for the
effective energy range of the E1 PSF can be provided by
the windows. By using the Gaussian function of the effective
energy window, several specific effective energy ranges can
be conveniently obtained according to their contributions to
the reaction rates. However, currently available experimental
data of the E1 PSF do not completely cover these important
effective energy ranges. Further research efforts are needed in
both theory and experiments to give precise descriptions of
the E1 PSF in these proposed ranges.
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