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3+1D initialization and evolution of the glasma
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The IP-GLASMA initial condition has been highly successful in the phenomenology of ultrarelativistic heavy
ion collisions. The assumption of boost invariance, however, while good for collision energies probed at the
Large Hadron Collider, limits the use of IP-GLASMA to the transverse dynamics of heavy ion collision to near
midrapidity. There is a wealth of physics to be explored and understood in the longitudinal dynamics of heavy
ion collisions, and a full understanding of heavy ion collisions can only come from three-dimensional studies. In
particular, long range rapidity correlations are seeded in the initial collision and provide additional information
on the high energy nuclear wave functions that have thus far been inaccessible to the IP-GLASMA model. In this
paper, we introduce a way to extend the IP-GLASMA model to 3+1 dimensions while preserving its key features.
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I. INTRODUCTION

Heavy ion collisions (HICs) conducted at the Relativistic
Heavy Ion Collider (RHIC) and the Large Hadron Collider
(LHC) are sufficiently energetic to create a deconfined state
of quarks and gluons known as quark gluon plasma (QGP).
Due to their complexity and changing degrees of freedom, no
single model is able to describe the entirety of these collisions,
and thus they are modeled in stages, usually including inde-
pendent models for the initial state, a hydrodynamic (QGP)
phase, and a hadronic gas phase.

There is broad agreement in the field that nucleus-nucleus
collisions create QGP and that this exotic state of matter is
governed by relativistic fluid dynamics with an extremely
small shear viscosity to entropy density ratio (specific shear
viscosity), η/s [1–3]. It is similarly accepted that, as the fluid
expands and cools, it hadronizes and can be described by
hadron gas dynamics such as those modeled with URQMD [4]
or SMASH [5]. The initial state, however, has not reached such
a high level of consensus.

Because the outcomes of hydrodynamic simulations are
sensitive to the details of the initial conditions, it is important
to constrain the initial state before strong statements can be
made about details of the QGP phase, such as the transport
coefficients. In order to do so, it is important to explore both
the transverse and the longitudinal dynamics of HICs. The
transverse dynamics has been successfully explored by many
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via 2 + 1-dimensional (2 + 1D) models of the initial condi-
tion and the dynamics [6–18].

The focus of this paper is on constructing an IP-GLASMA

based 3 + 1-dimensional (3 + 1D) initial state model and
exploring its physical consequences. In order to do so, it
is necessary to have 3 + 1D simulations of HICs. This has
largely been achieved for the hydrodynamic and hadronic
phases of the QGP evolution [19–23]. This paper sets out
to generalize the phenomenologically successful IP-GLASMA

model [24,25] to 3 + 1 dimensions so that the 3 + 1D ma-
chinery can be fully utilized.

IP-GLASMA provides a 2 + 1D initial condition that com-
bines IP-SAT-inspired [26] small-x gluon saturation with
classical Yang-Mills (CYM) evolution. It has been extremely
successful in describing the transverse dynamics of heavy ion
collisions when used to initialize hydrodynamic simulations
[27,28]. This includes many different observables across a
wide range of collision systems and center of mass energies.

The original IP-GLASMA model assumes boost invariance,
which simplifies the geometry of heavy ion collisions to
2 + 1 dimensions. This allows for a direct analytic solution
of the classical Yang-Mills field and also simplifies numer-
ical evolution of the system. This is a good approximation
near midrapidity at high energies such as those explored at
the LHC, but remains an approximation nonetheless. Fur-
thermore, asymmetric systems such as p+A collisions cannot
be accurately approximated as boost invariant due to their
large rapidity dependence. This assumption also limits one to
study only the transverse dynamics of heavy ion collisions.
By relaxing boost invariance, one gains access to the lon-
gitudinal dynamics of heavy ion collisions, where there is
a wealth of physics to be explored and understood. In this
paper, we relax boost invariance in the IP-GLASMA framework
by providing longitudinal structure using the Jalilian-Marian,
Iancu, McLerran, Weigert, Leonidov and Kovner (JIMWLK)
renormalization group equation [29–35], and solve the CYM
equations on a three-dimensional lattice [36–43].
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The consequences of generalizing the IP-GLASMA to 3 + 1
dimensions will be explored through comparison with the
boost-invariant case. The 3 + 1D initial conditions are
evolved hydrodynamically using MUSIC [22,23]. As the sys-
tem expands and cools, and hadronizes, URQMD is used to
simulate resonance decays and hadronic rescatterings. Longi-
tudinal observables are studied and compared to experimental
data. One of the consequences we would like to study in
this paper is the longitudinal correlations. Correlations and
fluctuations present in the high energy nuclear wave functions
of the colliding nuclei are imprinted on the system during the
initial collision. Some of them will be preserved and detected
in the final state and some will not, depending on their nature
and strength as well as those of the subsequent evolution of
the fireball. It is clear, however, that correlations present at
the initial collision constitute the upper bound for long range
correlations in rapidity.

There are many reasons why we would like to explore
longitudinal dynamics of relativistic heavy ion collisions. One
important reason is to see whether our understanding of the
QGP dynamics mostly gained from 2 + 1D studies will still
hold in describing the longitudinal dynamics. For instance,
we would like to see whether the values of the viscosities
extracted in 3 + 1D study are consistent with those extracted
in 2 + 1D study. We would also like to investigate to what
extent the boost-invariant approximation breaks in the plateau
region around the midrapidity and what breaks it. It will be
also interesting (although we leave it for future study) to see
how the asymmetry in the size of the colliding nuclei affects
the longitudinal dynamics. Other important topics include the
effect of 3 + 1D evolution to the longitudinal flux tube and
the classical gluon field’s influence on the propagation of jet
partons inside and outside of the plateau region.

In the following, we first briefly describe the 2 + 1D IP-
GLASMA initial conditions in Sec. II. Generalization to 3 + 1
dimensions is explained in Secs. III–V. The differences be-
tween the 2 + 1D evolutions and the 3 + 1D evolutions are
highlighted in Secs. VII and VIII. In Sec. X, the 3 + 1D results
are compared with ALICE data, and we conclude in Sec. XI.

II. INITIAL CONDITIONS IN 2 + 1 dimensions

The large occupation number of small-x gluons at early
times in HICs means that they can be treated, to good approx-
imation, as classical fields. The relevant equations of motion
are then the CYM equations:

[Dμ, Fμν] = Jν . (1)

In this paper, we use the convention Dμ = ∂μ − igAμ and
the mostly negative metric. Under the assumption that the
source particles are moving with the speed of light in the same
direction, the source terms, composed of the large momentum
fraction (large-x) partons in the individual nuclei, propagate
undeflected on the light cone:

Jν = δν±ρA(B)(x
∓, x) (2)

where x± = (t ± z)/
√

2 are the light-cone coordinates. The
upper signs are for the projectile nucleus A moving in the
positive z direction and the lower signs are for the target

nucleus B moving in the negative z direction. In this limit, it
is possible to derive an analytic solution to the initial gauge
fields immediately following the collision in terms of the
gauge fields of the precollision nuclei A and B.

In light-cone coordinates and Lorentz gauge, the precolli-
sion CYM equations reduce to the Poisson equation

A±
A(B) = − ρA(B)

∇2
⊥ − m2

(3)

where m = 0.4 GeV is an infrared regulator that models the
color neutrality scale. Here A+ is for the projectile nucleus and
A− is for the target nucleus. These gauge fields can be gauge
transformed to the light-cone gauge by using the following
path-ordered Wilson lines:

VA(B)(x⊥) = Pexp

(
− ig

∫
dx∓ ρA(B)(x∓, x⊥)

∇2
⊥ − m2

)
(4)

the discretized form of which can be written as [44]

VA(B)(x⊥) =
N∓∏
i=1

exp

(
−ig

ρ
A(B)
i (x⊥)

∇2
⊥ − m2

)
(5)

where N∓ is typically set to 50. The precollision gauge fields
then become purely transverse:

Ai = i

g
V ∂iV

†, (6)

A± = 0. (7)

This is the celebrated McLerran-Venugopalan (MV) model
[45,46].

These precollision fields can be related to the postcollision
gauge fields that reside in the forward light cone by matching
the fields on the light-cone boundary, including the source
terms. This matching yields the initial glasma fields [47,48]
given by

Ai
0 = Ai

A + Ai
B, (8)

Eη

0 = −ig[Ai
A, Ai

B], (9)

where again the subscripts A and B refer to the projectile
nucleus and the target nucleus, respectively. The coordinate
system for the glasma field is the Milne coordinate system
where τ = √

t2 − z2 and η = tanh−1(z/t ). The gauge condi-
tion for the glasma fields is Aτ = 0. In 2 + 1 dimensions, one
can identify Eη with −2Aη using

Eη = 1

τ
∂τ Aη = − 1

τ
∂τ (τ 2Aη )

= −2Aη − τ∂τ Aη (10)

where we used the fact that Aη = −τ 2Aη and assumed that the
second term vanishes as τ → 0. For a visual summary of the
2 + 1D initial condition, see Fig. 1.

Having determined the initial gauge fields and the longitu-
dinal electric field, it remains to specify the transverse electric
field, which must satisfy Gauss’s law:[

Dη, Eη

0

] + [
Di, Ei

0

] = 0. (11)

064910-2



3 + 1D INITIALIZATION AND EVOLUTION OF THE … PHYSICAL REVIEW C 108, 064910 (2023)

FIG. 1. A summary of the 2 + 1D initial conditions.

The boost invariance of the system make Gauss’s law trivial,
due to vanishing derivatives in η. The resulting solution is
simply Ei

0 = 0. This solution is not unique. Any vector field ei
0

that satisfies [Di, ei
0] = 0 can be a solution. However, Ei

0 = 0
is the most natural choice in view of the fact that the initial
transverse chromomagnetic fields Bi

0 = 0 because the system
is boost invariant and we assumed Aη = 0 at τ = 0+.

For nonzero gradients in the rapidity direction, Ei
0 and Bi

0
become nonzero, and their magnitudes are determined by the
size of the η gradients. These, in turn, come from the rapidity
dependence of the model. In the case of the current paper, the
rapidity dependence comes from the JIMWLK renormaliza-
tion group equation, to be discussed in Sec. V.

III. GENERALIZING TO 3 + 1 dimensions

The beauty of 2 + 1D IP-GLASMA formulation is the
availability of the exact solution of the classical Yang-Mill
equation Eq. (3) in the infinite momentum (equivalently, in the
infinite beam rapidity) limit. Once this condition is relaxed,
exact solutions are no longer available. Some possibilities
to resolve this issue include the following. One can try to
solve the classical Yang-Mills equations numerically provided
that the source profile of each nucleus at finite velocity is
known. Or one can make an Abelian assumption to solve the
3 + 1D CYM equations analytically as in Refs. [49,50]. One
can also try to modify the 2 + 1D solution in such a way to
approximate the physical situation. So far, to the authors’ best
knowledge, most attempts at generalizing the MV model and
IP-GLASMA model fall into the last category [43,51–56] and it
is also the route we will take. (Other non-IP-GLASMA-related
approaches such as flux-tube or string type models also exist
[57,58].)

Our general strategy is somewhat similar to the one em-
ployed in Ref. [52] but not exactly the same. Consider the
usual MV solution of the 2 + 1D Yang-Mills equation Eq. (3)
[equivalently, Eq. (6)] given the color charge density ρA(B).
Since the color charge density ρA(B) does not depend on the
rapidity, neither does the gluon field Ai

A(B). In other words, in

any boosted frame, Ai
A(B) looks exactly the same, and hence,

the resulting glasma field Ai = Ai
A + Ai

B in any boosted frame
looks exactly the same, too. This implies that the produced
glasma is boost invariant.

Once we add quantum fluctuations, however, the JIMWLK
evolutions of the color densities break the boost invariance
by introducing a reference rapidity. In this way, the gluon
densities of the projectile and the target nuclei can look dif-
ferent in different boosted frames, equivalently at different
space-time rapidity η = tanh−1(t/z). Consider a world line
passing through the origin of the center of mass frame so that
z/t = vz is a constant. This also represents a world line where
the space-time rapidity η is constant. One can therefore get the
initial condition at η by considering how the projectile and the
target nuclei appear in the frame boosted by vz = tanh η. This
is illustrated in Fig. 2.

In Ref. [52], this idea was used to get the initial condition
for the 3 + 1D evolution of the glasma field. The difference
here is in the way the longitudinal dynamics is treated. In
Ref. [52], each transverse plane at different η evolves indepen-
dently of each other following the usual 2 + 1D IP-GLASMA

formulation of the initial condition and evolution. On the
other hand, we keep the longitudinal interaction between the
transverse planes at different rapidities. To do so, however,
complicates not only the evolution of the system but also the
initial condition.

IV. INITIAL Aη AND Ei

There has been significant effort in recent years on 3 +
1D classical Yang-Mills in the context of heavy ion colli-
sions. Each of these efforts has implemented some type of
rapidity dependence, whether it be through rapidity fluctua-
tions [36,37,59], JIMWLK evolution [52], or color sources
[43,53,54]. In this paper, we extend the initial conditions
themselves to be able to accommodate a non-boost-invariant
setup.

One of the consequences of having an η dependence is
that the usual 2 + 1D solution, Ai = (i/g)V ∂iV †, Aη = 0, is
no longer pure gauge in space. This introduces a problem
in energy deposition because the field strength Fηi no longer
vanishes outside the overlap region. This chromomagnetic
field component automatically vanishes in the 2 + 1D case
outside the overlap. However, in three dimensions, the deriva-
tive in η no longer vanishes and hence if one were to use
the 2 + 1D MV solution for individual nuclei one would
find Fηi = ∂ηAi �= 0. This means that nonzero energy den-
sity would appear in the transverse plane wherever a single
nucleus had nonzero gauge field, rather than solely in the
interaction region. This phenomenon can be seen clearly in
Fig. 3.

This undesirable feature can conceivably be dealt with in
two ways. One is to just remove the energy density from
the positions where either Ai

A or Ai
B vanishes. This option,

however, is ambiguous since it is not clear whether any sub-
traction should be made in the regions where neither of the
two fields vanishes. Another more natural option is to gener-
alize the initial condition by modifying the longitudinal gluon
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FIG. 2. Two nuclei evolving in rapidity via the JIMWLK equations. At Y (0)
A and Y (0)

B the Wilson lines are determined via Eq. (5). Then
these Wilson Lines are evolved via Eq. (18). Plotted are snapshots of the quantity 1

Nc
Tr(V − 1), a proxy for gluon density. It is possible to

see as the JIMWLK evolution proceeds to smaller Bjorken x that the gluon density increases while the large scale geometry of the nuclear
structure persists.

fields as

AA (B)
0,η = i

g
VA (B)∂ηV †

A (B), (12)

A0,η = AA
η + AB

η (13)

which are calculated just above the light-cone axes inside
the forward light cone. This has the advantage of retaining
the feature that each individual nucleus remains pure gauge
in space, while reducing to the boost-invariant case where
derivatives in η vanish. Recall that the field strength tensor
of a pure gauge vanishes, and thus does not contribute to the
energy density. For a visual summary of the 3 + 1D initial
condition, see Fig. 4.

It is worth noting here that, in general, initial conditions
are needed for the dynamic variable Aη and its conjugate
momentum Eη but not Aη. The fact that we could specify the
initial value for Aη as −Eη

0 /2 in 2 + 1 dimensions is due to
the fact that we need to require Aη → 0 in the τ → 0 limit
to prevent the transverse energy density from diverging in the
same limit. Such a requirement forces the behavior of Aη in the
small τ limit to be Aη = (Eη

0 /2)τ 2 + O(τ 3). However, this is
not the only possibility. One can have

Aη(τ ) = A0,η + Eη

0

2
τ 2 + O(τ 3) (14)

and still get

Eη = 1

τ
∂τ Aη = Eη

0 + O(τ ) (15)

in the small τ limit as long as both A0,η and Eη

0 depend only on
x⊥ and η and not on τ . Hence, in the absence of any additional
conditions, A0,η is arbitrary. In 2 + 1 dimensions, we need to
choose A0,η = 0 to keep the transverse energy density from
diverging at the initial time τ0 = 0+. In 3 + 1 dimensions,
τ0 �= 0 and hence we can exploit this freedom to consistently
remove unwanted energy deposits.

Another consequence of having the η dependence is that
the solution to Gauss’s law is now nontrivial. In fact, Gauss’s
law is underconstrained, as it provides only one equation for
two unknown fields, Ex and Ey. It is possible to find a solution
by relating the two unknown fields through the following
ansatz:

Ei
0 = [Di, φ0]. (16)

This ansatz turns Gauss’s law into the covariant Poisson equa-
tion

[Di, [Di, φ0]] = −[
Dη, Eη

0

]
(17)

which can be solved iteratively through a modified Jacobi
method (see Appendix A for numerical details). This ansatz
leads to a solution to Gauss’s law in the non-boost-invariant
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FIG. 3. The upper figure demonstrates the problem of initializing
Aη = 0 on a three-dimensional lattice, namely that there is nonzero
energy density outside of the overlap region of the two nuclei. The
lower panel, in contrast, shows that initializing according to Eq. (3)
eliminates this problem.

system. This solution is, however, not unique. One can al-
ways add another vector field ei

0 that is nondivergent in two
dimensions ([Di, ei

0] = 0) and still satisfy the Gauss law. In
this paper, we simply set ei

0 = 0, which is consistent with the
conditions that the initial glasma field should vanish outside
the interaction region and that the total energy deposit should
have a reasonable value for RHIC and the LHC heavy ion
collisions. In our simulations, the lattice equation of motion
preserves the lattice Gauss law.

V. JIMWLK EVOLUTION

The color glass condensate is predicated on the idea that
the gluon density of high energy nuclei will begin to saturate
as the gluon density becomes sufficiently high for gluon re-
combination to compete with gluon radiation. It relies on a

FIG. 4. A summary of the 3 + 1D initial conditions. The paren-
theses around A(A)

η and A(B)
η indicate that these fields do not reside in

regions I and II but are calculated just inside region III.

separation of scales, in which the large momentum fraction,
or large-x, partons serve as sources for the small-x gluons.

The JIMWLK [30,31] renormalization group equation in-
tegrates out the quantum fluctuations around the classical
background field and changes the effective source term for the
small-x gluons. In this way, the JIMWLK evolution introduces
a rapidity dependent charge per unit area, while preserving the
form of the gluon Lagrangian. The JIMWLK evolution gives
the model its rapidity dependence through the stochastic gluon
radiation that follows from the rapidity evolution.

The form of the JIMWLK equation used in this paper is
from Ref. [35] and given in terms of the Langevin step:

VA(B)(x,Y + dY ) = exp

(
−i

√
dY

π

∫
u

Kx−u · (VuζuV
†

u )

)

× VA(B)(x,Y ) exp

(
i

√
dY

π

∫
v

Kx−v · ζv

)

(18)

where ζz = {ζ a
1 (z,Y )t a, ζ a

2 (z,Y )t a} is a random variable and
Vu = VA,B(u,Y ). Here Y can be either the dynamic rapidity
or the space-time rapidity. The correlator for ζ in this case is
given by

〈ζ a,i(x,Y1)ζ b, j (y,Y2)〉 = δabδi jδY1Y2

∫
d2k

(2π )2
eik·(x−y)αs(k)

(19)

where the noise correlator has a Kronecker delta for (Y1,Y2),
rather than a delta function, because the 1/dY has already
been incorporated into Eq. (18). The modified kernel, as used
in Ref. [60], is given by

Kx−z = m|x − z|K1(m|x − z|) (x − z)

|x − z|2 (20)

where K1(x) is the Bessel function of the second kind.
The expression in the exponent of Eq. (18) is computed

by Fourier transforming the kernel and the noise terms, thus
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FIG. 5. Positioning of the t and z axes.

turning the two-dimensional integration into a convolu-
tion [61]. This improves numerical speed considerably. The
Fourier transform of the kernel is given by

Kk = 2π ik
k2 + m2

. (21)

The form of the running coupling is taken to be

αs(k) = 4π

β ln
[( μ2

0

2
QCD

)1/c + ( k2

2
QCD

)1/c]c
(22)

with β = 11 − 2Nf /3, QCD = 0.2 GeV, c = 0.2, and μ0 =
0.4 GeV following the prescription in Ref. [35].

In principle, the scale at which the noise fluctuations occur
should not exceed the saturation scale, as it is the only phys-
ical scale in the problem. However, the noise correlator is a
three-dimensional delta function, which means the numerical
fluctuations take place at the scale of the inverse lattice spac-
ing ≈1/a. Incorporating the running coupling in the kernel
acts to filter out higher |k| modes. Physically, this means that
the scale of the running coupling is taken to be that of the
emitted gluon.

VI. EQUATIONS OF MOTION

The evolution of glasma in this paper is performed in the
τ -η coordinate system. As in 2 + 1 dimensions, the source
terms in the Lagrangian are assumed to be eikonal and prop-
agate along the light-cone axes. Furthermore we set up our
coordinate system in such a way that the source currents are
below the light-cone axes as shown in Fig. 5. In this way, even
though the sources have a finite thickness, the forward light
cone is source free and the equation of motion is simply

[Dμ, Fμν] = 0 (23)

for τ > 0. Had we set up our coordinate system so that the
leading edges of the nuclei define x± instead of the trailing

edges, the forward light cone would not be source free. Had
we used the Minkowski coordinate system, there would also
be regions in z that are not source free [43,53].

The degrees of freedom that are evolved explicitly in time
are the electric field and the gauge links in the temporal gauge
(Aτ = 0). Starting from the Hamiltonian

H = τ

∫
dη

∫
d2x⊥(εη + εx + εy) (24)

where

εi=x,y = 1

2

1

τ 2
[(Ei )2 + (Bi )2], (25)

εη = 1

2
[(Eη )2 + (Bη )2] (26)

are the transverse and longitudinal energy densities, the
Hamiltonian equations of motion for the gauge fields can be
derived as

τ∂τ Ai = Ei, (27)

1

τ
∂τ Aη = Eη (28)

and

∂τ Ei = 1

τ
[Dη, Fηi] + τ [Dj, Fji], (29)

∂τ Eη = 1

τ
[Dj, Fjη]. (30)

The lattice version of these equations and the numerical
method we use to solve them closely follow those in Ref. [37].

Because of 1/τ factors in the equations, the initial time
cannot really be pushed to τ = 0. At LHC energies, the
saturation scale used in this paper is Qs ≈ 2–5 GeV, which
corresponds to 1/Qs ≈ 0.04–0.2 fm. In Ref. [37], it was ar-
gued that the initial proper time τ0 should be much smaller
than 1/Qs. In this paper, the initial time is set to τ0 = 0.01 fm.

To deal with the 1/τ factors in the equations, early time
evolutions require very small time steps so that �τ/τ � 1.
For this reason, variable time steps are employed in the fol-
lowing form:

�τ = �ξ tanh
τ

T0
(31)

or ξ = T0 ln[sinh(τ/T0)]. This form interpolates between two
limiting behaviors. For τ � T0, the time step behaves like
�τ ≈ �ξ ( τ

T0
) while for τ > T0 it behaves like �τ ≈ �ξ with

�ξ fixed. This achieves the goal of producing small time steps
for small τ and larger equal time steps for later times when the
1/τ factors are no longer very large. In this paper, T0 is set to
0.2 fm and �ξ is set to τ0/2 = 0.005 fm.

VII. FIELDS AND PRESSURE

As already discussed, the initial transverse chromoelectric
and chromomagnetic fields vanish in the boost-invariant case.
In 3 + 1 dimensions, this is no longer the case and the trans-
verse fields actually dominate the energy density at early times
due to the factor of 1/τ 2 in their contribution to the energy
density.
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FIG. 6. Left: The time evolution, in fm, of the energy density in
the different field components in 2 + 1 dimensions. Right: The same
quantity as the left panel plotted for the 3 + 1D implementation. Both
results are computed using the same 3 + 1D software, but with the
initial 2 + 1D and 3 + 1D setups, respectively.

The evolution of the energy density in the fields can be seen
for both the 2 + 1D and 3 + 1D scenarios in Fig. 6 where we
plot

1

τ

dE (τ )

dη
=

∫
d2x⊥(εη + εx + εy). (32)

It is clear that the early time behavior is quite different: In
2 + 1 dimensions, the transverse fields vanish at τ = 0 and
grow steadily until their contribution to the energy density is
comparable to the longitudinal fields. Similar behaviors were
also observed in Ref. [24]. In contrast, in 3 + 1 dimensions,
the transverse fields provide the dominant contribution to
the energy density initially. By typical hydrodynamic initial-
ization times of τ = 0.2–0.6 fm, the 3 + 1D fields all have
similar contributions to the energy, as is the case in 2 + 1
dimensions.

The early time behavior of the fields in 3 + 1 dimensions
causes the longitudinal and transverse pressures to behave
quite differently than in the boost invariant case (similar be-
havior was observed in Ref. [43]). To see why, it is convenient
to first express the diagonal components of the stress energy

FIG. 7. Comparison of the transverse and longitudinal pressures
in the 2 + 1D and 3 + 1D IP-GLASMA formulations. Both results are
computed using the same 3 + 1D software, but with the initial 2 +
1D and 3 + 1D setups, respectively.

tensor in terms of the quantities defined in Eqs. (25) and (26):

T ττ = εx + εy + εη = ε,

T ii = − εi + ε j + εη

∣∣∣∣i=x,y
j �=i

,

τ 2T ηη = εx + εy − εη

(33)

where T ii is either T xx or T yy. The pressure to energy ratios
are given by

PL

ε
= τ 2T ηη

T ττ
,

PT

ε
= T xx + T yy

2T ττ
. (34)

As can be seen in Fig. 7, the τ −→ 0+ limit is quite different in
2 + 1 and 3 + 1 dimensions:

lim
τ→0+

PL

ε
=

{
εx+εy

εx+εy
= 1 in 3+1 dimensions

−εη

εη
= −1 in 2+1 dimensions

. (35)

and

lim
τ→0+

PT

ε
=

{ εη

εx+εy
= 0 in 3+1 dimensions

εη

εη
= 1 in 2+1 dimensions.

(36)

This is because εx,y/εη ≈ 1/τ 2 in the small τ limit in 3 + 1
dimensions while εx,y = 0 at τ = 0+ in 2 + 1 dimensions.
Because of the tracelessness of T μν , the intersection of the
pressures necessarily occurs at ε/3 in 3 + 1D evolution, the
condition for pressure isotropy. The pressure does not remain
isotropic, however, and approaches the 2 + 1D asymptotic
behavior for large τ , as the longitudinal pressure freestreams
towards zero in both cases. At around the typical hydro-
dynamic switching time (τ ≈ 0.4), the deviation from the
pressure isotropy is 10–20%. Viscous MUSIC currently allows
for applications with such anisotropic initial conditions. It
will be, however, interesting to see how incorporating an
additional kinetic theory stage such as the Kømpøst [62,63]
or employing AHYDRO [64,65] would compare with our cur-
rent results. Further studies will form the basis of future
investigations.
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FIG. 8. A comparison between the 3 + 1D IP-GLASMA presented
in this paper and the 2 + 1D IP-GLASMA in Ref. [28]. Panel (a) com-
pares the eccentricities between the two simulations. In panel (b),
γ = uτ is plotted, and panel (c) shows the longitudinal and transverse
components of the flow velocity. Finally, panel (d) compares the
number of binary collisions, Nbin, as a way of gauging how the two
different centrality selection procedures compare. The 3 + 1D curves
are calculated at τ = 0.6 fm and the 2 + 1D curves are calculated at
τ = 0.4 fm, which are the respective hydrodynamic switching times.

Comparing the 2 + 1D and 3 + 1D pressure curves, PT /ε

is substantially larger in 2 + 1 dimensions for the entire evo-
lution up to the typical hydrodynamic switching time that is
used, τ = 0.4 fm. This can be seen clearly in Fig. 7. More
transverse pressure should mean more transverse flow, and
indeed that is what is seen in Fig. 8(c), which compares
the transverse and longitudinal flow between the two simu-
lations. One can readily see that the transverse flow develops
more rapidly in the 2 + 1D simulations. It needs to be noted
that the 3 + 1D curves in Fig. 8 correspond to τ = 0.6 fm,
whereas the 2 + 1D curves are at τ = 0.4 fm, the hydro-
dynamic switching times in the respective simulations. One
may wonder whether matching the hydronization times would
change any conclusions. Since the flow in the 3 + 1D case
is lower, this is not the case. Running the 2 + 1D case up to
τ = 0.6 fm only accentuates the difference.

VIII. QUESTION OF THE 2 + 1D LIMIT

In 2 + 1 dimensions, the initial transverse fields Ei and Fiη

are both zero. This originates from the facts that A0,η = 0 and
that nothing depends on η. In 3 + 1 dimensions, the η depen-
dence of Ei

0 is dictated by the Gauss law [Di, Ei
0] = −[Dη, Eη

0 ]

and the fact that the transverse chromomagnetic field compo-
nent Fiη depends on η through A0,η and A0,i. Ultimately, the η

dependence of any term in these expressions comes from the
η dependence of V in Eq. (18).

The main issue for the approach to the 2 + 1D initial con-
dition, equivalently the

√
s → ∞ limit, is how the transverse

part of the energy density [τ times εx,y in Eq. (25)] behaves
in that limit. The behavior of the transverse energy density
depends on three main components. The first one is how fast
the η dependence of V goes away as

√
s → ∞. The second

one is how the initial time τ0 depends on
√

s. The third one is
how fast the field strength grows as

√
s grows.

The
√

s dependence of V is in the running coupling con-
stant. From Eq. (19), one can see that ζ ∝ √

αs and hence the
Y derivative of V will behave like some power of αs. As

√
s →

∞, the running coupling αs → 0. In this sense, one could
argue that the transverse electric field Ei and the magnetic
field Fiη as well as Aη will vanish in the infinite momentum
limit, restoring the 2 + 1D initial conditions. This argument,
however, is too simple. One needs to take into account the
behavior of the gauge field strength and the behavior of τ0 as
well.

Consider the transverse magnetic field

Fiη = ∂iAη − ∂ηAi − ig[Ai, Aη]. (37)

Because of the form of the initial gauge fields given in Eqs. (6)
and (12), all three terms above contain an η derivative. The
transverse electric field Ei

0 also depends on the size of η

derivatives through the Gauss condition. As argued above, the
size of the η derivative is given by some positive power of
the strong coupling αs(Qs) where Qs ∼ sλ/2 is the saturation
scale. The transverse gauge field components A0,i behave like
Qs/g and ∂i behaves like Qs. The initial time τ0 should behave
like 1/Qs or some power of 1/

√
s. Putting these all together,

one can then argue that at the initial time τ0

τ0εi ∼ (Fiη )2/τ0 ∼ Qa
s α

b
s (38)

where a and b are some positive powers. Since the saturation
scale behaves like a power of

√
s, and the coupling constant

behaves like an inverse logarithm of
√

s, [αs ≈ 1/ ln(Qs)],
the transverse energy density εi in Eq. (25) cannot vanish
as

√
s → ∞. It will actually diverge. Hence, our 3 + 1D ini-

tial conditions, although they inherit many features from the
2 + 1D case, will not recover the 2 + 1D initial conditions in
the infinite momentum limit.

Ultimately, whether or not the boost-invariant initial con-
ditions are recovered as

√
s → ∞ depends on how the η

derivatives of the initial fields behave in that limit. The 2 + 1D
limit will be recovered only if the η derivatives vanish faster
than some negative power of

√
s. There are indeed other 3 +

1D glasma models that do recover the 2 + 1D limit [43,53].
They can do so because their initial conditions do not include
as strong longitudinal fluctuations as those provided by the
JIMWLK evolution. Consequently, the η derivatives in these
models go to zero much faster than αs does.

A related question is whether we should see in our
simulations the Weibel instability observed in various 3 +
1D CYM simulations [36–42]. In Ref. [37], it was shown
that the instability-driven exponential growth starts around
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τ ≈ 30/(g2μ). Taking 1/(g2μ) ≈ 1/Qs = O(0.1) fm relevant
for RHIC and the LHC collisions [36], the exponential growth
would start around τ = O(1) fm. This is similar to or longer
than the evolution time of the glasma in our simulations.
According to this estimate, the effect of such instability would
be weak in our simulations. One should, however, note that
the spectrum of the η-dependent fluctuations is quite different
in those simulations compared to ours. Investigation of the
eventual appearance of the Weibel instability in our setting
would be an interesting future study.

IX. HYDRODYNAMIC EVOLUTION
AND HADRONIC CASCADE

After the CYM evolution, the stress energy tensor is con-
structed from the chromoelectric and chromomagnetic fields.
The stress energy tensor is diagonalized to yield the local
energy density, ε, and flow velocity, uμ, via the Landau con-
dition:

T μ
ν uν = εuμ. (39)

In previous studies, it was common to initialize hydrody-
namics simulations with the ideal stress energy tensor:

T μν
ideal = (ε + P)uμuν − Pgμν. (40)

In this paper, the entire stress energy tensor that is generated
by 3 + 1D IP-GLASMA is used to initialize 3 + 1D hydro-
dynamics, and thus no information is lost in the matching
condition.

The hydrodynamic stress energy tensor can be decomposed
into an ideal part and a viscous part:

T μν
hydro = T μν

ideal + πμν − �(gμν − uμuν ) (41)

where πμν is the shear-stress tensor and � is the bulk pres-
sure. Since the CYM is conformal, there is no bulk pressure,
and the shear stress tensor is simply the difference between
the IP-GLASMA energy-momentum tensor and that of ideal
hydrodynamics:

πμν = T μν − T μν
ideal. (42)

There is, however, a discontinuity in the relationship between
the energy and pressure, i.e., the equation of state (EoS), in
the IP-GLASMA phase for which ε = 3P and the hydrodynamic
phase for which the EoS comes from lattice QCD calculations
[66] matched to a hadronic resonance gas model. This discon-
tinuity in pressure gives the initial bulk pressure:

� = PCYM − PhotQCD(ε) = ε/3 − PhotQCD(ε). (43)

In this paper, the switching time between the CYM dynam-
ics and hydrodynamics is set to τh = 0.6 fm. This switching
time is a little later than the one used in the 2 + 1D case
(0.4 fm) [28] to allow development of a bit more preflow. The
effects of changing τh are, however, not extensively studied in
the 3 + 1D setting so far and will be left for future studies.
The values of the transport coefficients we used are the same
as those we used in Ref. [28] except the value of the shear
viscosity which is set to η/s = 0.08 due to the fact that hydro-
dynamic flow develops slower in the 3 + 1D expansion than in
the 2 + 1D expansion as explained in the next section. Switch

to URQMD occurs via the Cooper-Frye formula at the hyper-
surface defined by the switching temperature of 145 MeV.

Altogether, 1200 3 + 1D IP-GLASMA+ MUSIC events were
generated in the 0–50% centrality range, or 240 per 10% in
each 10% centrality bin. Each one of these events was then
sampled for 100 URQMD runs.

X. RESULTS

A. Initial state quantities

Before describing the 3 + 1D results, it is important for us
to check whether the additional physics present in the initial-
ization of the fields leads to any differences in the midrapidity
physics. For this purpose we show the initial state anisotropy
(also known as eccentricity) as characterized by

εn =
∫

d2x⊥rneinφε(x⊥)∫
d2x⊥rnε(x⊥)

. (44)

Here ε(x⊥) is the energy density at x⊥, r = |x⊥|, and φ =
tan−1(y/x). Figure 8(a) compares the eccentricities between
the 3 + 1D and 2 + 1D simulations, where the 2 + 1D simu-
lations are from Ref. [28]. The two simulations show the same
trends but the εn values are systematically larger in the 2 + 1D
simulation, particularly at larger centralities. This could be
partially due to the smaller number of events for the 3 + 1D
case. The 3 + 1D events have an order of magnitude fewer
events than the 2 + 1D. As such, it is possible that the tail of
the 3 + 1D multiplicity distribution was not fully populated.
Figure 8(d) compares the number of binary collisions, Nbin,
as a function of centrality, as a way of showing how nucleus-
nucleus overlap corresponds to centrality. This figure shows
that the 2 + 1D curve is slightly steeper as a function of
centrality, which is consistent with the more rapid rise in εn

as a function of centrality shown in Fig. 8(a). The centrality
selection done here follows the same procedure discussed in
Ref. [28].

In Figs. 8(b) and 8(c), the flow vector components uτ = γ

and the rms values of the spatial components defined as

uμ
rms =

√〈∫
d2x⊥ε(x⊥)(uμ)2∫

d2x⊥ε(x⊥)

〉
(45)

are shown. The angular bracket here means the average over
the events. These values are measured at the hydrodynamic
switching time τ = 0.6 fm for the 3 + 1D simulations and
τ = 0.4 fm for the 2 + 1D simulations. Although the 3 + 1D
CYM simulations were allowed to run longer, the flow com-
ponents are still smaller than the 2 + 1D case. This ultimately
results from the difference in the behaviors of the pressure
component which was discussed in depth in Sec. VII. One
consequence of less-developed preflow is that the value of
shear viscosity over entropy density, η/s, in 3 + 1D simula-
tions needs to be less than that in 2 + 1D simulations to match
the experimental data.

B. Midrapidity observables

While the hydrodynamic evolution allows for some tun-
ing of parameters, such as the transport coefficients, the
3 + 1D IP-GLASMA initialization is able to describe the
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FIG. 9. Identified particle spectrum for two centralities, compared to ALICE data [69]. The lower panels show the ratio of the theoretical
data to the experimental calculation for each curve.

essential midrapidity observables. Here, η/s = 0.08, which
differs from the value favored by 2 + 1D IP-GLASMA. For
example, Ref. [67] which is a recent 2 + 1D IP-GLASMA paper
and uses the same EOS as this paper has η/s = 0.12. Our pre-
vious calculations using 2 + 1D IP-GLASMA [28] used η/s =
0.095. The difference in η/s is due in part to the differences
in preequilibrium flow between the 2 + 1D and 3 + 1D sim-
ulations. The bulk viscosity, ζ/s(T ), is taken from Ref. [68]
and is consistent with that typically used in 2 + 1D IP-GLASMA

simulations, and finds similar agreement with data.
The hadronic spectra are well described, shown for two

centrality classes in Fig. 9, as are the particles identified as
〈pT 〉 in Fig. 10. The differential vn shown in Fig. 11 have
similar behavior to other hydrodynamic calculations that in-
clude bulk viscosity: a slight underestimate of the vn(pT ) at
small pT , say up to pT ≈ 0.7 GeV, and a slight overestimate
above. Hydrodynamic calculations without bulk viscosity are
typically able to describe the vn(pT ) over a much wider range
in pT but typically overestimate the 〈pT 〉, particularly for
heavier particles such as protons. By including bulk viscosity,
one typically improves the spectra and 〈pT 〉, but degrades
agreement with vn(pT ). It is still possible to find good agree-
ment with the integrated vn, by missing the vn(pT ) at small pT

and missing in the opposite direction at high pT . In this paper,
the specific shear viscosity η/s is tuned to find agreement with
the integrated v2.

To summarize, phenomenologically, including bulk viscos-
ity leads to the tradeoff of vn(pT ) for 〈pT 〉 and the particle
spectra. This can be justified by the fact that the spectra and
〈pT 〉 are more basic quantities and that vn(pT ) is sensitive to
δ f corrections that have large uncertainties, particularly in the
case of bulk viscosity.

C. Rapidity dependent observables

The primary purpose of developing a three-dimensional
extension of the boost-invariant IP-GLASMA is to explore the
longitudinal dynamics of HICs, and we do so in this section.

The initial state events are run in a rapidity window of
[−4, 4]. In order to avoid sharp gradients at the boundaries

in η, it is necessary to put an envelope function on the hy-
drodynamic evolution that provides a smooth gradient to zero
density for |η| > 2.75. Here, a half Gaussian takes the com-
ponents of T μν to zero as follows:

T μν
hydro(x⊥, η, τh) = T μν

IP-GLASMA(x⊥, η, τh)

× exp

[
−θ (|η| − 2.75|) (|η| − 2.75)2

2

]
.

(46)

FIG. 10. The particle identified 〈pT 〉 for Pb-Pb at 2.76 TeV in the
0–5% centrality bin as compared to ALICE data [69].
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FIG. 11. Differential flow harmonics vn{2}(pT ) for two centralities, compared to ALICE data [70]. Left upper panel: 0–5% centrality.
Right upper panel: 30–40% centrality. Lower panels show the ratio of theoretical data to experimental data from the upper panels.

With this envelope, the model can match the pseudorapidity
dependence of the charged hadron multiplicity per unit pseu-
dorapidity, dNch/dηs, as plotted in Fig. 12.

The multiplicity distribution dNch/dηs does not really re-
quire sophisticated IP-GLASMA initial states to describe [23] as
it is not very sensitive to longitudinal fluctuations. To see the
effect of longitudinal fluctuations better, correlation observ-
ables are needed. In Figs. 13 and 14, we show our calculations
of the flow harmonics as a function of the pseudorapidity fol-
lowing the procedures in Ref. [72] (by ALICE) and Ref. [73]
(by CMS). The main differences between the ALICE and the
CMS measurements are the reference ranges (|η| < 0.5 for
ALICE and |η| < 2.4 for CMS) and the pT ranges (pT > 0
for ALICE and 0.3 < pT < 3.0 GeV for CMS).

In Fig. 14, v2(η) is compared to CMS data, using their
kinematic cuts of pT and η. The flow harmonic v2(η) has
a very mild rapidity dependence and the calculation shows
similar behavior. The CMS data use reference particles over
a range η that is a much wider range than that used by AL-
ICE in Fig. 13. This likely contributes to the steeper rapidity

FIG. 12. Charged hadron multiplicity as a function of rapidity, as
compared to ALICE data [71].

dependence in the ALICE data, because one would expect a
more peaked structure at midrapidity when correlating with
midrapidity, as seen in the data. It is, however, apparent that
the current 3 + 1D IP-GLASMA initial conditions do not con-
tain enough longitudinal decorrelations to describe the ALICE
data. This may be remedied by introducing thermal fluctua-
tions in the hydrodynamic evolution. It is also possible that
the fact that our calculations underestimate vn(pT ) in the low
momentum region may also contribute to the discrepancy, but
this needs to be investigated further.

We have also calculated the rapidity correlation rn(ηa, ηb)
[74]. However, as the number of events we have so far (240
3 + 1D IP-GLASMA+MUSIC events per 10% centrality) turned
out to be too small to make statistically meaningful state-
ments, we will leave it for future study.

XI. CONCLUSION

The purpose of this paper is to introduce a realistic model
of 3 + 1D initial conditions for relativistic heavy ion collision
simulations. The IP-GLASMA model, originally developed for
2 + 1D simulations, has had great phenomenological success
for description of the midrapidity observables that reflect the
underlying QGP dynamics. To extend the reach of theoretical
descriptive and predictive power to 3 + 1 dimensions, it is
imperative to develop a realistic extension of the IP-GLASMA

initial conditions. Furthermore, hydrodynamic and hadronic
cascade simulations of heavy ion collisions are capable of
handling 3 + 1D dynamics. As these simulations are sensi-
tive to the initial conditions, it is crucial to develop realistic
3 + 1D initial conditions.

Owing to the fact that the simplicity of the 2 + 1D formu-
lation comes from the assumption of the infinite momentum
frame (equivalently, boost invariance), the extension is not just
a matter of trivially adding one more dimension to the 2 + 1D
IP-GLASMA. In this paper, we have made an effort to preserve
the simplicity of the 2 + 1D formulation as much as possible
while breaking the boost invariance.
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FIG. 13. The rapidity dependence of the momentum anisotropies vn(η)(n = 2, 3, 4), compared to ALICE data [72]. Both data and the
calculation are for pT > 0 GeV and use reference particles at midrapidity (|η| � 0.5).

Our way of doing so is to generate longitudinal structure in
the precollision gluon fields through the JIMWLK evolution,
the numerical implementation of which was developed in
Ref. [35]. This was incorporated in the IP-GLASMA model in
Ref. [52]. There remain theoretical difficulties in temporally
evolving this system on the lattice in three spatial dimensions,
however. These include the difficulty posed by the initial
gauge fields and the initial solution to Gauss’s law, as outlined
in Sec. IV. Both of these problems are addressed in this paper,
although the solutions may not be unique. This allows for a
temporal evolution in three spatial dimensions and thus ex-
ploration of the phenomenological effects of the longitudinal
structure generated by the JIMWLK equations. The 3 + 1D
IP-GLASMA simulation is coupled to MUSIC and URQMD for
comparison to hadronic results.

The 2 + 1D IP-GLASMA describes the transverse dynamics
of heavy ion collisions extremely well. With slightly modified
parameters, the 3 + 1D implementation is able to achieve a
similar level of agreement to key observables such as 〈pT 〉,
particle spectra, and pT -integrated vn. In addition, the 3 + 1D
IP-GLASMA is able to explore longitudinal observables. In this

paper, the multiplicity and vn flow harmonics are explored as
a function of pseudorapidity, and good agreement is found.
Comparison to higher order correlations involving the lon-
gitudinal direction will be explored in a future work, once
substantially better statistics are generated. This paper serves
as a proof of principle that the IP-GLASMA can be generalized
to 3 + 1D in a way that allows for consistent temporal evolu-
tion on the lattice and thus phenomenological application.
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FIG. 15. Temporal evolution of (B5). Despite fluctuations at very
early times, energy is nicely conserved throughout the evolution of
the system. This figure is a typical event with b = 0 fm.
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APPENDIX A: SOLUTION TO GAUSS’s LAW

As mentioned, using the ansatz in Eq. (16) turns Gauss’s
law Eq. (11) into the covariant Poisson equation. We use a
modified Jacobi method for solving the Poisson equation to
find the initial transverse E fields that satisfy Gauss’s law:

∇2
⊥φ = −ρ.

Discretizing, and solving for φi, j ,

φi+1, j + φi−1, j − 2φi, j

h2
+ φi, j+1 + φi, j−1 − 2φi, j

h2
= −ρi, j,

(A1)

φi, j = 1

4
(φi+1, j + φi−1, j + φi, j+1 + φi, j−1 + h2ρi, j ). (A2)

Then the iterative procedure is given by

φn+1
i, j = 1

4

(
φn

i+1, j + φn
i−1, j + φn

i, j+1 + φn
i, j−1 + h2ρn

i, j

)
.

(A3)

For covariant derivatives, all quantities should be parallel
transported:

φn+1
i, j = 1

4

(
Ui, jφ

n
i+1, jU

†
i, j + U †

i−1, jφ
n
i−1, jUi−1, j+ (A4)

Ui, jφ
n
i, j+1U

†
i, j + U †

i, j−1φ
n
i, j−1Ui, j−1 + h2ρn

i, j

)
. (A5)

APPENDIX B: CONSERVATION OF ENERGY

The statement of energy conservation in Milne coordinates
is

∂τ T ττ + ∂⊥T ⊥τ + ∂ηT ητ = −τT ηη − T ττ /τ. (B1)

Multiplying by τ and collecting terms gives

∂τ (τT ττ ) + ∂⊥(τT ⊥τ ) + ∂η(τT ητ ) = −τ 2T ηη. (B2)

Integrating over the four-dimensional volume (dxdydηdτ ),(
�T ττ

total

) +
∫

dxdydηdτ∂η(τT ητ )

= −
∫

dxdydηdτ (τ 2T ηη ). (B3)

The second term becomes a boundary term:

(
�T ττ

total

) +
(∫

dxdydτ (τT ητ )

)∣∣∣∣
ηmax

ηmin

= −
∫

dxdydηdτ (τ 2T ηη ). (B4)

In Fig. 15, the deviation of the ratio of the left-hand side to
the right-hand side of Eq. (B4) from unity is plotted. Explic-
itly, the quantity on the y axis is⎛

⎜⎜⎜⎝1 −

∫
dxdydη(τT ττ )

∣∣∣∣
τmax

τmin

+ (∫
dxdydτ (τT ητ )

)∣∣∣∣
ηmax

ηmin

− ∫
dxdydηdτ (τ 2T ηη )

⎞
⎟⎟⎟⎠

× 100%. (B5)

There is deviation from energy conservation at extremely
early times, likely due to lattice effects, but the ratio ap-
proaches and remains close to zero for the rest of the
evolution. This indicates that energy is conserved to within
about 1% throughout most of the simulation.
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