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The repulsive three-body force between the lambda (�) hyperon and medium nucleons is a key element
in solving the hyperon puzzle in neutron stars. We investigate the binding energies of the � hyperon in
hypernuclei to verify the repulsive � potentials from the chiral effective field theory (χEFT) employing the
Skyrme Hartree-Fock method. We find that the χEFT � potential with �NN three-body forces reproduces the
existing hypernuclear binding energy data, whereas the � binding energies are overestimated without the �NN
three-body force. Additionally, we search for the parameter space of the � potentials by varying the Taylor
coefficients of the � potential and the effective mass of � at the saturation density. Our analysis demonstrates
that the parameter region consistent with the � binding energy data spans a wide range of the parameter space,
including even more repulsive potentials than the χEFT prediction. We confirm that these strong repulsive �

potentials suppress the presence of � in neutron star matter. We found that the � potentials repulsive at high
densities are favored when the depth of the � potential at the saturation density, U�(ρ0) = J�, is J� � −29 MeV,
while attractive ones are favored when J� � −31 MeV. This suggests that future high-resolution data of
hypernuclei could rule out the scenario in which �’s appear through the precise determination of J� within
the accuracy of 1 MeV.

DOI: 10.1103/PhysRevC.108.065803

I. INTRODUCTION

Neutron stars are gravitationally bound objects made of
cold, extremely dense, and strongly interacting matter, which
has a rich phase structure of quantum chromodynamics
(QCD) [1]. They provide a unique cosmic laboratory for
studying matter under extreme conditions. The inner struc-
ture of neutron stars is one of the important subjects in
astrophysics and nuclear physics. Based on astrophysical ob-
servations and nuclear experiments, possibilities of various
exotic states inside neutron stars have been theoretically dis-
cussed, including the admixture of hyperons [2–7] and the
transition from hadron to quark matter [1,8–13].

In the 20th century, hyperons were predicted to admix in
the neutron star matter at a density of 2–4 ρ0, with the satu-
ration density being ρ0 � 0.16 fm−3, from phenomenological
models [2–6] based on experimental data such as hypernu-
clear spectroscopy. The admixture of the hyperons softens the
equation of state (EOS) of neutron star matter and reduces
the maximum allowed mass of neutron stars significantly. For
this reason, hyperonic matter EOSs constrained by hypernu-
clear data [2,4,14] or G-matrix calculations using two-body
hyperon-nucleon (Y N) interactions [5,6,15] could not sustain
the observed massive neutron stars with M � 2M� [16–20].
This problem is known as the hyperon puzzle in neutron
stars and has been attracting the attention of nuclear physics
and astrophysics researchers. A number of possible scenarios

*Deceased.

to solve the hyperon puzzle have been proposed, such as repul-
sive hyperon potentials at high densities caused by many-body
baryon interactions [15,21–30], hyperon-hyperon (YY ) repul-
sion [7,31,32], and a continuous transition to quark matter
before the hyperon admixture [1,13], yet the definitive answer
to the puzzle has not been found so far.

In the following, we shall explore the first scenario: the
repulsive hyperon potential at high densities caused by many-
baryon interactions. The three-nucleon repulsion is known to
be necessary to explain the nuclear matter saturation point.
Therefore, it is worthwhile to examine the impact of the
Y NN (YY N , YYY ) three-baryon repulsion on the neutron star
matter EOS. Several models including many-body interac-
tions have been investigated by a multi-Pomeron exchange
potential (MPP) based on the extended soft core (ESC) model
[22,24–26] and the KIDS (Korea-IBS-Daegu-SKKU) density
functional formalism [30]. These results show that repulsive
three-baryon forces, which reproduce the binding energies of
� hypernuclei, may solve the hyperon puzzle.

The chiral effective field theory (χEFT) provides a sys-
tematic and model-independent approximation of QCD at
low densities [33]. The three-body forces were found to
cause repulsive � potential at high densities in the χEFT
[23,28,29,34] with the decuplet saturation model for the three-
baryon interactions [35]. This � potential, U chi3

� , can prevent
� from appearing in neutron stars [23] so that we can avoid
the hyperon puzzle. The proposed � potential U chi3

� should be
validated by experiments and observations. In particular, the
density dependence [23,34] and the momentum dependence
[34] of the � potential U chi3

� can be tested with different types
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of experimental data, such as the observables from heavy-ion
collisions and the � binding energies of hypernuclei.

Heavy-ion collision experiments provide a unique oppor-
tunity to study the properties of QCD matter under various
densities and temperatures. In the past two decades, a quark-
gluon plasma of high temperature and low baryon density
has been created and actively studied [36,37] using heavy-ion
collisions at the top energies of the Relativistic Heavy Ion
Collider (RHIC) and the Large Hadron Collidier (LHC). In
recent heavy-ion experiments at lower energies, such as RHIC
Beam Energy Scan [38] and NA61/SHINE programs [39],
two colliding nuclei are compressed to form high baryon-
density matter. In this regime, the anisotropic flows are known
to be sensitive to the hadronic potentials at high densities
[40]. The transport model calculation [41,42] using the event
generator JAM2 [43] with the � potential U chi3

� explains the
collision energy dependence of the proton and � directed
flow slopes (dv1/dy) in Au+Au collisions within a rela-
tive precision of around 20% in the collision energy range
of 3 � √

sNN � 19.6 GeV [44–46]. However, it is found in
Ref. [42] that the directed flow of � is not very sensitive to
the density dependence of the � potential while it is sensitive
to the momentum dependence. We should investigate further
observables sensitive to the density dependence.

As another experimental observable to test U chi3
� , the up-

to-date data of the � binding energies in hypernuclei provide
useful constraints. The density dependence of the � potential
at lower densities ρ < ρ0 can be constrained by the � binding
energies [47] while the momentum dependence is sensitive
to the energy difference between orbitals of the � binding
energy through the effective mass [48]. The � potentials
LY-IV [49] and HP�2 [50] reproduce the � binding energy
for hypernuclei in a wide range of mass number. Millner
et al. [47] pointed out that the density dependence at higher
densities determined by the best fitting to the � binding
energy largely depends on the fitting form while the density
dependence at lower densities is well constrained. However,
the � potential U chi3

� has a distinct shape from LY-IV and
HP�2: it is more attractive at ρ < ρ0 and has a larger value of
the effective mass than LY-IV and HP�2. Thus, it should be
tested whether U chi3

� can reproduce the � binding energy data.
In Ref. [51], the � potential based on the next-to-leading order
(NLO) χEFT [52,53] that includes only two-body interaction
has been tested by the G-matrix calculation. This two-body
interaction only partially reproduces the observed binding
energies for hypernuclei with mass number A > 12.

In this paper, we show that the � potential U chi3
� from

the χEFT [23,34], which is repulsive at high densities, can
reproduce the experimental data of the � binding energies
with the Skyrme-Hartree-Fock method [49,50,54–56]. These
results mean that the two distinct � potentials—repulsive and
attractive � potentials at high densities—can reproduce the
same experimental � binding energy. Here, we carry out a
global parameter search for the � potentials to scan a wider
range of the � potentials and evaluate the uncertainty range.
We parametrize the � potential by the effective mass and the
Taylor coefficients at ρ0. We examine different � potentials
by varying the parameters and identify the parameter space
consistent with the experimental data. Finally, we discuss the

parameter region of the � potentials which suppresses �’s in
neutron star matter.

This paper is organized as follows. In Sec. II, we introduce
the Skyrme-Hartree-Fock method for the � hypernuclei with
the � potential from the χEFT and compare the � binding
energies with existing models and the experimental data. In
Sec. III, we search for the favored region of the effective mass
and the Taylor coefficients of the � potential. In Sec. IV,
we discuss the admixture of � in neutron star matter for
various � potentials which reproduce the binding energy of �

hypernuclei. The conclusion and outlook are given in Sec. V.

II. � BINDING ENERGY FROM THE χEFT

To explain the � binding energies of � hypernuclei from
middle to large mass numbers, mean-field calculations of
self-consistent calculations have been successfully employed,
including Skyrme-Hartree-Fock methods [30,49,50,54–57],
relativistic mean-field models [7,58–60], and G-matrix calcu-
lations [22,29].

We employ the Skyrme-Hartree-Fock method to compute
the binding energy of � hypernuclei using the Skyrme-type �

potential parametrizing the results of the χEFT.

A. Skyrme-Hartree-Fock method for � hypernuclei

In this study, the wave function of the � hypernuclei A
�Z

with mass number A and proton number Z is taken as [54]

�hyp = φ��core, (1)

where φ�(r, σ ) is the single-particle wave function of �,
with r and σ = ±1/2 being the spatial and spin coordinates,
respectively. The Slater determinant �core is constructed from
A − 1 nucleon single-particle wave functions φi(r, q, σ ) with
q = ±1/2 being the isospin. The Skyrme-type baryon-baryon
interaction with one � hyperon is expressed as

V = V NN + V �N

=
A−1∑
i< j

vNN (ri, r j ) +
A−1∑
i=1

v�N (r�, ri ), (2)

where ri and r� are the spatial coordinates of the ith nucleon
and �, respectively. We use the SLy4 parametrization [61]
for the nucleon-nucleon interaction vNN . The following �-
nucleon interaction v�N is assumed as in Refs. [30,49,55]:

v�N (r�, rN )

= t�
0

(
1 + x�

0 Pσ

)
δ(r� − rN )

+ 1

2
t�
1 [

←−
k 2δ(r� − rN ) + δ(r� − rN )

−→
k 2]

+ t�
2

←−
k δ(r� − rN ) · −→

k

+ 3

8
t�
3,1(1 + x�

3,1Pσ )δ(r� − rN )ργ1
N

(
rN + r�

2

)

+ 3

8
t�
3,2(1 + x�

3,2Pσ )δ(r� − rN )ργ2
N

(
rN + r�

2

)
, (3)
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where t�
k , t�

k,l , x�
k , and x�

k,l are the Skyrme potential parame-
ters. The spin-exchange operator is given by Pσ = (1 + σ� ·
σN )/2 with σ� and σN being the Pauli matrices acting on
the spin wave functions of � and the nucleon, respectively.

The derivatives
←−
k = −(

←−∇ � − ←−∇ N )/2i and
−→
k = (

−→∇ � −−→∇ N )/2i operate on the left- and right-hand sides, respectively,
where ∇� = ∂/∂r� and ∇N = ∂/∂rN . The symbol ρN (rN )
denotes the nucleon density specified later. The ρ

γ1
N term with

γ1 = 1/3, which is motivated by the expansion in the Fermi
momentum (∝ ρ

1/3
N ), is needed for the Skyrme-type � poten-

tial to reproduce the G-matrix result of the � potential [49].
The ρ

γ2
N term with γ2 = 2/3 is added to reproduce the results

from the χEFT [23]. The spin-orbit force is neglected in this
work because it is expected to be small from the experimental
data [62,63]. The pairing correlation is not considered either.

The expectation value of the total energy for the �

hypernuclei Ehyp is obtained as

Ehyp = 〈�hyp|T + V |�hyp〉 − Ec.m.

= EN + E� − Ec.m., (4)

where

T = TN + T� = −
A−1∑
i=1

h̄2∇2
i

2mi
− h̄2∇2

�

2m�

(5)

is the kinetic energy operator, and mi and m� are the masses
of the nucleon and �, respectively. The energies EN and E�

are contributions from TN + V NN and T� + V �N , respectively.
The total energy of � takes the following form:

E� =
∫

d3rH�, (6)

H� = h̄2

2m�

τ� + a�
1 ρNρ�

+ a�
2 (τ�ρN + τNρ�) − a�

3 (ρ� · �ρN )

+ a�
4 ρ

1+γ1
N ρ� + a�

5 ρ
1+γ2
N ρ�, (7)

where H� is the energy density of �, and the coefficients
a�

i are related to the parameters in the �-nucleon
interaction v�N as

a�
1 = t�

0

(
1 + 1

2
x�

0

)
, a�

2 = 1

4

(
t�
1 + t�

2

)
,

a�
3 = 1

8

(
3t�

1 − t�
2

)
, a�

4 = 3

8
t�
3,1

(
1 + 1

2
x�

3,1

)
,

a�
5 = 3

8
t�
3,2

(
1 + 1

2
x�

3,2

)
.

The densities ρN , τN , ρ�, and τ� are defined as

ρN =
A−1∑
i=1

|φi|2, τN =
A−1∑
i=1

|∇φi|2, (8)

ρ� = |φ�|2, τ� = |∇φ�|2. (9)

The center-of-mass energy Ec.m. in Eq. (4) is approximated by
the average of the center-of-mass kinetic operator neglecting

the cross terms [54],

Ec.m. �
∫

d3r
h̄2(τN + τ�)

2[Zmp + (A − Z − 1)mn + m�]
. (10)

The Hartree-Fock equations for single-particle wave func-
tions φi (i = 1, 2, . . . , A − 1,�) are derived from the varia-
tional equation:

δ

δφi

(
Ehyp −

A−1∑
i=1

εi

∫
d3r|φi|2 − ε�

∫
d3r|φ�|2

)
= 0, (11)

where εi is the single-particle energy. Equation (11) com-
bined with Eq. (4) yields the equation for the single-particle
wave function of the ith particle with the baryon type
Bi = p, n,�,[

−∇ ·
(

h̄2

2m∗
Bi

(r)
∇

)
+ VBi (r) − iW Bi (r) · (∇×σ )

]
φi = εiφi.

(12)

The first term is the kinetic energy including the effective
mass, the second is the single-particle potential, and the third
is the spin-orbit potential. The expressions for those terms are
specified below.

In this work, we assume spherical symmetry of the
hypernuclei as in Refs. [30,49,50,54–56]. We assign the
principle quantum number n, the orbital angular momen-
tum �, the total angular momentum j, and the mag-
netic quantum number mj to each i. The single-particle
wave function for the ith nucleon with the isospin q is
expressed as

φi(r, q) = Rα (r)

r
Yl jm j (r̂)χq, α = {nl jq}, (13)

where r = |r|, r̂ = r/|r|, and

Yl jm j (r̂) =
∑
ml ms

〈lml 1/2 ms| jm j〉Ylml (r̂)χms . (14)

The symbols χq and χms denote the isospin and spin wave
functions, respectively, and Ylml is the spherical harmonics.
The � single-particle wave function is similarly written as

φ�(r) = Rα (r)

r
Yl jm j (r̂). (15)

The Skyrme-Hartree-Fock equation (12) is reduced to the
equation for the radial wave function Rα:

− h̄2

2m∗
Bα

R′′
α (r) − d

dr

(
h̄2

2m∗
Bα

)
R′

α (r)

+
[

h̄2

2m∗
Bα

lα (lα + 1)

r2
+ VBα

(r) + 1

r

d

dr

(
h̄2

2m∗
Bα

)

+ WBα

r

(
jα ( jα + 1) − lα (lα + 1) − 3

4

)]
Rα (r)

= εαRα (r). (16)
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For nucleons, the explicit forms of m∗
Bα

, VBα
, and WBα

are
found in Appendix A. For �, they are expressed as

h̄2

2m∗
�

= h̄2

2m�

+ a�
2 ρN , (17)

V� = a�
1 ρN + a�

2 τN − a�
3 �ρN

+ a�
4 ρN

1+γ1 + a�
5 ρN

1+γ2 . (18)

In the case of the open-shell nuclei, we employ the filling
approximation [64]: when there are m nucleons in the open
shell, they are filled in the highest j states at the same occupa-
tion probability m/(2 j + 1). Similarly, � occupies each state
of j with an occupation probability 1/(2 j + 1). Then, the �

density is calculated as

ρ�(r) = 1

2 j + 1

∑
mj

∣∣∣∣Rα (r)

r
Yl jm j

∣∣∣∣
2

= R2
α (r)

4πr2
. (19)

After solving Eq. (12) self-consistently, the � binding en-
ergy is obtained as

B� = −(Ehyp − Ecore ), (20)

where the total energy of the core nucleus Ecore is indepen-
dently calculated by solving the self-consistent equation for
the Slater determinant of the core nucleus.

B. Skyrme-type � potentials from the χEFT

In this subsection, we parametrize the � potentials ob-
tained from the χEFT assuming the form of the density and
momentum dependence in Eq. (7). In uniform matter, the
kinetic density τ� becomes

τ� = |∇φ�|2 = k2
�|φ�|2 = k2

�ρ�, (21)

with k� being the momentum of �. Then, the � single-
particle potential in uniform nuclear matter at zero tempera-
ture is obtained as

U�(ρN , k�) = δ

δρ�

[
H� − h̄2

2m�

τ�

]

= a�
1 ρN + a�

2

(
k2
�ρN + τN

) + a�
4 ρ

1+γ1
N

+ a�
5 ρ

1+γ2
N , (22)

with

τN = τp + τn, (23)

τq = 3

5
(3π2)2/3ρ5/3

q , q = p, n, (24)

γ1 = 1/3, γ2 = 2/3. (25)

The Skyrme potential parameters of �, a�
i , are determined by

the fitting to the potentials from the χEFT of Ref. [23] (GKW)
and Ref. [34] (Kohno).

We first fix the momentum-dependent part of the � poten-
tial a�

2 at the saturation density ρ0 = 0.16 fm−3 by using the
results of Ref. [34]. Figure 1 shows the momentum depen-
dence of the � single-particle potential. Kohno3 in Fig. 1 is
obtained by including the �NN three-body interaction using

FIG. 1. Momentum dependence of the � potentials in symmetric
nuclear matter at the saturation density with its value at zero mo-
mentum subtracted. Kohno2 and Kohno3 represent the results of the
� single-particle potential with only two-body interactions and two-
and three-body interactions [34] from the χEFT [34], respectively.
Solid and dashed lines represent the fitting results to Kohno2 and
Kohno3, respectively. The dotted and dash-dotted lines correspond
to the � potentials LY-IV [49] and HP�2 [50], respectively.

the decuplet saturation model [35]. Kohno2 in Fig. 1 is ob-
tained using only the two-body force. Because the depth of
the � potential at the saturation density differs between GKW
[23] and Kohno [34], we subtract the value at k� = 0 fm−1

from the � potential as U�(k�) − U�(k� = 0 fm−1) and use
it in fitting the momentum dependence of the � potential.
Chi2 and Chi3 in Fig. 1 are the fitting results of Kohno2 and
Kohno3 at k� < 1.5 fm, respectively.

For the remaining Skyrme potential parameters, we con-
sider the density dependence of the � potential obtained from
the χEFT [23]. In Fig. 2, GKW2 (GKW3) is the result from
the χEFT with �N (�N + �NN) interaction. The �NN
three-body interaction in GKW3 is calculated by the decuplet
saturation model [35]. The parameters (a�

1 , a�
4 , a�

5 ) of Chi2
(Chi3) are obtained by fitting Eq. (22) to the upper and lower
lines of GKW2 (GKW3) and taking the average.

Unlike the previous work [42], where we fitted the data in
the region ρ/ρ0 < 3.5, the fitting region in the present study
is limited to ρ/ρ0 < 1.5 in order to reproduce the GKW re-
sults in the low-density region more accurately. The resultant
Skyrme parameters a�

1 , a�
2 , a�

4 , and a�
5 from the fitting are

listed in Table I. The fitting results accurately reproduce the
χEFT results at ρ/ρ0 � 1.0, which is relevant for calculating
the � hypernuclei.

For comparison, the � potentials that are used to explain
the � binding energy data (LY-IV [49] and HP�2 [50]) are
shown in Figs. 1 and 2. The LY-IV and HP�2 � potentials
exhibit different characteristics compared to the potentials
obtained from the χEFT. Specifically, they display enhanced
repulsion in low-density regions, increased attraction in high-
density regions, and a weaker momentum dependence.

Because the Skyrme parameter a�
3 cannot be determined

by fitting the results in the uniform matter, we determine a�
3
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FIG. 2. Normalized baryon density dependence of the single-
particle potentials for � in symmetric nuclear matter. GKW2 and
GKW3 represent the results of the � single-particle potential with
only two-body interactions and with two- and three-body interactions
obtained from the χEFT [23], respectively. The solid and dashed
lines represent the fitting results to GKW2 and GKW3, respectively.
The dotted and dash-dotted lines correspond to the � potentials
LY-IV [49] and HP�2 [50], respectively.

to reproduce the experimental value of the � binding energy
of 13

� C, 11.88 MeV. The experimental value is taken from
Ref. [65] with a correction of 0.5 MeV, which is pointed out
in Ref. [66]. There are two reasons for choosing 13

� C: First,
it has a larger surface-energy effect compared with a heavier
nucleus. Second, the spherical Skyrme-Hartree-Fock method
is expected to provide a relatively good description of 13

� C
because it has even numbers of protons and neutrons.

We show in Table I the Taylor coefficients and the normal-
ized effective mass at ρ0, which characterize the � potential:

J� = U�(ρN = ρ0, k� = 0), (26)

L� = 3ρN
∂U�

∂ρN

∣∣∣∣∣
ρN =ρ0,k�=0

, (27)

K� = 9ρ2
N

∂2U�

∂ρ2
N

∣∣∣∣∣
ρN =ρ0,k�=0

, (28)

m∗
�

m�

∣∣∣∣∣
ρN =ρ0

= 1

1 + 2m�

h̄2 a�
2 ρ0

. (29)

C. � single-particle potential and � binding energy

We now present the results of the Skyrme-Hartree-Fock
calculations for � hypernuclei using the � Skyrme interaction
discussed in the previous section.

Figure 3 shows the � single-particle potential (18) for
hypernucleus 208

� Pb. At a distance r < 4 fm where the nucleon
density ρN is close to the saturation density ρ0, both Chi3 and
LY-IV have the potential depth of −30 MeV while Chi2 has
a slightly greater depth of −33 MeV. Those values reflect J�,
the �-potential depth at ρ0 (see Table I).

TABLE I. The sets of Skyrme potential parameters are listed
above the gap between γ2 and J�. Chi2 and Chi3 are the fitting results
to the χEFT calculations [23,34]. LY-IV [49] and HP�2 [50] are the
� potentials which can explain the � binding energy data. We also
list the values that characterize potentials: the Taylor coefficients (J�,
L�, K�) and the normalized effective mass m∗

�/m� at ρ0 defined
by Eqs. (26)–(29). The mean squared deviation of the calculated
� binding energy from the experimental data �B� is defined by
Eq. (30).

Chi2 Chi3 LY-IV HP�2

t�
0 (MeV fm3) −352.2 −388.3 −542.5 −399.9

t�
1 (MeV fm5) 143.7 120.4 56.0 83.4

t�
2 (MeV fm5) 13.7 68.7 8.0 11.5

t�
3,1 (MeV fm4) −951.9 −1081.8 1387.9 2046.8

t�
3,2 (MeV fm5) 2669 3351 0 0

x�
0 0 0 −0.153 −0.486

x�
3,1 0 0 0.107 −0.660

x�
3,2 0 0 0 0

γ1 1/3 1/3 1/3 1

γ2 2/3 2/3 0 0

J� (MeV) −33.5 −30.0 −29.8 −31.2

L� (MeV) −23.5 9.3 −36.2 −46.1

K� (MeV) 415 532 218 277

m∗
�/m� 0.73 0.70 0.87 0.82

�B� (MeV) 1.55 0.72 0.71 0.78

Figure 4 compares the � binding energies calculated from
different � potentials at mass number A = 13–208 in 1s, 1p,
1d , 1 f , and 1g orbitals. The experimental data at A = 16–208
are listed in Table III. Chi3, which includes the �NN three-
body force, reproduces the data. This implies that the strong
repulsive � potential, which is sufficient to suppress the pres-

FIG. 3. � single-particle potential (18) for hypernucleus 208
� Pb

in the coordinate space. The dashed and solid lines show the results
from the � potentials Chi2 and Chi3, respectively. The dotted line
corresponds to the result from the LY-IV parameter sets.
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FIG. 4. Calculated � binding energies of 1s, 1p, 1d , 1 f , and 1g
orbitals as a function of A−2/3, where A is the mass number of hyper-
nuclei. Chi2 and Chi3 represent the results using the � single-particle
potential with only two-body and with two- and three-body inter-
actions from the χEFT, respectively. The dotted line corresponds
to the result using the LY-IV � potential. The crosses indicate the
experimental data.

ence of � hyperons in dense nuclear matter, is consistent
with the observed � hypernuclear data. On the other hand,
Chi2, which includes only the �N two-body force, predicts
the overbinding of the data in the 1s orbital. This is because J�

is as deep as approximately −33 MeV for Chi2. We note that
Chi2 and Chi3 have almost the same effective mass. These
results indicate the necessity of three-baryon interaction to
reproduce the binding energy of �, which is consistent with
the findings in Refs. [22,67,68].

The last row of Table I shows the root-mean-square devia-
tion of the model calculation from the experimental data,

�B� =
√√√√ 1

Ndata

Ndata∑
i

(
Bexp

�,i − Bcal
�,i

)2
, (30)

where Ndata is the number of the experimental data, and Bexp
�,i

(Bcal
�,i) is the experimental (calculated) � binding energy of

nuclide i. The experimental data Bexp
�,i are listed in Table III.

We avoid using the chi squared because it is hard to quantify
the systematic error of our mean-field calculation. Neglecting
the model error in the chi-square would cause an excessive
fitting to lighter hypernuclei, for which the experimental data
has a smaller error while the mean-field calculation would
have a larger error. Chi3 is found to be consistent with the
experimental data at the same level of accuracy as the �

potentials LY-IV, with the value of �B� ≈ 0.7 MeV. The
HP�2 potential has a larger �B� = 0.78 MeV because it
is parametrized by chi-square minimization using the data
without the correction of 0.5 MeV [66].

III. PARAMETER SEARCH FOR � POTENTIALS

In the previous section, we showed that both the repul-
sive and attractive � potentials at high densities, Chi3 and
LY-IV, reproduce the � binding energy data. This is because
the � binding energy is mostly determined by the potential
values at low densities. However, another attractive potential,
HP�2, does not reproduce the data at the same level as Chi3
and LY-IV, which suggests that the details of the potential,
including the values of the Taylor coefficients, are important
for the � binding energy. In this section, we will investigate
the parameter space of the � potential that can reproduce the
binding energy of the � hypernuclear data. From this analy-
sis, we expect constraints on the relations among the Taylor
coefficients (26)–(28) and the normalized effective mass (29).
These constraints can restrict the repulsion of the � potential
at high densities similarly to the nuclear matter EOS.

A. Procedure

The symmetry-energy parameters of nuclear matter are
used to examine the nuclear matter EOS at high densities
using the behavior around ρ0 [69]. Similarly, to investi-
gate the parameter space of the � potential, we parametrize
the Skyrme-type � potential (22) by the Taylor coefficients
(26)–(28) and the normalized effective mass m∗

�/m� at the
saturation density. We generate 13 × 25 × 21 × 21 = 143325
parameter sets of (J�, L�, K�, m∗

�/m�) as combinations of
the following parameter points:

J� = −33,−31.5,−32, . . . ,−27 MeV, (31a)

L� = −50,−45,−40, . . . , 70 MeV, (31b)

K� = 0, 50, 100, . . . , 1000 MeV, (31c)

m∗
�

m�

= 0.5, 0.525, 0.55, . . . , 1.00. (31d)

The range of J� is chosen to be consistent with the � binding
energy data of the 1s orbital: J� below the range overestimates
the data, and vice versa. The effective mass m∗

�/m� has upper
and lower limits because it is sensitive to the separation of
the � binding energies between different orbitals. The second
derivative K� has a lower limit of 0 MeV because the �

potential should become repulsive at high densities. We note
that these parameters in the existing models shown in Table I
fall within the above parameter ranges.

For each parameter set of (J�, L�, K�, m∗
�/m�), the

Skyrme potential parameters a�
i are determined in the follow-

ing procedure. First, a�
2 is determined from its relation to the

effective mass (29):

a�
2 = 1

ρ0

h̄2

2m�

(
1

m∗
�/m�

− 1

)
. (32)

The potential parameters a�
1 , a�

4 , and a�
5 are determined by

solving the following relations obtained from Eqs. (26)–(28)
with γ1 = 1/3 and γ2 = 2/3:

J� = a�
1 ρ0 + a�

2 τ0 + a�
4 ρ

4/3
0 + a�

5 ρ
5/3
0 , (33a)

L� = 3a�
1 ρ0 + 5a�

2 τ0 + 4a�
4 ρ

4/3
0 + 5a�

5 ρ
5/3
0 , (33b)

K� = 10a�
2 τ0 + 4a�

4 ρ
4/3
0 + 10a�

5 ρ
5/3
0 , (33c)
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where τ0 = 3/5(3π2/2)2/3ρ
5/3
0 . The remaining parameter a�

3
is determined to reproduce the experimental value of the
� binding energy of 13

� C, 11.88 MeV, which is taken from
Ref. [65] with a correction of 0.5 MeV [66].

Using the determined potential parameters a�
i for each

parameter set, we calculate the � binding energy using the
Skyrme-Hartree-Fock method as explained in Sec. II A. We
evaluate the root-mean-square deviation �B� (30) and se-
lect the parameter sets that satisfy �B� < 0.75 MeV. We
hereafter call the � potentials with the selected parame-
ter sets selected � potentials and the others rejected �

potentials.

B. Results

We show the density dependence of the � potentials in
the upper panel of Fig. 5, and the momentum dependence
of the � potentials subtracting their values at k� = 0 fm−1

in the lower panel of Fig. 5. The bold red lines indicate the
selected � potentials. We found that the density dependence
at high densities ρ > ρ0 spreads more widely compared to
the low-density region ρ < ρ0. Namely, the � binding energy
data constrain the � potential in the low-density region better
than in the high-density region. We note that the spread of
our results at ρ < ρ0 is larger than that observed in Ref. [47].
This is because we considered the finite size of the uncer-
tainty range of the � potential parameters, while Ref. [47]
only shows the best fitting results by several functional
forms.

In contrast to the density dependence of the � potentials,
the magnitude of the momentum dependence has upper and
lower limits, as shown in the lower panel of Fig. 5. The LY-IV
and HP�2 potentials lie around the lower limit while the
Chi3 potentials are close to the upper limit. The sensitivity
of the energy separation between orbitals to the effective
mass [48] constrains the momentum dependence of the �

potential.
Let us now examine the correlations among the parameters

of the selected � potentials. For this purpose, we choose
two parameters from (J�, L�, K�, m∗

�/m�) and plot �B�

as a function of the chosen parameters. We consider sev-
eral choices of the two parameters as shown in Fig. 6. In
calculating �B�, the other parameters are optimized to mini-
mize �B� by using the golden-section search [70] within the
ranges in Eqs. (31). For example, for the J�-m∗

�/m� plot in
the top left panel of Fig. 6, the remaining parameters, L� and
K�, are optimized for each point of (J�, m∗

�/m�). The values
of the optimized parameters are shown in Appendix C. The
top left panel of Fig. 6 shows �B� as functions of J� and
m∗

�/m�. The selected parameter sets are within the ranges
of −31.5 < J� < −28 MeV and 0.65 < m∗

�/m� < 0.95. The
potential depth J� is consistent with the well-known results
by the Woods-Saxon potential [47,71]. A positive correlation
between J� and m∗

�/m� is found because the contribution of
the kinetic-energy term −h̄2∇2

�/2m∗
� increases as the normal-

ized effective mass m∗
�/m� decreases. The HP�2 potential

is located outside of the region of the selected � potentials
because HP�2 was originally constructed through the chi-
square minimization using the data without the 0.5 MeV

FIG. 5. The upper panel shows the density dependence in sym-
metric nuclear matter while the lower panel shows the momentum
dependence of the � single-particle potentials. The thin gray lines
represent all generated � potentials while the bold red lines are
the selected � potentials with �B� < 0.75 MeV. Chi2 and Chi3
represent the result using the � single-particle potential with only
two-body interactions and two- and three-body interactions from the
χEFT, respectively. The dotted line corresponds to the result using
the LY-IV � potential.

correction [66]. In the top right panel of Fig. 6, we show
�B� as functions of J� and L�. The region of the selected
potentials is bounded from below, L� � −45 MeV, because
the experimental data of the � binding energy cannot be
reproduced with the � potential that is too shallow at ρ < ρ0.
In the bottom left panel of Fig. 6, we show �B� as functions
of J� and K�. The condition �B� < 0.75 MeV is satisfied
for K� � 50 MeV. There is no upper limit in K�, which
implies that the � potential can be even more repulsive than
the ones covered in this parameter search. In the bottom right
panel of Fig. 6, we show �B� as functions of L� and K�.
For the region with �B� < 0.75 MeV, there is a positive
correlation between L� and K� so that the effects of the
two parameters compensate for each other at low densities
at which the � potential is constrained. Larger values of
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FIG. 6. Contour plot of the root-mean-square deviation �B� of the calculated � binding energy from the experimental data. The stars
indicate the points corresponding to the two parameters of Chi3, LY-IV, and HP�2. Note that the other parameters of those specific models
do not necessarily match the optimized ones. Top left panel: �B� as a function of the depth of the � potential at the saturation density, J�,
and the normalized effective mass m∗

�/m�. The first and second derivatives, L� and K�, are optimized for minimizing �B� for each point of
(J�, m∗

�/m�) by using the golden-section search. Top right panel: �B� as a function of the depth of the � potential, J�, and the first derivative
L�, where (K�, m∗

�/m�) are optimized. Bottom left panel: �B� as a function of the depth of � potential J� and the second derivative K�,

where (L�, m∗
�/m�) are optimized. Bottom right panel: �B� as a function of the first derivative L� and the second derivative K�, where

(J�, m∗
�/m�) are optimized.

L� make the potential deeper at ρ < ρ0 while larger values
of K� make it shallower. Nevertheless, the uncertainty re-
gion with �B� < 0.75 MeV is not small enough, i.e., the
sizes of the region are about 40 and 400 MeV for L� and
K�, respectively. This reflects the fact that the � potential
at ρ < ρ0 is not sufficiently limited to discriminate Chi3
from LY-IV.

It should be noted that the �B� values of the specific
models (e.g., LY-IV) in Table. I do not necessarily match
�B� at their locations in Figs. 6 and 7. This is because
the other parameters (i.e., optimized parameters and a�

3 ) are
different from the parameters in the specific model. The
�B� value depends on (J�, L�, K�, m∗

�/m�, a�
3 ), but only

two of them are the same with the specific models in each
panel of Figs. 6 and 7. For example, in the top left panel
of Fig. 6, the other parameters (K�, L�, a�

3 ) are determined
for each pair of (J�, m∗

�/m�) so that they minimize �B�

while keeping the � binding energy of 13
� C, B�(13

� C). How-
ever, such a set of parameters does not necessarily match the
parameters of the specific models, which are determined by
different criteria. Specifically, we use the up-to-date value of

B�(13
� C) = 11.88 MeV in our work to fix the value of a�

3 ,
while B�(13

� C) = 11.69 MeV is used in LY-IV [49]. It should
also be noted that the �B� value at the location of a specific
model (e.g., LY-IV) differs for each panel because the opti-
mized parameter sets at the LY-IV locations are different for
different panels. Only two parameters are matched to LY-IV in
each panel, and the combination of the two parameters differs
for each panel.

We show �B� for three different values of J� as functions
of L� and K� in Fig. 7, where the parameter m∗

�/m� is
optimized to minimize �B� for each (J�, L�, K�) employing
the golden-section search. For J� = −29 MeV, we see that
the parameter region of the � potentials with small �B�

have larger L� and K� compared to the case of unconstrained
J� (the bottom right panel of Fig. 6). This is because, to
explain the � binding energy with a shallow potential, the �

potential at ρ � ρ0 has to be deeper by taking large L�. For
J� = −31 MeV, the parameter region of �B� < 0.78 MeV
has upper limits at L� = 0 MeV and K� = 550 MeV. In
contrast to the case of J� = −29 MeV, the � potential
at ρ � ρ0 has to be shallower by taking small L�. Thus,
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FIG. 7. Same as the bottom right panel of Fig. 6, but for three different fixed values of J�. The normalized effective mass m∗
�/m� is

optimized for minimizing �B� for each (J�, L�, K�) by using the golden-section search.

measuring J� within the error of 1 MeV enables us to con-
strain the range of L� and then K� through the positive
correlation. This helps to discuss whether the � potential is re-
pulsive or attractive at high densities. For J� = −30 MeV, the
parameter region within �B� < 0.75 MeV includes various
K� values that are the same as those in the bottom right panel
of Fig. 6. Therefore, if J� is determined as −30 MeV by high-
resolution data of the � binding energy, further constraint at
ρ < ρ0 is needed to determine L� and K�.

IV. � ADMIXTURE IN NEUTRON STAR MATTER

In the previous section, we examined the parameter space
of � potentials consistent with the � binding energy data. In
this section, we discuss the admixture of � in neutron stars by
the chemical potentials and investigate the parameter region
where �’s do not appear in neutron stars. The � hyperons
appear in neutron star matter at the baryon density ρ when the
minimal chemical potential of �,

μ0
�(ρ) = m�c2 + U�(ρ, k� = 0), (34)

exceeds the neutron chemical potential.
We determine the neutron chemical potential in neutron

star (npeμ) matter by solving the β-equilibrium conditions,

μn = μp + μe, (35)

μe = μμ, (36)

together with the baryon number conservation and the charge
neutrality condition,

ρ = ρp + ρn, (37)

ρp = ρe + ρμ, (38)

where

μi =
(

∂ Ẽ
∂ρi

)
ρ j �=ρi

, i, j = n, p, e, μ, (39)

are the chemical potentials of the matter constituents, and
ρi (i = n, p, e, μ) are the corresponding densities. The total

energy density Ẽ is given as

Ẽ (ρn, ρp, ρe, ρμ) = ẼN (ρn, ρp) + mnc2ρn + mpc2ρp

+ Ẽe(ρe) + Ẽμ(ρμ), (40)

where ẼN is the nucleon energy density and c is the speed
of light. The energy densities of electrons Ẽe and muons Ẽμ

are assumed to be those of the Fermi gas. For the energy
density of nucleons ẼN , we use the SLy4 [61] and BSk24
[72] parameter sets. Both are in good agreement with the pure
neutron matter EOS from the χEFT up to the next-to-next-to-
next-to-leading order (N3LO) [73,74]. SLy4 is a softer EOS
with the maximum neutron star mass of 2.06M� compared to
BSk24 with 2.28M�.

In Fig. 8, we compare the minimal chemical potential of
�, μ0

�, and μn in the neutron star matter as a function of the
normalized baryon density ρ/ρ0. In the top panel, we confirm
that the minimal � chemical potential of Chi3 is larger than
the neutron chemical potential at ρ/ρ0 � 5 as reported in
Ref. [23]. On the other hand, by using the � potentials of
LY-IV and HP�2, � hyperons are found to admix in neutron
stars in the density range 2–3 ρ0, as found in phenomeno-
logical models with hyperons [2–6], causing the softening
of the EOS. In the bottom panel, all the �-potential models
are found to exhibit the appearance of �’s in neutron stars,
representing that the appearance of �’s depends on the model
of the nucleonic EOS.

In Fig. 9, the minimal � chemical potentials calculated
from the selected � potentials shown in Fig. 5 are compared
with the neutron chemical potential in neutron star matter. The
solid red lines correspond to the minimum � chemical poten-
tials that suppress the appearance of � in neutron matter, i.e.,
μ0

� > μn at ρ/ρ0 � 5. We confirmed that the suppression of
� appearance hardly changes even when we check it up to the
central density of a maximum-mass neutron star (ρ � ρmax

c )
instead of ρ/ρ0 � 5: the number of � potentials with no �

appearance decreases only by two for SLy4 with ρmax
c = 7.5ρ0

and is unchanged for BSk24 with ρmax
c = 9.4ρ0, where ρmax

c
is taken from the CompOSE database [75] for each EOS. For
ρ > 3.5ρ0, the minimum � chemical potentials are split into
19 groups corresponding to K� = 100, 150, 200, . . . , and
1000 MeV. We note that the gaps between the 19 groups
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FIG. 8. � chemical potentials at zero momentum and neutron
chemical potential in neutron star (npeμ) matter are depicted as a
function of the normalized baryon density. The solid, dotted, and
dash-dotted lines correspond to the � chemical potential at zero
momentum for Chi3, LY-IV, and HP�2, respectively. The bold solid
line represents the neutron chemical potential calculated by using the
SLy4 (upper panel) and BSk24 (lower panel) parameter sets.

would be filled by considering more points in K�. We also
note that several parameter sets with different L�’s and J�’s
are degenerate in each group, which means that the high-
density part of the � chemical potential is mostly determined
by K�. We argue that the onset of � hyperons in neutron stars
can be judged using the value of K�: with the SLy4 EOS
�’s do not appear in neutron stars if K� � 500 MeV, while
with the BSk24 EOS �’s do not appear if K� � 700 MeV.
Therefore, the second derivative of the � potential, K�, would
be the important parameter in discussing the admixture of �’s
in neutron star matter.

V. SUMMARY

We have examined the � potentials using the binding
energies of � in hypernuclei within the Skyrme-Hartree-
Fock method with spherical symmetry. It is found that the �

potential from the χEFT [23,34] with two- and three-body
force reproduces the experimental � binding energy data at
the same level of accuracy as LY-IV [49] potential, while

FIG. 9. Same as Fig. 8, but the � chemical potentials at zero
momentum using the density dependence of the selected � poten-
tials in Fig. 5 are shown. The solid red lines are the � potentials
with μ0

� > μn at ρ/ρ0 � 5, which suppress the � hyperons in
neutron star matter, while the dotted lines are those which fulfill
the condition μ0

� � μn at some densities so that � hyperons are
admixed.

χEFT with only two-body force overestimates the � binding
energy. Thus, the χEFT � potential which suppresses �

in dense neutron star matter is consistent with the � bind-
ing energy. Taken together with our previous work [42], we
conclude that the �-suppressed scenario is consistent with
the � directed flow data of heavy-ion collisions and the �

binding energy data of hypernuclei. More detailed studies
are necessary in future work considering the YY and YY N
interactions.

Next, we search for the parameter space of the � potentials
by varying the Taylor coefficients and the effective mass at
the saturation density. The root-mean-square deviation �B�

is used to evaluate the consistency between the calculated
� binding energies and experimental data. It is shown that
the depth of the � potential J� is constrained from the �

binding energy data within the accuracy of −31.5 < J� <

−28 MeV. These values are consistent with the well-known
Woods-Saxon results [71]. There are lower and upper limits
for the normalized effective mass: 0.65 < m∗

�/m� < 0.95.
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TABLE II. SLy4 [61] parameter set.

Parameter Value

t0 (MeV fm3) −2488.91
t1 (MeV fm5) 486.82
t2 (MeV fm5) −546.39
t3 (MeV fm3+3γ ) 13777.0
x0 0.834
x1 −0.344
x2 −1.000
x3 1.354
γ 1/6
W0 (MeV fm5) 123.0

This reflects the fact that the energy splitting between orbitals
is sensitive to the effective mass.

A positive correlation between the first- and second-order
Taylor coefficients of the � potential, L� and K�, is found,
which reflects the fact that the � potential at ρ < ρ0 is
constrained. It is shown that K� can be well constrained
by determining J� within the accuracy of 1 MeV, i.e.,
K� > 350 MeV is favored for J� = −29 MeV, while K� <

550 MeV is favored for J� = −31 MeV. In the future, the
value of J� is expected to be determined more precisely
through high-resolution data obtained at the Japan Proton
Accelerator Research Complex (J-PARC) [76]. These data
can be used to constrain the second-order Taylor coefficient
K�. Also, the � potentials with K� � 500 MeV are found to
suppress �’s in β-stable neutron star matter for SLy4, while
the � potentials with K� � 700 MeV for BSk24 suppress
�. Therefore, the determination of J� helps discriminate the
�-avoiding scenario from the �-admixing scenario in neutron
stars.

To precisely determine the � potential at high densities,
it would also be important to investigate other experimental
data in future works. For example, the observables in
heavy-ion collisions may be sensitive to the � potential
at high densities: the elliptic flow including the centrality
dependence and nuclear cluster production can be affected by
the � potential. Also, the hypertriton 3

�H directed flow, which

was recently measured by the STAR Collaboration [77],
would be a promising future work. For another example, the
value of K� could be constrained by the excitation spectra of
the breathing mode for � hypernuclei [78] in the same way as
the incompressibility of nuclear matter, K . The � hypernuclei
with large surface, such as neutron-rich hypernuclei, might
also give constraints on the � potential.
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APPENDIX A: EXPLICIT EXPRESSIONS
OF THE SKYRME-HARTREE-FOCK POTENTIALS

AND DENSITIES

Here, explicit forms of the terms appearing in the Skyrme-
Hartree-Fock equation (12) are given as in Refs. [50,61]. The
effective mass is defined by

h̄2

2m∗
q

= h̄2

2mq
+ 1

8
[t1(2 + x1)t2(2 + x2)]ρN

+ 1

8
[t1(2x1 + 1) − t1(2x1 + 1)]ρq + a�

2 ρ�. (A1)

The single-particle and spin-orbit potentials are given by

Vq = V N
q + V �

q + δq,pVcoul, (A2)

Wq = 1

2
W0

d

dr
[ρN + ρq] − 1

8
(t1x1 + t2x2)JN (r)

+ 1

8
(t1 − t2)Jq(r), (A3)

TABLE III. Experimental data of � binding energy (B.E.) for various hypernuclei used in this work.

B.E. (MeV)

Hypernucleus 1s 1p 1d 1 f 1g

16
� O [65] 12.92 ± 0.35 2.35 ± 0.05
28
� Si [65] 17.1 ± 0.2 7.5 ± 0.2
32
� S [79] 17.5 ± 0.5
40
� Ca [80] 18.7 ± 1.1
51
� V [65,81] 20.47 ± 0.13 11.77 ± 0.16 3.05 ± 0.13
56
� Fe [79] 21.0 ± 1.0
89
� Y [65] 23.6 ± 0.5 17.0 ± 1.0 9.6 ± 1.3 2.8 ± 1.2
139
� La [65] 25.0 ± 1.2 20.9 ± 0.6 14.8 ± 0.6 8.5 ± 0.6 2.0 ± 0.6
208
� Pb [65] 26.8 ± 0.8 22.4 ± 0.6 17.3 ± 0.7 12.2 ± 0.6 7.1 ± 0.6
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FIG. 10. Heat maps of the optimized parameters in Fig. 6. The parameters are optimized for minimizing �B� at each grid point.

respectively, where

V N
q = 1

2 t0(2 + x0)ρN + 1
2 t0(2x0 + 1)ρq

+ (γ + 2) 1
24 t3(2 + x3)ργ+1

N

+ 1
24 t3(2x3 + 1)

[
γ ρ

γ−1
N

(
ρ2

p + ρ2
n

) + 2ρ
γ
Nρq

]
+ 1

8

[
t1(2 + x1)t2(2 + x2)

]
τN

+ 1
8 [t1(2x1 + 1) − t1(2x1 + 1)]τq

− 1
16 [3t1(2 + x1) − t2(2 + x2)]�ρN

− 1
16 [3t1(2x1 + 1) + t2(2x2 + 1)]�ρq

− 1
2W0[∇ · JN + ∇ · Jq], (A4)

V �
q = a�

1 ρ� + a�
2 τ� − a�

3 �ρ�

+ (1 + γ1)a�
4 ρN

γ1ρ� + (1 + γ2)a�
5 ρN

γ2ρ�, (A5)

Vcoul = e2
∫

d3r′ ρp(r′)
|r − r′| − e2

(
3ρp

π

)1/3

. (A6)
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FIG. 11. Heat maps of the optimized parameters in Fig. 7.

The values of the parameters ti, xi, γ , and W0 are given by the
SLy4 parameter set shown in Table II. The isospins q = ±1/2
specify the neutron and proton, respectively. The density ρq

and the kinetic density τq are given by Eq. (8) while the spin
density Jq is written as

Jq(r) = −i
∑

i

φ∗
i (r, q)∇φi(r, q) × 〈σ ′|σ|σ 〉. (A7)

The nucleon density, the kinetic density, and the spin density
are defined as ρN = ∑

q ρq, τN = ∑
q τq, and JN = ∑

q Jq,
respectively.

APPENDIX B: � BINDING ENERGY DATA

The � binding energy data used in this study are
summarized in Table III. The data measured in the (π+, K+)
experiments listed in Ref. [65] (16

� O, 28
� Si, 51

� V, 139
� La, 208

� Pb)
are used with the modification 0.5 MeV as pointed out in
Ref. [66].
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APPENDIX C: OPTIMIZED PARAMETERS

The optimized parameters in Figs. 6 and 7 are summarized in Figs. 10 and 11, respectively. Those parameters are optimized
for minimizing �B� for each grid point.
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