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We use the extended relaxation time approximation for the collision kernel, which incorporates a particle-
energy dependent relaxation time, to derive second-order viscous hydrodynamics from the Boltzmann
equation for a system of massless particles. The resulting transport coefficients are found to be sensitive to
the energy dependence of the relaxation time and have significant influence on the fluid’s evolution. Using the
derived hydrodynamic equations, we study the evolution of a fluid undergoing (0 + 1)-dimensional expansion
with Bjorken symmetry and investigate the fixed point structure inherent in the equations. Further, by employing
a power law parametrization to describe the energy dependence of the relaxation time, we successfully reproduce
the stable free-streaming fixed point for a specific power of the energy dependence. The impact of the energy-
dependent relaxation time on the processes of isotropization and thermalization of an expanding plasma is

discussed.
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I. INTRODUCTION

The relativistic Boltzmann equation is a transport equa-
tion that governs the space-time evolution of the single-
particle phase-space distribution function. It is capable of
accurately describing the collective dynamics of the system
in the limit of small mean free path and therefore has been
employed extensively to formulate the theory of relativis-
tic hydrodynamics [1-7]. However, solving the Boltzmann
equation directly is challenging due to the complicated in-
tegrodifferential nature of the collision term, which involves
the integral of the product of distribution functions. Over
several decades, various approximations have been proposed
to simplify the collision term in the linearized regime. In
1969, following earlier works by Bhatnagar-Gross-Krook [8]
and Welander [9], Marle introduced a relaxation time approx-
imation for nonrelativistic systems [10]. However, Marle’s
version was not applicable to massless particles and was ill
defined in the relativistic limit. Anderson and Witting resolved
these issues by generalizing Marle’s model to the relativistic
regime, qualitatively recovering the results obtained using
Grad’s method of moments in the relativistic limit [11]. These
models, introduced by Marle and Anderson-Witting, incorpo-
rate a collision time scale known as the relaxation time. The
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Anderson-Witting model requires the relaxation time to be
independent of particle momenta, making it straightforward
to apply in the formulation of relativistic dissipative hydrody-
namics.

The Anderson-Witting model achieves enormous simpli-
fication by approximating that collisions drive the system
towards local equilibrium exponentially without explicitly
describing the interaction mechanism of the microscopic
constituents. This approximation provides a highly accurate
description of the collective dynamics for systems close to
equilibrium. In the following, we will refer to the Anderson-
Witting model as the relaxation-time approximation (RTA).
Despite its simplistic nature, RTA and its variations have
proven to be immensely useful and have been extensively em-
ployed in formulating relativistic dissipative hydrodynamics
as well as in deriving transport coefficients [12-21]. Recently,
it has also been applied to study the domain of applicability
of hydrodynamics [22-39]. This simple model appears to
capture effective microscopic interactions across a wide range
of theories.

When deriving dissipative hydrodynamic equations from
kinetic theory using the RTA approximation, it is typically
assumed that the relaxation time is independent of particle en-
ergy (or momentum). Additionally, one is constrained to work
in the Landau frame to ensure the preservation of macroscopic
conservation laws. However, in realistic systems, the collision
time scale generally depends on the microscopic interactions
[40—43]. Introducing an energy-dependent relaxation time
leads to a violation of microscopic conservation laws in the
Landau frame. As a result, there has been considerable interest
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in developing a consistent formulation of relativistic dissipa-
tive hydrodynamics with an energy-dependent relaxation-time
approximation for the Boltzmann equation that satisfies both
microscopic and macroscopic conservation laws [44—47].

Relativistic viscous hydrodynamics-based multistage dy-
namical models have demonstrated success in accurately
describing a broad spectrum of soft hadronic observables in
heavy-ion collisions [48-50]. The hydrodynamics stage of
the evolution encompasses the deconfined quarks and glu-
ons regime at high temperatures, the phase transition, and
the hadron gas phase [51]. The dynamical properties of the
evolving nonequilibrium nuclear matter are governed by a
set of transport coefficients, such as the shear and bulk vis-
cosities [52-56]. These transport coefficients play a crucial
role in explaining the hadronic observables in heavy-ion col-
lisions. Thus, a major goal of heavy-ion phenomenology
is to extract the temperature dependence of these transport
coefficients for the evolving nuclear matter, and consider-
able efforts have been made to determine these coefficients
from various aspects. Most phenomenological studies adopt
parametrized forms for the shear and bulk viscosities [57-60].
Recent studies have employed Bayesian methods to obtain
these parameters and have provided bounds on the transport
coefficients [61-66]. However, since these parametrizations
do not stem from microscopic considerations, the predictabil-
ity of such models is limited. Additionally, the second-order
transport coefficients utilized in these hydrodynamic models
are obtained for specific interactions, and, as a result, they
may fail to accurately capture the system’s behavior during
its evolution.

In our recent work [47], we presented a framework for the
consistent derivation of relativistic dissipative hydrodynamics
from the Boltzmann equation, incorporating a particle energy-
dependent relaxation time by extending the Anderson-Witting
relaxation-time approximation.! Within this extended RTA
(ERTA) framework, we derived the first-order hydrodynamic
equations and demonstrated that the hydrodynamic transport
coefficients can exhibit significant variations with the en-
ergy dependence of the relaxation time. Notably, the ERTA
framework allows for the adjustment of interaction character-
istics by tuning the energy dependence of the relaxation time,
enabling a partial description of the transition from decon-
fined quark-gluon plasma at high temperatures to a weakly
interacting gas of hadrons at lower temperatures. While the
formulation presented in Ref. [47] successfully incorporates
an energy-dependent relaxation time into the RTA, it still
suffers from the well-known issue of acausality in first-order
relativistic hydrodynamics within the Landau frame [68-76].
Consequently, there is a need for a second-order theory that
addresses this issue [77,78], allowing for its application in
heavy-ion collision simulations.

In the present study, we employ the ERTA frame-
work to derive second-order hydrodynamic equations in the
Landau frame for a conformal system without conserved
charges, incorporating an energy-dependent relaxation time.

"In a recent work [67], the trans-series structure of ERTA was
explored.

The second-order transport coefficients are found to be sensi-
tive to the energy dependence of the relaxation time. We focus
on a boost-invariant flow in (0 + 1) dimensions and investi-
gate the fixed point structure of the hydrodynamic equations.
Our analysis reveals that the location of the free-streaming
fixed points is influenced by the energy dependence of the
relaxation time. By employing a power law parametrization to
describe this energy dependence, we successfully reproduce
the stable free-streaming fixed point for a specific power of
the energy dependence. Furthermore, we explore the impact
of the energy-dependent relaxation time on the processes of
isotropization and thermalization of a boost invariant expand-
ing plasma.

This paper is organized as follows. In Sec. II we review
the basic hydrodynamic equations for a conformal, chargeless
fluid. Section III briefly summarizes the results of Ref. [47]
and outlines the steps necessary to derive second-order hydro-
dynamic equations, which we present in Sec. IV. Appendix A
contains the derivation of the results stated in Sec. IV A. In
Appendix B, we show that microscopic conservation holds
till third order following the prescription outlined in Sec. IV.
In Sec. V, we consider Bjorken flow and study the effect of
the energy dependence of the relaxation time on systems’
thermalization. We summarize our results in Sec. VI.

II. OVERVIEW

The energy-momentum tensor for a system of massless
particles with no net conserved charge can be expressed in
terms of the single-particle phase-space distribution function,

fx, p), as
T = /de“p“f =&u'u’ — PA™ + 7", (1)

where dP = d° b/ [@n)’E »] 1s the invariant momentum-space
integration measure with E, representing the particle energy
which is equal to the magnitude of the particle three-momenta
for massless particles, E, = |p|. The projection operator
AW = g"V — yty¥ is orthogonal to the hydrodynamic four-
velocity u* defined in the Landau frame: u, T*" = Eu*, where
£ is the energy density. In the above equation, P is the thermo-
dynamic pressure and 7 *" is the shear viscous stress. We work
with the Minkowskian metric tensor g*¥ = diag(+, —, —, —).
The energy-momentum conservation 9, 7*" = 0 yields the
fundamental evolution equations for £ and u* as

E+(E+P)—n"0,, =0, 2)
(€ + P — VP + A%Y,n" = 0. 3)

Here, we use the standard notation A = u* d,A for co-
moving derivatives, § = d,,u* for the expansion scalar, c#” =
%(V“u" + VVuh) — %9 AM for the velocity stress tensor, and
V¢ = A9, for space-like derivatives.

We consider the equilibrium momentum distribution func-
tion to have the Maxwell-Boltzmann distribution in the local
rest frame of the fluid, foq = exp[—(u - p)/T]. The equilib-
rium energy density then takes the form

374
Eo = uyity / dP p"p" feq = T “4)
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For an out-of-equilibrium system, the temperature 7' is an
auxiliary quantity which we define using the matching con-
dition £ = &. Also, the thermodynamic pressure and entropy
density are given by

! dp p*p¥ r 5
Pz—gA;w/ Pppfeq:;, (5)
E+P 4T3
S=—7 =w ©

The evolution of temperature is obtained from the hydrody-
namic equations of motion (2) and (3):

;B0 B
F=3 3(& +P)”M ik ™
VEB = —But — EfPAgavn‘”, ®)

where 8 = 1/T.

The nonequilibrium phase-space distribution function can
be written as f = foq + Af, where Af represents the out-
of-equilibrium correction to the distribution function. Using

Eq. (1) the shear stress tensor 7*" can be expressed in terms
of Af as

T = Al / dP p*pP Af, )

where ALy = %(AZA; +ALAL) — TAM Agp is a doubly
symmetric and traceless projection operator orthogonal to
u* as well as A", The evolution of the shear stress tensor
depends on the evolution of the distribution function. In this
work, we consider the evolution of the distribution function
to be governed by the Boltzmann equation with the collision
term, C[f], in the extended relaxation time approximation
(ERTA) [44,47],
Paf =l = -y (10)
TR (.X' » P )

where the relaxation time, tr(x, p), may depend on the
particle momenta. The equilibrium distribution function is
considered to be of the Maxwell-Boltzmann form in the
‘thermodynamic frame’, fo = exp[—(u* - p)/T*]. Here, the
thermodynamic frame is defined to be the local rest frame of
a time-like four-vector u}; which need not necessarily corre-
spond to the hydrodynamic four-velocity u,, and T* is the
temperature in the local rest frame of u), (see Ref. [47] for a
detailed discussion).

We briefly review the derivation of first-order shear stress
from the above kinetic equation in the next section.

II1. FIRST-ORDER HYDRODYNAMICS

We employ Chapman-Enskog-like expansion about hy-
drodynamic equilibrium® to iteratively solve the ERTA

*We shall refer to f,q = exp[—(u- p)/T] as the hydrodynamic
equilibrium distribution function with u* being the fluid four-
velocity and T the local fluid temperature in the local rest frame
of u*.

Boltzmann equation (10),

f=faq+8fay+8foy+8fa +---. (11)

Here, § f(;) represents the ith order gradient correction to the
hydrodynamic equilibrium distribution function. The correc-
tion to the distribution function to the first order is
™= p*p’

8fuy =810y + ?R%qufeqv (12)
where we have replaced the derivatives of temperature with
the derivatives of fluid velocity using Eqs. (7), (8) consistently
keeping terms till first order in gradients, and have defined
Sf* = e";] — feq- Defining T* = T + 6T and utf = ut + Sut,
we obtain the first-order correction é £}, by Taylor expanding

oq about u and T,

ou - - p)T
5f) = (—( s D, sz) )feq. (13)

Using Egs. (12) and (13), the quantities du* and 6T are
obtained by imposing the Landau frame conditions, u, T"" =
Eut, and the matching condition, & = &. We find that these
quantities vanish for a system of massless and chargeless
particles at first-order in gradients, and the resulting first-order
correction is given by

w® PP
Sf(l) = 7Tpﬂuufeq. (]4)

It can be easily checked that the microscopic conserva-
tion of energy-momentum at first order holds by taking the
first momentum-moment of the Boltzmann equation (10) with

= fay = feg + 850
JTRY u-p , *
3u/dPP p'fay= —/dP P (foy — feg)
v Oq Voo
= 0, T} = —?"" dPp'ppf fog = 0. (15)
Using § f(1) obtained in Eq. (14), the expression of shear
stress tensor from the definition (9) is obtained to be [47]

at’ = 2not’, (16)

where n = K3,/T is the coefficient of shear viscosity. We
have defined the integrals
1

- _ - L\ 2q a  B\q
K= G / dP 1 (5, P - Y (Dap PP fog.

A7)

We will now derive the second-order constitutive relation (and
evolution equation) for the shear stress tensor in the next
section.

IV. SECOND-ORDER HYDRODYNAMICS

The nonequilibrium correction to the distribution function
till second order can be written as

= feqg +8f0) +8f0) + O@) = fog + Afay + O?),
(18)

where we define Afp) =68f1)+ 6f2) representing the
nonequilibrium correction till second order. Using the kinetic
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equation (10), and employing the Chapman-Enskog expan-
sion, we obtain A f() as

TR TR
Afoy=Af5 — nl’“auaf{'i) - nl’”aufeq

T T
+ —Rp“p“au(—‘{avfeq) (19)

Here, § f(*l) is out-of-equilibrium correction at first order and
Af5, represents the correction up to second order.

As discussed in the previous section, the first-order con-
tribution of du* and 6T vanishes, and therefore they have
contributions starting from second-order. Keeping terms till
second-order in gradients, the first term on the right-hand side
(r.h.s.) of the above equation is

Su - u-p)sT
Af(*Z) = <_( TP) + ( YZ) )feq~ (20)
J

The second term on r.h.s. of Eq. (19),
T >k
— P 817 = OB, 1)
u-p

has correction starting from third-order in gradients because it
involves derivatives of éu* and 67 which are at least second-
order. The third term on the r.h.s. simplifies to

T T " 4 u-
R R [p P’ P quig

__R g — L
pp pfea = T u-poﬂ 3E+P

_5 +P (p"VUn; - p’un:_’/.lv)i|feq- (22)
In deriving, we have kept all terms till second order when
replacing derivatives of temperature with derivatives of fluid
velocity using Eqs. (7) and (8). The last term on the r.h.s. of
Eq. (19) is given by

R R w[. ptp pptp" TR 20 p"p" 280 28
u._ppltp\)f)”(u.—pavfeq) = — |:7—'R T o+ (Vg ‘L'R)( )2 Oy feq — 3 O+ ——0ow

T

o v

pip'p
(u-p)?

_I_

pp'p

(Vaauv) -2

u-p u-p

11\ o)
<T+u-p> (u-p)? }feq' @

2 e

Therefore, the complete nonequilibrium correction till second order from Egs. (19)—(23) is given by

(w-p)dT  (u-p) w
T2 T T

Aﬁm=[

+;< (u - P)7TM Uﬂv+p VT[ —P7T uv)}__{

E+P

pp'p P *ptp”

+( )z(auv)

A. Imposing Landau frame conditions

We note that the second-order correction to the equilibrium
distribution function given by Eq. (24) has the undetermined
quantities du* and 67. We determine these by imposing the
Landau frame condition (u, T"*" = £u") and matching condi-
tion (£ = &) with f — fo = feq + Af(2) (see Appendix A
for derivation),

5K, b "
ut = m(n“ w, — Vo' —m ﬂoaﬁu“)
2L3,2 n - v af "
+ W(ZU u, + VUO' + 0o OqplU ), (25)
5 Kzp Ly»
8T = —————ah Ly, — —= o™ o,,.
3E+PR” 8+P< 32 3T>G v

(26)

The L, , integrals appearing in the above expressions are
defined as

1
2g + D!

Lu, f dP 22 (x, Pt - Y Dap PP fog.

27

L oV
{(ﬁ—l)” P+ (Vatr)
u-p

2 pp e

prp'p”

w-pyr "

2ptp" o
0o, + L s

3u-p) o T w

1 1\ (p"pPouw)?
(?*J})z:ﬁ—ﬂﬁ' @9
[

In the derivation, we have used the relation between the inte-
grals,

v

1
X,, = — X, . 1. 28
4 <2q+1) ! @8

which holds for all integrals defined in this article. We note
that when the relaxation time does not depend on particle en-
ergy, the ERTA approximation of the collision term reduces to
the Anderson-Witting RTA approximation, and consequently
du* and 6T vanishes (see Appendix A).

B. Verification of microscopic conservation

To verify microscopic energy-momentum conservation up
to the second order, we show that the first momentum-moment
of the collision kernel is at least third-order in gradients. To
this end, we consider the first moment of the collision kernel
in the Boltzmann equation (10) and substitute f — f2) =
feq + Af(2), where A f(,) is given by Eq. (24),

/ dP p*e[f] = — / (“ P )p "(Afioy — AfS). (29)
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Using the expression of A f2) — Af(;) from Eq. (19),
f aP p'elf] = f 0P P B f

- / dP p* p* pPa, (1aﬂfeq>. (30)
u-p
The first term in the right-hand side of the above equations is
simplified as

/de“p”BMfeq = f, T — V" 31)

Similarly, the second term is simplified as
v oo B R _ R o« B
dP p"p*p" 9| ——0pfeq | = 9 [ dP——p"p*p"dpfeq
u-p u-p

K
=—3, (2ﬁaw> +O0(®)
T
= i, 7" =V, 7" + O(D?).
(32)

In the last step, we have used the first-order constitutive rela-
tion (16). Using Egs. (31) and (32) in Eq. (30), we obtain

/de”Q[f] = 0(3). (33)

This demonstrates the preservation of microscopic energy-
momentum conservation up to second order. It is noteworthy
that éu* and 8T did not appear in the equations during
the verification of microscopic conservation. This outcome
is specific to the case of massless and chargeless particles
and does not happen in general. The contribution from these
quantities becomes essential to ensure the conservation of
energy-momentum and net current in systems involving mas-
sive or charged particles, or at higher orders. We show that
nontrivial cancellations due to these terms are necessary to en-
sure microscopic conservation till third order in Appendix B.

C. Shear stress till second-order

The expression for shear stress tensor till second order in
terms of the hydrodynamic fields is obtained by integrating
A f(2) in definition (9):

1
T =2not — 20, (c}(“”> + 50’“’9)

_A_Lli’z (V)Y 4L3’20<uwvw

7 T2 UV T 14 ’

(34)

where n = Kj3,/T is the first order transport coefficient
and we have defined 7, = L3 »/K3,. The equation presented
above is consistent with the one derived in Ref. [79] under the
assumption of conformal symmetry. It is worth noting that the
above equation retains its conformal invariance regardless of
the specific functional dependence of the relaxation time on
the particle energy.

One can rewrite Eq. (34) as a relaxation-type equation for
the evolution of shear stress tensor by replacing o*’ —

" /(2K3,/T),?

bt

4
=2B,0"" — 571‘“’9 + 2n,§"w“)y — Cn)f"o"”’,

(35)

ﬁ-(l“}) +

pLs

where B, =n/1; = (;(23212 and C = %TLZ;Z. It is straightfor-
ward to verify that when the relaxation time is independent
of particle energies, t, — tr, B = (£ +P)/5, and C —
10/7, which agrees with the previous results [12,13]. It is
interesting to note that there is one new integral K3, (cor-
responding to n) in first-order, and two new integrals, L3,
and L4, (corresponding to 7, and C, respectively), in the
second-order.

As an illustration, we shall consider the following
parametrization of the relaxation time [40—44]:

. 14
. p) = () | (36)

where 7.q(x) represents the particle energy-independent part
of relaxation time and scales as 1/T for conformal systems.
We consider teq(x) = «/T, where k is a dimensionless con-
stant. Note that the exponents £ may depend on the space-time
coordinates. With this parametrization, the coefficient of shear
viscosity is obtained to be [47]

_ K3yz 4-KT3 |:F(5 + E)

T ~ 572

n

0 ] iffe > 5.  (37)

Also, the coefficients 7, 8, and C appearing in Eq. (35) can
be determined analytically to have the form

b = (K3,)*  AT*[ T(£+5)*
T TLy,  Sm2|24TQ2e+5) [

L ree+s

o=tz KITGEEI] (38)
Ksp, TLTE+5)

2 Lyp  104+4L

TTLy, 7

with the condition £ > —5/2. The above results will be em-

ployed in the next section to study the evolution of a plasma

undergoing boost-invariant expansion.

C

V. BJORKEN FLOW

We shall now study the hydrodynamic equation obtained
for a fluid undergoing Bjorken expansion [80]. Bjorken
symmetries enforce translational and rotational symmetry

3In deriving, we used the relation

7 () —
g _ T e (TK3,2 + 05 K4.2>J,w9’

2n 3nT?

where the Q, , integral is defined as

1 a7
Q"-‘{ = /dPiR(u : p)nizq(Aaﬂpap )qfeq~

g+ D! ap

Further, we used the relation, 0, , =
expressed 0, , in terms of K,, , integral.

n+l,g — (l’l + l)TKn,qv and
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in the transverse (x,y) plane, boost invariance along the z
(longitudinal) direction, and reflection symmetry z — —z.
The symmetries are manifest in Milne coordinate system
(1, x,y, 15), where T = /12 — 7% is the proper time and 7, =
tanh~!(z/r) the space-time rapidity. In these coordinates the
fluid appears to be static, u* = (1, 0, 0, 0), irrotational (w** =
0), and unaccelerated (#* = 0), but has a nonzero local ex-
pansion rate, & = 1/7. Symmetries further constrain the shear
tensor to be diagonal and space-like in Milne coordinates,
leaving only one independent component which we take to
be the nn, component: 7% = 7Y = —12x% /2 = 7 /2.

The hydrodynamic equations for evolution of energy den-
sity (2) and the shear tensor (35) in Milne coordinates takes
the form

d€ 1

—=—=(E+P—-m), (39
dr T

dr T 4B 44C\n

— =t -———)—. 40
dr t,,+3 T ( 3 >r “0)

The above equations can be transformed into an equation for
the quantity [23,28,33]

= =_Z_ 2 @1
§=53. = :

When the energy density exhibits power law behavior, g cor-
responds to the exponent of that specific power law (i.e., if
E ~ 1%, then g = a). Equations (39) and (40) can be written
as a nonlinear, first-order, differential equation in g as

_ BHCN, L4 (4, C b
_B(g)_g2+< 3 >g+3<3+3 5)

T 4
+ —<g+—>, (42)

T 3

where we have defined B(g) = t(dg/dt). Note that C and
Br /€ are dimensionless. The hydrodynamic regime is reached
when the scattering rate exceeds the expansion rate, i.e., 7, <
7. The last term in the above equation is dominant in this
regime, and the hydrodynamic fixed point g, is given by

8x = _%- (43)

In the collisionless regime, the expansion rate far exceeds the
scattering rate (7, > t), and the function B(g) in Eq. (42) is
dominated by the terms that do not depend on t /7, . The zeros
of this function correspond to the free-streaming fixed points,

+— (44)

§+C
S (L
8tp <6> 3¢ 36

with the positive root corresponding to the free-streaming
stable fixed point. For a plasma undergoing Bjorken expan-
sion, it has been shown that the stable free-streaming fixed
point of the exact kinetic solution corresponds to vanish-
ing longitudinal pressure, or g = —1 [28,34,35].* Using the

48,  C?

*Although this was shown for the RTA Boltzmann equation, it
holds true even for the ERTA case since the collision term vanishes
in free-streaming.

L L A S
L.OOF 4 T,,=500 MeV, 7;,=0.4 fm/c 7
I “ n/s=0.05 -
0.75F -
1/s=0.2
. 0.50 .
& n/s=0.4 -
3 ]
R 0250 -
n/s=3.0 ]
. BAMPS - R ._._._._._l'_._.-.-.-.-:
OfF --- RTA ]
[ — ERTA ]
T SO TN TR AN TR TR SR T [N TR T T T NN SO SO S W |
0 1 2 3 4

T (fm/c)

FIG. 1. Evolution of P./Pr in BAMPS (black dots) compared
with hydrodynamic evolution using transport coefficients obtained
from the RTA approximation (dashed curves) and ERTA approxima-
tion with £ = 1/2.

parametrization (36) for the relaxation time and the corre-
sponding values of the transport coefficients given in Egs. (37)
and (38), we observe that the value of the stable fixed
point in the exact kinetic equation (g = —1) can be recov-
ered from Eq. (44) for £ ~ 0.763. Extending the domain of
Israel-Stewart—type hydrodynamic theories requires the hy-
drodynamic equations to accurately capture the location of the
stable free-streaming fixed point, as emphasized in Ref. [36].
Therefore, the evolution Eq. (42), or analogously Eqgs. (39)
and (40), is expected to provide a good description of the un-
derlying weakly coupled microscopic theory with £ ~ 0.763,
even in far-off-equilibrium regimes. It is worth mentioning
that this value of ¢ is not arbitrary; many microscopic theories
lie in the range ¢ = [0, 1] [40].

To illustrate the impact of the ERTA framework, we show
the comparison of the second-order hydrodynamic equa-
tions obtained from the RTA approximation (£ = 0) with
those derived from the ERTA approximation setting £ = 0.5
and compare them with BAMPS results [81-83] in Fig. 1.
The initial temperature is set to be 500 MeV at an initial time
of 0.4 fm/c with a vanishing initial shear stress. Further, we
fix the values of x appearing in Egs. (37) and (38) such that
n/s is set to different values as mentioned in the figure.’
As can be seen from the figure, the solid curves represent-
ing the ERTA approximation with £ = 0.5 are in an overall

SFor RTA approximation (£ =0), « ={1/4,1,2,15} for
n/s ={0.05,0.2,0.4,3.0}, respectively. Similarly for ERTA
approximation with ¢ =0.5, « ={0.11,0.46,0.92,6.9} for
n/s = {0.05, 0.2, 0.4, 3.0}, respectively.

064913-6



RELATIVISTIC SECOND-ORDER VISCOUS ...

PHYSICAL REVIEW C 108, 064913 (2023)

=T,/T
USRS S ST ST SR N ST S N

Kn
| |

PR

ol T T
£=0
11k 2=0.5 ]
[ el ]
o0
_12f i
—1.3};’1¥5
Lo ] )
05 1 10 05 1

5
7 (fm/c)

10 05 1

5
7 (fm/c)

FIG. 2. Time evolution of the quantity g, pressure anisotropy P./Pr, and Knudsen number 7, /7. Solid and dashed curves correspond to
different initial shear stresses, 7 = £/3, 0, respectively. The blue, orange, green, and red curves correspond to values of £ = —1,0, 1/2, 1,
respectively. As can be seen in all three panels, isotropization and thermalization are delayed as the value of ¢ is increased.

better agreement with the BAMPS solution than the dashed
curves [45].°

In Fig. 2, we present the evolution of three quantities:
g, the pressure anisotropy P,/Pr = (P —)/(P + 7 /2), and
the Knudsen number t, /7. The initial temperature is set to
be 500 MeV at an initial time of 0.4 fm/c. Additionally, we
consider the parameter « appearing in Eqgs. (37) and (38) to
have the value 5/(4).” In all three panels, the solid curves
represent cases where Py, is initialized at 0, corresponding to
m = £/3, while the dashed curves are initialized with a van-
ishing initial shear stress, ¥ = 0. The blue, orange, green, and
red curves correspond to different valuesof £ = —1,0, 1/2, 1,
respectively. The left panel displays the evolution of the quan-
tity g, with the gray solid line representing the hydrodynamic
fixed point g,. It can be observed from the systematic trend
of blue, orange, green, and red curves that the system re-
mains out of equilibrium for a longer duration as the values
of ¢ are increased. This feature is also visible in the middle
panel where the evolution of pressure anisotropy, P./Pr is
shown — approach to P, /Py = 1 is delayed for the orange,
green, and red curves compared to the blue curve, indicating
a slower isotropization. Also, in the left and middle panels
we observe that the solid and dashed curves, representing
different initial shear stress, overlap earlier for smaller values
of ¢. Interestingly, the evolution of Knudsen number shown in
the right panel is not strongly dependent on the initial values
of shear stress but has a strong dependence on the strength of
the momentum-dependence of the relaxation time, i.e., on ¢;
the solid and dashed curves largely overlap during the entire
evolution. It is worth noting that increasing the value of ¢
enhances the initial gradient strength (as 7, increases), and

%We note that the second-order hydrodynamic equations obtained
from the RTA approximation (dashed curve) perform better than the
one obtained from ERTA approximation (solid curve) for /s = 0.2.

"The value k = 5/(4x) implies n/s = 1/(47) when the relaxation
time is independent of the particle energies (¢ = 0), i.e., when ERTA
reduces to Anderson-Witting RTA.

smaller values of £ drive the system towards thermalization at
a faster rate, which is evident from the middle panel.

In Fig. 3, we show the evolution of the temperature normal-
ized with the ideal temperature evolution, Tiq = Tin(Tin/7)"/>.
It is observed that at a given time, the fluid maintains a higher
temperature when the initial shear stress has a large positive
value (solid curves), in contrast to when the initial shear stress
is vanishing (dashed curves). An interesting observation is
that increasing values of ¢ also lead to higher temperatures
of the medium, as indicated by the trend of the differently
colored curves. This may be understood from the right panel
of Fig. 2, where we observe that an increase in the values
of £ results in a larger Knudsen number. Consequently, this
leads to increased dissipation, resulting in a slower fall of tem-
perature compared to ideal evolution. Moreover, the interplay
between the initial conditions for shear stress and the various
medium interactions (characterized by different values of £) is
intriguing, and can provide insights towards constraining the
initial conditions for hydrodynamic simulation of heavy-ion

1.20

n T
L — 1=— ﬂ'in=8/3 ]
L =0 7tin=0 :
L15F :
- P2 5 E
<ok R ;
B~ C :
1.051- -
IOO:T '—-'_-'-_'-_I--:-:--|--|--|-_|--|--|--|--|--|--: M B |__

0 > 10 15 20

7 (fm/c)

FIG. 3. Time evolution of temperature normalized with ideal
temperature evolution. The initial conditions and legends are the
same as in Fig. 2. The black dotted curve represents a temperature
surface of 155 MeV.
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FIG. 4. Evolution of pressure anisotropy P, /Pr with t/t,. The
evolution of different curves is stopped at proper times when the
temperature evolution reaches 155 MeV.

collisions. Further, the various curves in Fig. 3 crossing the
temperature surface of 155MeV (represented by the black
dotted curve) at different proper times suggests that a constant
temperature particlization surface can be reached at different
times with varying anisotropies. This can be seen more clearly
in Fig. 4, where the evolution of the pressure anisotropy Py /Pr
with 7/, is shown. The evolution of the curves is stopped
when the temperature of the plasma reaches 155 MeV during
the expansion (at times when the different curves cross the
black dotted curve in Fig. 3). In Fig. 4, we see that the pressure
anisotropy across the different colored curves differs signifi-
cantly. We also note that the evolution of P, /Py for different
curves in the near-equilibrium regime (v 2 5t;) is nearly
the same, but differs substantially in the far-off-equilibrium
regime.

VI. SUMMARY AND OUTLOOK

To summarize, we have derived relativistic second-order
hydrodynamics from the Boltzmann equation using the ex-
tended relaxation time approximation for the collision kernel,
incorporating an energy-dependent relaxation time. The trans-
port coefficients are shown to explicitly depend on the
microscopic relaxation rate. We investigated the fixed point
structure of the hydrodynamic equations for a plasma un-
dergoing Bjorken flow and showed that the location of the
free-streaming fixed points depends on the energy dependence
of the relaxation time. Additionally, we employed a power
law parametrization to describe the energy dependence of the
relaxation time and examined its impact on the thermalization
process of the expanding plasma. We demonstrated that the
plasma’s approach to equilibrium is affected by the relaxation
time’s dependence on different powers of energy; the plasma
remains in the out-off-equilibrium regime and at a higher
temperature for longer duration as larger positive values of
£ are considered.

While the derivation in the present article is done for
a conformal system without conserved charges, it can be
extended for nonconformal systems with conserved charges
and quantum statistics by following the steps outlined in the

article. It is also desired to have typical relaxation rates for
the energy dependence of the relaxation time across differ-
ent stages of the evolution of the nuclear matter formed in
heavy-ion collisions. Such parametrization of the relaxation
time can have parameters which may depend, for example,
on the temperature of the medium.® Incorporating these rates
will make the full hydrodynamic equations with the associated
transport coefficients more suitable for a (3 + 1)-dimensional
hydrodynamic simulation. It should be noted that the func-
tional form of the first-order transport coefficients, such as
n, is determined within the framework. Furthermore, such an
analysis may also provide insights into the form of distribution
function at particlization. These aspects will be investigated in
future studies.
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APPENDIX A: DERIVATION OF é§u* and 6T

In this Appendix, we obtain Su* and 67 by imposing
Landau frame and matching conditions. The Landau frame
condition, u, T"” = £u”, with the matching £ = &, for a
nonequilibrium distribution f = f.q + §f can be written as

Uy / dP p"p"(feq +6f) =u" f dP (u - p)° feq
= u, f dP p p"S f = u'uqupl®® —u, 1" =0,  (Al)

where I*? = [ dP p®pF f.q. Replacing 8 f > § f(2) obtained in
Eq. (24), and performing the integrals in the local rest frame
of u", the above equation reduces to

8T 5K,

I 8#_[ _/’«_{__
MU T B0 T e Ty

(T, = Vo)
N3,2 v - v
+ 6L3'2 + 2M4‘2 - 2T o™ u, + 2L3,2Vva
L4 p M
+ 10L3,2 — ZT + 2M4,2 0 "0 = 0. (AZ)
Note that the term du - u = (Su - du)/2 ~ O(8*), since Sut

is at least second order (see discussion in Sec. IV), and has

81t remains to be explored if some of the essential features of
a strongly coupled fluid can be captured in this framework by
parametrizing the relaxation time.
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been ignored in the derivation. Further, we have defined the
thermodynamic integrals,

1
Ly= ———
4T (2 + D!

f AP - pY' (D PP fog (A3)

1 a‘L'R
Mn,q D unE——— / dP‘L’R
2g + D! a(u- p)
X (u : P)n_zq(AaﬂPaPﬁ )qfeqy

1 0T _ .
m/dp‘ma—;(”.p)n zq(A“ﬂp pﬁ)qfeq-

(A4)

Nn,q
(AS5)

We note that M,, , and N, , integrals can be expressed in terms
of the L, , integrals through the relations

1 n+1 .
Mg = 3olng = —5—Liig. iffn>—1. (A6)
2N, 4 = Luy1,4 —nTLy,. (A7)

Using these relations, Eq. (A2) simplifies to

8T 5K
13,1514” — 13,()—1,{“ + 82

W — V) 4 2L
T T e T )+ 2k

L
X@M%h+VmW}+GMZ—€?>‘WUWM:O

(A8)
J
5K
Sut = T(g—_i,'ZP)Z(nlwuv — V‘,T[MU — n“ﬁoa,gu )
5K
- iquj?%ﬁi(Sn””uv—-VVHMV%—ZHVVGMV)

=0.

Similarly, using the matching condition
uu, T = & = uyuy / dP p*p'sf =0 (A9)

and replacing § f — 8 f(») obtained in Eq. (24), we obtain

;3T SKso
W T e P

L
niwo'uv <3L3 2 — #)O’MUO}W =0.
(A10)

Noting that Is o = 3T (£ + P) and solving for §T', we obtain

2 Ko b4 L, — Laa oo
S 3(E+PY 2T e
(A11)

ny

+g+—p(

The expression for éu” is obtained by using Eq. (A10) in
Eq. (A8):

5K
Sult = #(n“”ﬂv -V, — n“ﬂaaﬁu“)
T(E+P)
2L,
+ 2 26", + Vo™ + 0%Poyut),
TE+P) % aplt”)
(A12)
where we have used the relation 5 ;| = —T (€ + P).

In the case when the relaxation time is independent of
the particle energies, the integrals K, ;, — tr I, 4 and L, ;, —
3 1,4 = RK, 4. Using these, and noting that r = 5n/(€ +
P), Eq. (A12) simplifies to

5K3 2

mZn(ZGWuV + VUO'MV + O’a'BO'aﬁM'u)

(A13)

In transitioning to the second equality, we employed the first-order relation 7" = 2no*’. Furthermore, we used the relation

Vuon = —=3TnV,B = 3nu, in the last equality.
Similarly, Eq. (A11) reduces to

0T =

1 F K32
E+P|3E+P)

1 F Ko,
CE4P

=0.

3E+p) T

5
oy, + Té <I3,2 - 513,2)0’”0;“;}

517 2
(8+77)3

3 ZO—N O—;wi|

(A14)

The fact that u** and §T vanish when the relaxation time is independent of particle energy is anticipated since ERTA reduces to
the Anderson-Witting RTA, thus providing a consistency validation.

APPENDIX B: MICROSCOPIC CONSERVATION AT THIRD ORDER

In this Appendix, we demonstrate microscopic energy-momentum conservation up to third order. The nonequilibrium
correction to the equilibrium distribution function up to third order in space-time gradients from the Boltzmann equation is

obtained to be

* R "
Afa) = Af(3) - )p/ in |:feq B a— pfeq

R TR
(u-p (u

T * *
- ((u A fe ) e .Rp)l’ﬂapAfa) + Af(z)i|- (B1)
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As discussed in Sec. IV B, verifying microscopic energy-momentum conservation up to the third order amounts to showing that
the first momentum-moment of the collision kernel vanishes. Substituting f +— f3) = feq + Af3), and using Eq. (B1),

[apperi=- [ (a0 - agz)

/de”p"(aufeq)+/de”p"p”8M[—ﬁ(3pfeq ] /de P’ pta [(u i {( (O feq) H

1 n 111

+ / dp p*p"p” 8u[ﬁ(3pAﬁ§))] + / dP p*p* (9. A f5) - (B2)

v 1%

Evaluating these integrals, we find

I =a,7x" - V,7"" = —-9,7"", (B3)

2K 5K ARV
= BM[ T3’20’“’ + T@ izp) { (u"u” + 3 )n“’saaﬂ +u'V, " +u"V,m" — i, (W " + u”n’”’)”. (B4)

In deriving, we have used the hydrodynamic evolution equations (7) and (8). The integral /I, consistently keeping all terms till
third order in gradients, is obtained to be

2L 1
=9, [— 3.2 {c'r’“’ + 50’”9 +ul'V,o" +u'V,o"? + 30, e +u’ch’) + w;cr’”’ + a)ga”p}
Ls, 1Ly y wp  4Lap v 4
+ (T - ? T2 )(AM — Tutu” )O’aﬁo' - ?F M p + 0(3 ) (BS)

The above equation can be further simplified by using the second-order constitutive relation (34) for the shear stress tensor which
can be written as

2K32 Mu+4L42<1 af

Tt =

2L 1
T -7 — U“G””) _ 82 (d‘“’ + go‘“’Q + a);o"” + a)f;a”p +u, (o’ + u”o’”’)).

T
(B6)
Replacing the o#” term in Eq. (B5) using the above equation, integral /II simplifies to

Ly»
T2

2K AWV 2L
=9, [n’“’ - %o’” + <u“u" -3 )o“ﬂaaﬁ — ;’2 {u"Vpa”p +u"V,o"? 4+ 2u,(u " + u’ch?)
1
+ 5(714"14" - M“)a“ﬁaaﬂ” + O@@*). (B7)

Note that the replacement using Eq. (34) [or Eq. (B6)] keeps the integral /II exact up to third order. Adding the contributions of
the integrals /, /1, and /1] using Eqs. (B3), (B4), (B7)

5K AMY
I+ 141 = a’“‘[T(E—iZP){(”M” + =3 )n“ﬁaaﬁ + UV, TP 4 UV, — G, (P + u”n‘”’)}
215,

1
T’ {u“Vpo”p +u"V,o" 4+ 2u,W "’ + u"c"’) + 5(714“14” — A’”)a“’sao,ﬁ}

v
+ 2( hy — A3 )a“ﬁaaﬁ} + O3, (BS)

It can be verified that the above combination vanishes when the relaxation time is independent of particle momenta. This is
consistent with third-order hydrodynamics derived using the RTA approximation of the collision kernel [84].

We now evaluate the two integrals, /V and V, which are due to the difference between the ‘thermodynamic’ and hydrodynamic
frames. Since A f(*l) contains the terms u*, 8T which are at least O(3?), the integral IV,

v = /de”p”ppf)M[(T—R

o7 @,A f(*l))] = 03", (B9)
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is at least O(d*) and can be ignored. The remaining integral V simplifies to

V= /deVp“(E)MAfé))

I 8T
= aﬂ I:—%(MU(SMM + utsu’) + F(u"u"lg,o + Ap'v13,1)j|

=0y [(5 + 73){(u”&t" + utsu’) + STT(?M"M” — AW)H,

(B10)

where we have not considered the terms (u - 8u) = —(8u)?/2, (u)?, (8T)?, su*8T, and higher order terms in the Taylor
expansion of Af7, as they are at least O(d*). Hence, the expansion of A /() only involves contributions from the terms du*
and 67, and their determination imposing Landau frame and matching conditions remains identical as done for second-order in
Appendix A. The relevant expressions for §u* and §T can be found in Egs. (25) and (26). It is important to note that when the
relaxation time is independent of particle energies, both du* and 8T vanish, as demonstrated in Appendix A, resulting in the

integral V also vanishing.
Using these, the integral (B10) can be written as

" 5K
V= 3#|:u {i(n’“’up — V, 7" — 7o put) + 213 220" i1, + V0" + U“ﬂoaﬁu“)}

T E+P)
u* | 5Kz,
?{(5+P)
1(5 K,
+F{§m” 3T
_ s [&
O MTE+P)

2Ls,

3

T2

(7", — V,m"f — n“ﬂaa,gu”) +2L3,(20"u, + V,0'f + a“ﬁoaﬂu”)}
ap L4~2 apf w,v v 4
Oap + | L32 — == |0 0up { Bu''u” — A*Y) | + O(07)
ARV
{ <u“u” + )n“ﬁoag +u'V,m"? +u" V7t —u, ("’ + u”n’“’)}
1
{u“Vpo”p +u"V,o" 4+ 20, "’ + u"o"f) + 5(714“14” — AHV)O'aﬂO}Xﬁ}

L AWV
+ 4,2 <u”uv— 3 )Uuﬂaaﬂi|+0(84).

(B11)

This above expression precisely cancels the terms in Eq. (B8) up to O(3%), i.e.,

/de”Q[f] =T +H+I)+IV+V =0@0",

(B12)

therefore ensuring the energy-momentum conservation up to third order.
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