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Hydrodynamic attractor of noisy plasmas
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We provide a generalized formulation of fluctuating hydrodynamics for the far-from-equilibrium noisy
medium. As an example, we consider a noisy plasma experiencing Bjorken expansion, for which the leading
order evolution is captured by the hydrodynamic attractor of classical hydrodynamics, while the quadratic
couplings of fluctuations are solved effectively via a generalized version of the hydrodynamic kinetic equation.
In the far-from-equilibrium plasma, backreaction of hydrodynamic fluctuations results in renormalization of
transport properties, as well as long-time tails, of high orders. In particular, corresponding to a renormalized
hydrodynamic attractor, evolution in a noisy plasma towards equilibrium becomes nonmonotonic.
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I. INTRODUCTION

Hydrodynamics is an effective theory that by construc-
tion applies to thermal systems close to local equilibrium.
In hydrodynamics, departures from ideal fluids are captured
by gradients of hydrodynamic fields as well as hydrody-
namic fluctuations. Hydrodynamic fluctuations are in general
suppressed in systems with a large amount of constituents,
it is therefore not surprising that theoretical formulations
without hydrodynamic fluctuations (frameworks sometimes
referred to as the classical hydrodynamics [1]) have achieved
remarkable successes. Such examples include in particular
the hydrodynamic modeling of quark-gluon plasma (QGP) in
high-energy nuclear physics [2].

Nonetheless, hydrodynamic fluctuations cannot be ne-
glected when they are significant in system dynamical
evolution. For instance, when a thermal system evolves close
to a critical point, correlations among fluctuations of or-
der parameters diverge, resulting in novel hydrodynamic
modes [3]. Hydrodynamic fluctuations are amplified in small
systems, such as the QGP droplet created in high-energy
proton-lead collisions [4], owing to the fact that correlations
among thermal fluctuations are inversely proportional to the
system volume. More importantly, the nonlinear nature of
hydrodynamics allows for corrections from couplings of fluc-
tuations [5]. Backreaction of the coupled modes renormalizes
transport properties [6–9], generates nonanalytical long-time
tail structures [10], and even influences evolution history in
a fluid [11].
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The equation of motion of fluctuating hydrodynamics fol-
lows the conservation of energy and momentum,

∂μT μν = 0, T μν = T μν
cl + δT μν + Sμν, (1)

where the classical energy-momentum tensor, T μν
cl , consists

of energy density e, pressure P, fluid four-velocity uμ, and
expansion in terms of their gradients [12],

T μν
cl = euμuν + P�μν + πμν. (2)

The expansion can be characterized by the Knudsen num-
ber Kn. Up to second order in gradients, the constitutive
equation is often formulated via the stress tensor πμν

relaxing to its Navier-Stokes correspondence, i.e., the Israel-
Stewart hydrodynamics [13]. In the classical constitutive
equation (2), variables are thermal averaged quantities with-
out corrections from thermal fluctuations; namely, they are
bare variables to be distinguished later from the renormal-
ized ones. Fluctuations of energy-momentum tensor δT μν are
constructed accordingly in terms of thermal fluctuations of
hydrodynamic variables, which are further induced through
the random noise Sμν , subject to the condition 〈Sμν (x)〉 =
0 and the fluctuation-dissipation relation 〈Sμν (x)Sαβ (y)〉 =
2T η�μναβδ4(x − y) [14]. Here, η is the shear viscosity and
the brackets indicate an average over the ensemble of thermal
fluctuations. With an equation of state, P = P(e), Eqs. (1) and
(2) are closed.

Equation (1) is stochastic, hence the resulting system evo-
lution fluctuates in space and time. However, the averaged
evolution is deterministic, which can be obtained, for instance,
through an ensemble average over numerical simulations of
the stochastic processes. Alternatively, with respect to an ef-
fective field theory approach of fluctuating hydrodynamics
[15–17], by treating thermal fluctuations as perturbations,
averaged quantities can be solved order by order. This is a
strategy analogous to the loop expansion in quantum field
theory. The tree-level analysis corresponds to solving the
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classical hydrodynamics, ∂μT μν
cl = 0. The effect of thermal

fluctuations then arises when hydrodynamic fluctuations are
included and constrained by ∂μδT μν = −∂μSμν , which ac-
cordingly determines multipoint correlations [7,8,18,19]. The
two-point correlations, 〈δT μνδT αβ〉, in particular, contain al-
ready the information of quadratic couplings of modes that
contribute to 〈T μν〉, and the renormalization of transport prop-
erties and the long-time tails.

Recently, extensive studies have been devoted to the gener-
alization of classical hydrodynamics to far-from-equilibrium
systems. These works are motivated in part by exploring the
applicability condition of hydrodynamics through the con-
vergence of the gradient expansion [20,21], and in part by
the experimental observations of collectivity in QGP created
from colliding nuclei of small sizes (cf. Ref. [4]). From either
aspect, it was acknowledged that classical hydrodynamics ad-
mits the so-called attractor solutions in some comoving flows
[22–32], owing to the expected hydrodynamic fixed points in
these systems [33].

Bjorken flow, for instance, applies approximately to the
very early stages of high-energy heavy-ion collisions, where
the system expands dominantly along the beam axis (z axis).
In the Milne coordinates, τ = √

t2 − z2 and ζ = tanh−1(z/t ),
with respect to the Israel-Stewart formulation, classical hy-
drodynamics reduces to coupled equations,

de

dτ
= − 1

τ
(e + P + π ), (3a)

π = −4

3

η

τ
− τπ

[
dπ

dτ
+ 4

3

π

τ

]
, (3b)

where π = π
ζ

ζ is the ζ ζ component of the stress tensor. For
later convenience, we introduce dimensionless constants,

η = Cηs, τπ = CτCη/T, e = CeT 4, (4)

to parametrize shear viscosity η, shear relaxation time τπ , and
energy density. We also consider the system conformal, so that
P = c2

s e.
Defining the inverse Knudsen number Kn−1 = w ≡ τ/τπ ,

Bjorken expansion of QGP is fully captured by the relative
decay rate of energy density: g(w) ≡ d ln e/d ln τ . Especially,
isotropization of the system is related to g(w) through

PL

e
= τ 2T ζ ζ

cl

T ττ
cl

= −1 − g(w). (5)

As will be clear later, this relation gets renormalized by hy-
drodynamic fluctuations. In terms of g(w), the hydrodynamic
attractor behaves as a smooth and monotonic connection
between the free streaming fixed point at early times,
g(w) ≈ −1, and the ideal hydrodynamic fixed point at late
times, g(w) = −4/3, while evolution with arbitrary initial
conditions merge swiftly towards the attractor. The hydro-
dynamic attractor can be solved numerically, as well as
analytically upon approximations [34]. In the leading order
adiabatic approximation [35] (or the leading order slow-
roll approximation [36]), the hydrodynamic attractor can be

FIG. 1. Attractive isotropization of the medium captured in terms
of the ratio PL/e without contributions from hydrodynamic fluctua-
tions (black solid line) and with hydrodynamic fluctuations (colored
band). For comparison, first-order gradient expansion (Navier-Stokes
hydrodynamics) is shown as the black dashed line, and the thin black
line at 1/3 indicates isotropization.

written as,

g(w) = −1

2

⎡
⎣22

7
+ w −

√(
10

21
+ w

)2

+ 64

45

⎤
⎦. (6)

In the region w � 1, Eq. (6) is not sensitive to second order
transport coefficients [35].

In Fig. 1, the istropization of medium corresponding to
the classical hydrodynamic attractor, Eq. (6), is shown as
the black solid line, which evolves monotonically from free
streaming towards the ideal hydrodynamic fixed point, 1/3,
at late times. Note in particular, deviations from 1/3, at late
times, are proportional to the bare shear viscosity η.

The hydrodynamic attractor conceptually extends the ap-
plicability of classical hydrodynamics to systems with large
Kn. This is not only because the attractor universally de-
scribes system evolution irrespective of initial conditions, but
also a consequence of the attractor accounting for a sys-
tematic resummation of gradients in terms of trans-series,
including nonanalytical transient modes ∝ w−Cτ /2Cη e−3/2w,
in the far-from-equilibrium medium [34,37]. The transient
modes imply an exponential decay of fluctuations at late times
(i.e., w > 1) towards the attractor solution, hence a separation
of timescales of the fluctuations and the background flow.
It is analogous to the nonhydro mode decay in the Isreal-
Stewart hydrodynamics [38]. The separation of timescales is
essential to the application of fluctuation-dissipation relation,
so that fluctuations are guaranteed to be equilibrated towards
the background flow. We shall therefore consider an ansatz
of the fluctuation-dissipation relation out of equilibrium, with
temperature and shear viscosity determined with respect to the
background attractor.

It is our purpose of this paper to investigate the effects
of hydrodynamic fluctuations in a plasma out of equilibrium.
Without loss of generality, we take Eq. (6) as the decay rate of
the bare energy density, as the input for the next leading order
analysis of fluctuating hydrodynamics.
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II. HYDRODYNAMIC KINETIC EQUATION IN THE
FAR-FROM-EQUILIBRIUM REGIME

Bjorken symmetry is broken by fluctuations. In terms
of Fourier modes of fluctuations of energy and momentum
densities,

δe(τ, k) =
∫

dζd2�x⊥ei�k⊥·�x⊥+iτkζ ζ δT ττ (τ, �x⊥, ζ ), (7a)

gi(τ, k) =
∫

dζd2�x⊥ei�k⊥·�x⊥+iτkζ ζ δT τ i(τ, �x⊥, ζ ), (7b)

the equation ∂μδT μν = −∂μSμν leads to coupled stochastic
differential equations for φa = (csδe, gx, gy, τgη ). Here kζ is
dimensionful and conjugate to τζ . These differential equa-
tions are equivalent to a hierarchy of equations for multipoint
correlators [19]. Especially, the equal-time two-point correla-
tors, for which we define as Nab through

〈φa(τ, �k)φb(τ,−�k′)〉 ≡ Nab(τ, �k)(2π )3δ3(�k − �k′), (8)

satisfy effectively hydrodynamic kinetic equations [7].
Of course, when applies to out-of-equilibrium systems with
large Kn, the background fluid evolution should be accounted
for by the hydrodynamic attractor.

To facilitate analyses, following Ref. [7], it is convenient to
rotate in �k space, which accordingly defines two longitudinal
modes and two transverse modes, φA with A = (±, T1, T2).
After the rotation, the hydrodynamic kinetic equation is domi-
nated by the diagonal components. We therefore find formally

(
1 + g(w)

4

)
∂RA

∂ ln w
= −αAwk̃2(RA − 1) − βA(w)RA, (9)

where RA ≡ τNAA/T (e + P) is the normalized correlator and
k̃2 = τ 2

π (|�k⊥|2 + k2
ζ ). The coefficients are

α± = 4

3Cτ

, αT1 = αT2 = 2

Cτ

, (10)

and

β± = 1 + 5
4 g(w) + c2

s + cos2 θk,

βT1 = 1 + 5
4 g(w), βT2 = 1 + 5

4 g(w) + 2 sin2 θk, (11)

where cos θk = kζ /|�k|. The left-hand side of Eq. (9) represents
time derivative on top of the background attractor. The first
term (∝ αA) and the second term (∝ βA) on the right-hand
side play the roles of collision and longitudinal expansion,
respectively. System evolution towards equilibrium relies then
on these two competing effects. Note that in the ideal hy-
drodynamics limit, i.e., when g(w) → −4/3, Eq. (9) reduces
to the original form of hydrokinetic theory in Ref. [7]. Once
Eq. (9) is solved, the equal-time two-point correlators Naa in
the original basis can be obtained respectively via an inverse
rotation.

Hydrodynamic kinetic equation applies between separated
scales: c−1

s ∇ ∼ (csτ )−1 � k � λ−1
mfp [7]. In the large-k limit,

or more precisely when wk̃2 � 1 according to Eq. (9),
the two-point correlators approach T (e + P)/τ , which can

FIG. 2. Evolution of R+ with respect to various initial condi-
tions. Dashed blue and dashed red lines are obtained with k̃ =
1, 3, and cos θk = 0.1, 0.5, respectively. Solid lines are the slow-roll
approximation of the corresponding attractor, Rslow-roll

+ = α+wk̃2/

(α+wk̃2 + β+).

be understood as the “equilibrium” expectation in an out-
of-equilibrium system defined according to the background
attractor. One thereby introduces a critical scale k∗ = √

w/τ ,
above which the two-point correlators are well captured by
the background attractor. In the out-of-equilibrium system, the
separated scales, as well as k∗, are time dependent. In par-
ticular, because these scales merge around w ≈ 1, a reliable
description from Eq. (9) for the out-of-equilibrium plasma
should only apply when w ∈ [1,+∞).

As a consequence of fixed points, Eq. (9) itself possesses
attractor solutions. To see this, we first notice that RA = 0 is a
fixed point solution in the small wk̃2 extreme, which is stable
only when βA > 0. Nevertheless, the stability of this fixed
point does not affect the two-point correlators at late times.
In the large-wk̃2 extreme, Eq. (9) allows for solution in terms
of a double expansion,

RA(w,wk̃2) = 1 − βA(w)

αAwk̃2
+ . . . =

∑
n,m

F (A)
n,m

wn(wk̃2)m
. (12)

Note that the correlator depends explicitly on wk̃2, as dic-
tated by Eq. (9). The expansion in 1/w is the hydrodynamic
gradient expansion of the two-point correlators, which is
asymptotic. The expansion in 1/k̃2 is asymptotic as well,
which, however, differs from the usual hydrodynamic gradient
expansion in wave numbers [39]. In the large-wk̃2 extreme,
the solution is well captured by the first several terms in the
expansion. In analogy to the hydrodynamic fixed point in
classical hydrodynamics at large w, the large-wk̃2 behavior
represents a stable hydrodynamic fixed point in the two-point
correlators.

In Fig. 2, for illustrative purposes, the evolution of
R+ is shown with two sets of k̃ and cos θk values. Irre-
spective of initial conditions, R+ tends to follow universal
curves at late times (dashed lines), which is exactly the
feature that one expects in an attractor solution. The uni-
versal curves stand for the attractors, which with the
slow-roll approximation (∂wRA = 0) can be approximated as
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Rslow-roll
A = αAwk̃2/(αAwk̃2 + βA) (solid lines in Fig. 2). Simi-

lar behavior can be found in other modes as well. Note that the
behavior of the solutions in the region w < 1 in Fig. 2 demon-
strate the properties of an “early-time” attractor according to
the structure of Eq. (9). However, it is only the region w > 1
that we shall consider for realistic analyses.

III. RENORMALIZATION IN FAR-FROM-EQUILIBRIUM
NOISY FLUIDS

The resulting equal-time two-point correlators Naa suffice
to determine thermal corrections to the averaged energy-
momentum tensor out of equilibrium. With respect to an
integral in �k-space, the thermal corrections can be classified as
a cutoff dependent correction T μν

� and a long-time tail correc-
tion �T μν . For instance, the averaged value of ττ component
of the energy-momentum tensor contains contribution at the
quadratic order, 〈δT 0iδT 0i〉/(e + P). In terms of Naa, one has
[7,18]

〈T ττ 〉 − T ττ
cl = 1

e + P

∫
d3�k

(2π )3

∑
a=�x⊥,ζ

Naa(w,wk̃2)

= T ττ
� + �T ττ , (13)

where the explicit dependence on wk̃2 is rooted in Eq. (9).
As indicated in Eq. (12), the integral contains a piece of
cubic order in � and a linearly divergent piece, which can
be regulated by introducing a cutoff scale �. These regulated
integrals then give rise to the cutoff dependent corrections. For
T ττ

� and τ 2T ζ ζ
� , one finds,

T ττ
� = T �3

2π2
− �T 3

4π2

Cτ

(CτCη )2

35

8w

(
4

3
+ g(w)

)
, (14a)

τ 2T ζ ζ
� = T �3

6π2
− �T 3

4π2

Cτ

(CτCη )2

1

w

(
27

10
+ 35

24
g(w)

)
.

(14b)

In the limit w � 1, these cutoff dependent corrections can be
absorbed into the energy-momentum tensor, so that energy
density [O(w0)], pressure [O(w0)] [7] and shear viscos-
ity [O(w−1)] [6] get renormalized, respectively. Note that,
since the cutoff dependent correction at 1/w is negative (∝
−�T 3), the resulting renormalized shear viscosity is actu-
ally enhanced. Again, when g(w) → −4/3, i.e., in the ideal
hydrodynamics limit, the renormalization reduces to that of
the original hydrokinetic theory in Ref. [7]. In the far-from-
equilibrium regime, with respect to the trans-series expansion
in g(w), higher order transport coefficients (O(w−2) and be-
yond) are renormalized as well.

Renormalization in fluctuating hydrodynamics reflects the
fact that hydrodynamic fluctuations stay in equilibrium above
the critical scale. In the out-of-equilibrium medium with large
Kn, the cutoff scale can be taken according to k∗ � � �
λ−1

mfp. In practice, given the information of the physically mea-
sured quantities at a certain scale in the expanding system,
� is w dependent and well constrained.

Out-of-equilibrium long-time tails. After renormalization,
a finite piece in the thermal corrections remains. As shown in

Eq. (13), the explicit dependence on wk̃2 implies an overall
factor w−3/2 in the finite integral, which leads to the nonana-
lytical structure in the well-known long-time tails,

�T ττ

e
= w−3/2

Ce(CτCη )3

∑
n=0

f ττ
n

wn
, (15a)

τ 2�T ζ ζ

e
= w−3/2

Ce(CτCη )3

∑
n=0

f ζ ζ
n

wn
. (15b)

Note that the long-time tails are cutoff independent. The
coefficients fn can be solved in principle by a summation
of Fn,m in Eq. (12). Via a polynomial fit with respect to
the numerical solutions of Eq. (9), we are allowed to iden-
tify f ττ

0 = 0.45 ± 0.1, while f ζ ζ
0 = 0.15032 ± 0.00002 and

f ζ ζ
1 = −0.53 ± 0.05.

IV. RENORMALIZED ATTRACTOR

In fluctuating hydrodynamics, the effective out-of-
equilibrium system evolution should be monitored by the
thermal averaged components in the energy-momentum ten-
sor. In particular, the renormalized ratio,

〈τ 2T ζ ζ 〉
〈T ττ 〉 = τ 2T ζ ζ

cl + τ 2T ζ ζ
� + τ 2�T ζ ζ

T ττ
cl + T ττ

� + �T ττ

= [−1 − g(w)]

(
1 + 3τ 2T ζ ζ

�

e
+ 3τ 2�T ζ ζ

e

− T τ
�

e
− �T ττ

e
+ · · ·

)

≡ [−1 − g(w)]Z−1
att (w), (16)

captures the observed system isotropization in the presence of
hydrodynamic fluctuations. In Eq. (16), a multiplicative renor-
malization factor Z−1

att is introduced, which contains expansion
in 1/w from the cutoff dependent corrections, and nonanalyt-
ical corrections starting from w−3/2 from the long-time tails.

With respect to a noisy gluonic plasma [20], with Cη =
1/4π , Cτ = 2(2 − ln 2), and Ce = 16π2/30, the renormalized
attractor is solved and shown as the colored band in Fig. 1. The
upper and lower boundaries are determined according to the
two extreme cutoff scales, � ∼ k∗ and � ∼ λ−1

mfp, respectively.
In both cases, when � is explicitly taken into account, both
the cutoff dependent corrections and the long-time tails are
constrained by an overall factor 1/Ce(CτCη )3. This factor is
roughly the inverse of the number degrees of freedom in a unit
volume, consistent with the physical expectation of quadratic
couplings of hydrodynamic fluctuations [7].

When w � 1, the system is close to an ideal fluid, hence
effects of hydrodynamic fluctuations are expected to be sup-
pressed. Indeed, at large w, the renormalized attractor follows
the trend of classical hydrodynamics, approaching 1/3 irre-
spective of hydrodynamic fluctuations. However, a closer look
reveals that the renormalized attractor is actually below the
classical result. This feature is expected, since the effective
shear viscosity, which quantifies the reduction from 1/3, is
enhanced by the renormalization due to hydrodynamic fluc-
tuations [6,7]. Moreover, taking into account the fact that the
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renormalized correction to shear viscosity is proportional to
�, a larger reduction in the renormalized attractor is expected
with respect to a larger cutoff scale, as manifested in Fig. 1.

Unlike the classical attractor, which increases mono-
tonically from far from equilibrium towards ideal fluids,
the renormalized attractor becomes nonmonotonic in the
far-from-equilibrium region, as shown in Fig. 1. This non-
monotonic behavior qualitatively reflects the long-time tail
contribution to Z−1

att . More precisely, the leading order long-
time tails give rise to positive corrections in Z−1

att , which
compensates the reduction from the renormalized shear vis-
cosity at large w [6], but dominates when the system is far
from equilibrium. Parametrically, by comparing the leading
order long-time tails and the cutoff corrections in Z−1

att in the
ζ ζ sector, the minimum point of the renormalized attractor
can be found around

√
w ∼ 4π2 f ζ ζ

0 /Cτ .

V. SUMMARY AND DISCUSSION

With the help of the hydrodynamic attractor, fluctuating
hydrodynamics can be applied to far-from-equilibrium noisy
systems. As an example, the hydrodynamic kinetic equa-
tion, which was developed previously for a noisy fluid close
to equilibrium, can be generalized to far-from-equilibrium
noisy plasmas. In the far-from-equilibrium medium, although
hydrodynamic fluctuations lead to qualitatively similar con-
tributions from the coupled modes, higher order contributions,
such as terms of order O(1/w2) and O(w−5/2), and even some
more complicated trans-series structures in g(w), are involved.

Moreover, backreactions of the hydrodynamic fluctuations
already become significant in the out-of-equilibrium region
with w > 1, which modifies the system evolution towards
equilibrium. In particular, due to the long-time tails, in the
noisy plasma the effective isotropization is nonmonotonic.

Although the current framework considers background
flow with both early-time and late-time attractors, it is actually
the late-time dynamics with w > 1 that really matters. As
long as the background system approaches an ideal fluid at
rather late times, an ideal hydrodynamics fixed point exists
which leads to late-time attractor behavior. Such a late-time
attractor suffices to provide the separation of timescales in the
region w > 1. For cases even without early-time attractors in
the background flow, such as the Bjorken expansion solved
with respect to AdS-CFT or nonconformal fluid dynamics, the
current framework should not be affected.

The current analysis could be improved systematically by
including more ingredients in a noisy fluid system, such as
the nonlinear couplings of modes beyond the quadratic or-
der and nonconformal corrections. With respect to realistic
high-energy nuclear collisions, initial state fluctuations, which
differ conceptually from hydrodynamic fluctuations, should
be taken into account as well.
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