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Mapping properties of the quark gluon plasma in Pb-Pb and Xe-Xe collisions at energies available
at the CERN Large Hadron Collider
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A phenomenological analysis of the experimental measurements of transverse momentum spectra of identified
charged hadrons and strange hyperons in Pb-Pb and Xe-Xe collisions at the CERN Large Hadron Collider (LHC)
is presented. The analysis is based on the relativistic fluid dynamics description implemented in the numerically
efficient FLUIDuM approach. Building on our previous work, we separate in our treatment the chemical and
kinetic freeze-outs, and incorporate the partial chemical equilibrium to describe the late stages of the collision
evolution. This analysis makes use of Bayesian inference to determine key parameters of the quark-gluon plasma
(QGP) evolution and its properties including the shear and bulk viscosity to entropy ratios, the initialization
time, the initial entropy density, and the freeze-out temperatures. The physics parameters and their posterior
probabilities are extracted using a global search in multidimensional space with modern machine learning tools,
such as ensembles of neural networks. We employ our newly developed fast framework to assess systematic
uncertainties in the extracted model parameters by systematically varying key components of our analysis.
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I. INTRODUCTION

Heavy-ion collisions at ultrarelativistic energies have been
at the forefront of modern physics research for several
decades. These collisions, studied at facilities such as the BNL
Relativistic Heavy Ion Collider (RHIC) and the CERN Large
Hadron Collider (LHC), create an extreme state of matter
known as the quark-gluon plasma (QGP) [1–4]. This fluid is of
great interest because it is described by a renormalizable and
fundamental quantum field theory at the microscopic level,
i.e., quantum chromodynamics (QCD). While the macro-
scopic fluid properties remain challenging to calculate from
first principles and a limited number of computations exist to
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date, an increasing number of experimental results motivate
phenomenological and theoretical studies. One of the key
features of the QGP is its collective behavior, which is thought
to arise from the fluidlike properties of the system. How-
ever, recent experimental observations of collective behavior
in proton-nucleus and proton-proton collision systems [5–8]
have challenged the uniqueness of the fluidlike response of
the QGP. The resolution of the origins of collective behavior
in heavy-ion collisions will likely rely on a quantitative rather
than just qualitative agreement between data and models.

Traditionally, physical properties of QCD matter have
been determined by comparing experimental data with model
calculations of event-averaged and predefined observables.
However, recent developments have shown promise in extract-
ing more information from the final-state particles produced in
heavy-ion collisions. Two such methods are Bayesian analy-
sis [9–20] and deep learning [21,22]. Bayesian analysis uses
global fitting to simultaneously determine multiple model
parameters, utilizing all available experimental data. On the
other hand, deep learning identifies observables that are sen-
sitive to specific physical properties, enabling the extraction
of relevant information. This work improves upon our pre-
vious analysis of Ref. [23] by using Bayesian inference as
the optimality criterion. The previous approach of minimizing
the χ2 value had several limitations, including the neglect
of experimental data correlations, interpolation uncertainties,
and parameter correlations. In addition, we improved our the-
oretical description with respect to Ref. [23] by separating
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the chemical and kinematic freeze-outs, and incorporating the
partial chemical equilibrium to describe the later stages of
the evolution, as well as by exploiting a parametrization from
Yang-Mills theory for the shear viscosity to entropy ratio of
the QGP [24,25] instead of using a constant value.

Our model for simulating high-energy nuclear collisions
combines three distinct components. The TRENTO model [26]
was utilized for the initial conditions, while the FLUIDuM
model [27], featuring a mode splitting technique for very
fast computations, was used for the relativistic fluid dynamic
expansion with viscosity. Additionally, the FASTRESO code
[28] was used to take resonance decays into account. Despite
FLUIDuM being significantly faster than event-by-event hy-
drodynamic codes, it is still beneficial to develop an emulator
that can function as a quick substitute for the full model.
Where previous Bayesian analyses [9–18] utilized Gaussian
process regression, we for the first time exploit neural net-
work emulation. It has been demonstrated in Ref. [29] that
infinitely wide neural networks can approximate Gaussian
process regression. Furthermore, the use of neural networks
has several computational benefits, including significantly re-
duced training time, lower memory usage, and the ability to
handle any number of inputs and outputs. This newly de-
veloped framework will have additional applications in the
precise fitting of charm and beauty observables contributing to
further constrain the heavy-quark spatial diffusion coefficient,
widening our knowledge of QGP transport properties [30,31].

In the present work, we determine the specific shear and
bulk viscosity to entropy ratios of the QGP, as well as the
freeze-out temperatures Tkin and Tchem, the starting time of a
fluid description τ0, and the normalization of the initial en-
tropy profile. We employ our newly developed fast framework
to comprehensively explore systematic uncertainties in the
extracted model parameters by systematically varying critical
components of our analysis. We compare against experimental
measurements of transverse momentum spectra of identified
charged hadrons (π , K , p) and strange hyperons (�) with
pT < 2 GeV/c in Pb-Pb collisions at

√
sNN = 2.76 TeV and√

sNN = 5.02 TeV, and Xe-Xe collisions at
√

sNN = 5.44 TeV
from the ALICE Collaboration [32–35]. Given that this paper
primarily serves as a proof of concept for our new Bayesian
inference framework, our study will be restricted to the 0–
5% centrality range. We specifically chose a very central bin
because we expect the background-fluctuation splitting ansatz
that underlies FLUIDuM to work best for central collisions,
where the profiles tend to be the most symmetric. Further-
more, the restriction to only one centrality class was imposed
such that we are able to keep the initial-state parameters,
which play an important role in the centrality dependence
of the observables, fixed. In a forthcoming publication, we
will explore the use of anisotropic flow observables, as well
as experimental data from different centrality classes, to gain
further insight into the key parameters of the QGP. Neverthe-
less, it is important to underscore that through the analysis
of transverse momentum spectra exclusively, we can derive
significant constraints on essential aspects such as the bulk
viscosity, the freeze-out temperatures, τ0, and the normaliza-
tion. This work highlights the potential of such analyses to
provide valuable insights into the properties of the QGP.

This paper is organized as follows. We summarize the
details of the initial conditions, the hydrodynamic evolution,
and the hadronization procedures in Sec. II. The procedure of
the Bayesian analysis is discussed in Sec. III. We then discuss
the extraction of the model parameters in Sec. IV, and end
with a summary and future directions in Sec. V.

II. MODELING OF THE DIFFERENT STAGES OF A
HEAVY-ION COLLISION

The following section provides a brief overview of the vari-
ous components of our theoretical model. We first examine the
initial conditions, which are determined using the TRENTO

model [26]. Subsequently, we turn to the time evolution as
implemented in FLUIDuM [27], which solves the equations of
relativistic fluid dynamics with shear and bulk viscosity and
corresponding relaxation times. The newly introduced partial
chemical equilibrium will be discussed next, together with the
kinetic freeze-out and the implementation of strong resonance
decays performed with FASTRESO [28].

A. Initial conditions: TRENTO

As in our previous work [23], we use the TRENTO model
parametrization [26] for the initial conditions. This is an
effective model, intended to generate realistic Monte Carlo
initial transverse entropy (or energy) profiles without as-
suming specific physical mechanisms. It involves positioning
nucleons with a Gaussian width w using a fluctuating Glauber
model, while ensuring a minimum distance d between them.
Each nucleon contains m randomly placed constituents with
a Gaussian width of v. TRENTO uses an entropy deposition
parameter p that interpolates among qualitatively different
physical mechanisms for entropy production [26]. Further-
more, additional multiplicity fluctuations are introduced by
multiplying the density of each nucleon by random weights
sampled from a gamma distribution with unit mean and shape
parameter k.

For this study, the TRENTO parameters are not estimated
via the Bayesian analysis. Instead, they are set based on the
current state of knowledge in literature. As reviewed exten-
sively in Ref. [36], we set w = 0.5 fm, m = 4, v = 0.4 fm,
p = 0, and use the TRENTO output as entropy density. In
addition, we set k = 1 and d = 0.75 fm, based on the outcome
of the Bayesian analysis of Ref. [13]. For the nucleon-nucleon
cross section, the measurements by the ALICE Collaboration
[37] are used, i.e., x = 61.8, 67.6, and 68.4 mb for Pb-Pb at√

sNN = 2.76 TeV, Pb-Pb at
√

sNN = 5.02 TeV, and Xe-Xe
at

√
sNN = 5.44 TeV, respectively. The Pb ion is sampled

from a spherically symmetric Woods-Saxon distribution with
radius R = 6.65 fm and surface thickness a = 0.54 fm, while
the Xe ion comes from a deformed spheroidal Woods-Saxon
distribution with R = 5.60 fm, a = 0.49 fm, and deformation
parameters β2 = 0.21 and β4 = 0.0 [38]. Using this set of
parameters (which we call the “central” configuration in the
remaining) we have generated the transverse density TR(x, y)
for 1.5 × 106 minimum-bias events with impact parameter
sampled from the range b ∈ [0 fm, 20 fm].
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To classify the TRENTO events in centrality classes, we
utilize the integrated transverse density

∫
d2x TR(�x), which is

expected to have a linear monotonic relationship with multi-
plicity [39]. This allows us to divide the events into narrow
multiplicity classes of 1%, each of which can be treated as an
ensemble of events with random orientation in the transverse
plane as in experiment. For each centrality class, we determine
the averaged or expected entropy density profile as

s(r) = Norm

τ0
〈TR(r)〉, (1)

where the average 〈· · · 〉 is taken over all the events in the class
with a random reaction plane angle. Consequently, the average
is independent of the azimuthal angle φ by construction. We
have introduced a centrality-class-dependent normalization
constant Norm to account for possible variation of the fits
from the TRENTO multiplicity scaling. We account for the
longitudinal expansion effect (Bjorken flow) at early times by
scaling the Norm by the initialization time τ0. To enlarge the
statistic of the average entropy profile 〈TR(r)〉 (as we will see
in the next section, it can be taken independently of φ for this
work), we perform the event average over all events in one
centrality class:

〈TR(r)〉 = 1

2π

∫ 2π

0
dφ 〈TR(r, φ)〉. (2)

As in Ref. [23], we produce the averaged entropy densities
for the larger experimental centrality classes by averaging the
corresponding distributions from the more narrow classes and
propagating those.

Note that a free-streaming phase that evolves the energy
density profile at τ = 0 for a short timescale to finite τ0

is currently not included in our framework. To mimic the
effect of a free-streaming phase, which can be seen as a
suppression/dilution of the “spikiness” of the initial entropy
density profiles, we also test another set of TRENTO param-
eters (called the “free-steaming” configuration later on) in
which the width of the nucleons is increased (i.e., w = 1.0
fm, v = 0.9 fm, and d = 1.25 fm). A larger nucleon width in
TRENTO is observed to suppress the spikiness in the initial
entropy density. Systematic variations of the other TRENTO

parameters are not considered.

B. Hydrodynamic evolution: FLUIDuM

The software package FLUIDuM [27], which utilizes a
theoretical framework based on relativistic fluid dynam-
ics with mode expansion [40–42], is used to solve the
equations of motion for relativistic fluids. This involves de-
composing the fluid fields into background and fluctuation
components. Specifically, the fluid fields are represented as
�(τ, r, φ, η) = �0(τ, r) + ε �1(τ, r, φ, η), where �0 is the
background solution, �1 is the perturbation around it, and
ε is the formal expansion parameter (set to ε → 1 at the
end). The background and perturbations can be solved ac-
curately and efficiently using numerical algorithms [27].
The background-fluctuation splitting is justified due to two
statistical symmetries that are approximately observed in
high-energy nuclear collisions. First, the collision energy is

sufficiently high, leading to an approximate boost invariance
of the system at midrapidity. This implies that observables
at midrapidity exhibit only a mild dependence on the ra-
pidity, and consequently the dependence from it can be a
perturbation. Second, there is a statistical symmetry related
to the random orientation of the reaction plane angle. In each
collision event, the two ions collide with a particular relative
orientation in the reaction plane, which is uncorrelated with
other events. When calculating observables averaged over
multiple events, the azimuthal angle’s dependence is effec-
tively removed, unless the reaction plane angle is explicitly
reconstructed and corrected for each event. Moreover, the
average will always be independent of the azimuthal angle,
and every dependence form is a perturbation.

For our study, we are interested in examining the az-
imuthally averaged transverse momentum spectra of identified
particles at midrapidity. Therefore, we do not consider
azimuthally and rapidity-dependent perturbations and only re-
quire the background solution to the fluid evolution equations,
neglecting terms of quadratic or higher order in perturbation
amplitudes. The causal equations of motion are obtained from
second-order Israel-Stewart hydrodynamics [43].

We introduce a novel aspect here with respect to Ref. [23],
by assuming the shear viscosity to entropy ratio η/s to be
temperature dependent. In particular, we exploit the calcula-
tion in Yang-Mills theory of Ref. [24] with recently updated
parameters [25]. The calculation provides an analytic fit for-
mula describing the temperature dependence of η/s as a direct
sum of a glueball resonance gas contribution with an algebraic
decay at small temperatures and a high-temperature contri-
bution consistent with hard-thermal-loop (HTL) resummed
perturbation theory. The fit function in SU(3) Landau gauge
Yang-Mills theory is

η

s
(T )YM = a

(
T

Tc
− d

)2

+ b

(T/Tc)δ
. (3)

The first term has been changed with respect to Ref. [24] for
simplicity since the differences do not play a role for hydro-
dynamic applications [25]. The best fit to the full Yang-Mills
results is given by the parameters a = 0.0613, b = 0.00588,
d = −0.709, and δ = 40.3. In the low-temperature regime,
the pure glueball resonance gas is not replaced by a hadron
resonance gas; the b and δ parameters are adjusted to 0.02 and
6.0 to capture this regime better. Finally, an overall correction
factor of 4/3 is used to take the differences in scales and the
running couplings in Yang-Mills theory and QCD into account
[24]. On top of this, we add a global scaling (η/s)scale as a
parameter to be estimated with the Bayesian analysis

η

s
(T )QCD = (η/s)scale

4

3

[
a

(
T

Tc
− d

)2

+ 0.02

(T/Tc)6

]
. (4)

The Yang-Mills and QCD η/s distributions are presented in
the left panel of Fig. 1. We would like to emphasise that
our η/s parametrization is consistently applied throughout
both the partonic and hadronic phases. In contrast, other
Bayesian analyses [9–20] commonly adopt a different ap-
proach, switching to the URQMD [44] or SMASH [45]
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FIG. 1. Temperature dependence of the shear (left) and bulk (right) viscosity to entropy ratios as defined in Eqs. (4), and (5), respectively.
Both the Yang-Mills and QCD η/s distributions are shown, as well as the Kovtun-Son-Starinet (KSS) bound from anti–de Sitter and conformal
field theory (AdS-CFT) calculations, η/s = 1/4π . The dashed blue lines indicate the minimum and maximum values used in the Bayesian
analysis for (η/s)scale and (ζ/s)max.

transport models at temperature Tswitch (typically around 145–
155 MeV), where (η/s)(Tswitch ) ≈ 1 is employed.

The bulk viscosity to entropy ratio ζ/s is also considered
temperature dependent. We assume it to be of the Lorentzian
form (shown in the right panel of Fig. 1)

ζ

s
(T ) = (ζ/s)max

1 + ( T −Tpeak

Twidth

)2 . (5)

For now, the peak temperature Tpeak and width Twidth are fixed
to 175 MeV and 24 MeV, respectively, based on Ref. [9]. The
maximum temperature (ζ/s)max is a free parameter for the
Bayesian analysis. We would like to remark that we are aware
of the calculations of Refs. [46,47] (and its parametrization
in Ref. [48]), where the bulk viscosity coefficient shows a
maximum near the QCD phase transition temperature Tc and
starts to decrease almost exponentially while approaching the
hadron gas model, as in our assumption. On the other hand,
the temperature dependence of the bulk viscosity in SU(3)
gluodynamics is also studied within lattice QCD simulations
by Ref. [49], which shows that, below Tc, ζ/s continues to
rise. The same behavior is observed for a pion gas in Ref. [50]
where the bulk viscosity to entropy ratio rapidly increases at
low temperatures. This rise might be assigned to the rapid
decrease of the entropy density below the transition in SU(3)
gluodynamics, where the (de)confinement phase transition is
of the first order, while in QCD it is a crossover. A bulk
viscosity that keeps increasing as the temperature drops will
lead to a large bulk viscous pressure on the freeze-out sur-
face and might result in some nonphysical results during
particlization via the Cooper-Frye procedure. Since a con-
sensus on the shape of the ζ/s as a function of the T is
not yet available in the literature, we choose to keep using
the bulk parametrization as in Eq. (5) already used in our
previous work [23].1 On the freeze-out surface we take the
particle distribution function to be given by the equilibrium

1It is at present also unclear how bulk viscous effects interfere with
the chemical freeze-out and a phase of partial chemical equilibrium

Bose-Einstein or Fermi-Dirac distribution (depending on the
species), modified by additional corrections due to bulk and
shear viscous dissipation,

f = feq + δ f bulk + δ f shear. (6)

For the viscous corrections we use the commonly employed
parametrizations [23,51,52]

δ f bulk = feq(1 ± feq)

[
Ēp

T

(
1

3
− c2

s

)
− m2

3T Ēp

]
πbulk

ζ/τbulk
,

(7)

δ f shear = feq(1 ± feq)
πρν pρ pν

2(ε + p)T 2
. (8)

Here m is the mass of the primary resonance.
The bulk and shear relaxation times are taken as derived in

Ref. [53]:

τbulk

ζ/(ε + p)
= 1

15
(

1
3 − c2

s

)2 + aoffset

ζ/(ε + p)
, (9)

τshear

η/(ε + p)
=

{
5 if T � Tchem,

5 + (T − Tchem )aslope if T < Tchem,
(10)

where ε is the energy density, p is the pressure, cs is the (tem-
perature dependent) velocity of sound, and aoffset = 0.1 fm/c
is a small offset such that a causal evolution of the radial ex-
pansion is ensured [43]. For the same reason, we adjusted the
relation between η and τshear for temperatures T < Tchem, in-
corporating an additional (T − Tchem )aslope term with respect
to Ref. [53]. This was necessary to ensure that the relaxation
time is much larger than the characteristic scale of the hadron
resonance gas, for which we expect the scatterings to become
more sparse. A value of aslope = 3 MeV−1 was considered for
the central analysis after stability checks on the high-pT region
(pT > 2 GeV/c) of the transverse momentum spectra.

between chemical and kinetic freeze-outs. We plan to revisit this
topic in future work.
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TABLE I. The predefined parameter intervals for the six model parameters across the three collision systems. The Norm and τ0 are
considered to be system-dependent parameters. Note that the intervals for the τ0 parameters for Pb-Pb

√
sNN = 5.02 TeV and Xe-Xe

√
sNN =

5.44 TeV were adjusted a posteriori.

(ζ/s)max (η/s)min Tchem (MeV) Tkin (MeV) Norm τ0 (fm/c)

Pb-Pb (2.76 TeV) 5–80 0.01–3.0
Pb-Pb (5.02 TeV) 10−4–0.3 0.08–0.52 130–155 110–140 80–140 2.0–7.0
Xe-Xe (5.44 TeV) 70–150 2.0–7.0

C. Freeze-out and resonance decays: FASTRESO

As the system cools down and dilutes, it changes from a
QGP to a hadronic gas. Because particle scatterings are no
longer efficient in maintaining equilibrium, the fluid dynamic
description breaks down, necessitating the conversion of fluid
fields to the distribution of hadronic degrees of freedom. The
Cooper-Frye procedure is used to convert fluid fields to the
spectrum of hadron species on a freeze-out surface, which in
our work is assumed to be a surface of constant temperature
[54].

In our previous work [23], a single freeze-out was consid-
ered, where both the chemical and kinetic distributions freeze
out simultaneously at temperature Tfreeze. Here, we improve on
this description by introducing a partial chemical equilibrium
(PCE) after the chemical freeze-out and before the kinetic
freeze-out, i.e., Tkin < T < Tchem. During the PCE, the mean
free time for elastic collisions is still smaller than the char-
acteristic expansion time of the expanding fireball, thereby
keeping the gas in a state of local kinetic equilibrium. The
chemical equilibrium is not maintained since the mean free
path of the inelastic collisions exceeds this threshold.

Our description follows the pioneering work of
Refs. [55,56], in which the different particle species in a
hadronic gas are treated as being in chemical equilibrium
with each other, while the overall gas is not. The effective
number of long living hadrons, taken in our case as the
ones with a characteristic lifetime longer than 10 fm/c
(the approximate lifetime of the system [57]), are fixed at
the values they had at the chemical freeze-out. The term
“effective” includes the hadrons which would be produced
when all unstable resonances decay, i.e., N̄i = Ni + ∑

j bi
jNj .

Here, Ni is the number of hadrons i, Nj the number of
resonances j, and bi

j the number of hadrons i formed in
the decay of resonance j (including the branching ratio).
The corresponding effective chemical potential is given in a
similar way. We then assume the isentropic evolution of ideal
hydrodynamics (i.e., entropy is conserved), meaning that the
ratio of effective particle number density (n̄i = N̄i/V ) and
entropy density is constant until the kinetic freeze-out. From
the relation

n̄i(T, μ)

s(T, μ)
= n̄i(Tchem, 0)

s(Tchem, 0)
, (11)

one can then obtain μi(T ).
On the freeze-out surface we take the particle distribution

function to be given by the equilibrium Bose-Einstein or
Fermi-Dirac distribution (depending on the species), modi-
fied by additional corrections due to bulk and shear viscous

dissipation and decays of unstable resonances, as explained
in detail in our previous work [23]. For the viscous correc-
tions, we use commonly employed parametrizations [51,52],
while the resonance decays are efficiently calculated with the
FASTRESO package [28]. We use a list of approximately 700
resonances from Refs. [58–60].

III. PROCEDURE OF THE BAYESIAN ANALYSIS

As outlined in Sec. II, our central framework revolves
around certain free parameters: the overall normalization
constant Norm, (η/s)min and (ζ/s)max values2 in the shear
and bulk viscosity to entropy ratio parametrizations, the initial
fluid time τ0, and the two freeze-out temperatures Tkin and
Tchem. While Norm and τ0 are considered system-dependent
parameters, the others are assumed to converge to the same
values for different collision systems and energies. The pri-
mary objective of our Bayesian analysis is to determine these
six model parameters simultaneously, allowing them to vary
within predefined intervals (see Table I). These intervals are
based on physical considerations and knowledge from previ-
ous studies [23,25,32,61,62]. It is worth mentioning that we
have confirmed a posteriori that the optimal values fall within
these intervals rather than on their boundaries, and, in cases
where no clear convergence was obtained, larger intervals
were employed.

In contrast to previous Bayesian analyses in the field of
heavy-ion physics that employed Gaussian process regression
[9–18], we introduce a novel approach by utilizing neural
network emulation. This paper marks the first application
of neural network emulation in this context. The subsequent
two subsections provide a concise introduction to our newly
developed framework, which combines neural networks and
Markov-chain Monte Carlo simulations. For a more com-
prehensive understanding of both components, we refer the
reader to Ref. [63], where a detailed overview is presented.

A. Neural network implementation

Although FLUIDuM is recognized for its very fast exe-
cution speeds, the extensive parameter exploration involved
in Bayesian analyses necessitates an approach to speed up
the simulations. One common strategy is to train machine

2For convenience, the (η/s)scale parameter will be converted from
now on to (η/s)min, representing the minimum of the shear viscosity-
to-entropy parametrization, always located at Tmin = 145 MeV
[24,25].
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learning models to emulate the complete model and uti-
lize these fast emulators within the Markov-chain Monte
Carlo simulations. In our study, we employ an ensem-
ble of artificial neural networks (ANNs) to emulate the
TRENTO + FLUIDuM + FASTRESO model. A neural net-
work is a computational algorithm in the field of supervised
learning inspired by the functioning of the brain. When appro-
priately constructed and trained, NNs can effectively identify
and model complex relationships between inputs and outputs,
making them highly promising tools for our research.

In addition to speed, the emulator also needs to exhibit a
high level of accuracy. Achieving this requires careful consid-
eration of the neural network’s architecture and the training
process. The training necessitates large datasets to achieve the
required accuracy for replacing the simulation outputs. For
each collision system, we use the outputs of ten thousand
complete FLUIDuM + FASTRESO simulations, with parame-
ters distributed within the ranges presented in Table I. The
parameter values are generated using Latin hypercube sam-
pling, which ensures a uniform density in an efficient way.
In order to enhance the training performance of the neural
networks, we apply a normalization technique to both the
input parameters and the output values, scaling them to the
range of [−1, 1]. This procedure leads to a significant increase
in the convergence rate and speed of the training process.
The emulator model incorporates this normalization, auto-
matically converting the input parameters to the appropriate
scale before feeding them through the networks. Similarly, the
resulting outputs are scaled back to their original ranges.

Simple neural networks provide point predictions without
any measure of uncertainty or confidence, which can arise
from, e.g., insufficient model complexity or missing infor-
mation due to unknown data. Ensemble methods offer an
alternative approach where predictions are not solely reliant
on a single model; instead, they combine predictions from
multiple diverse models within an ensemble. The predictions,
denoted as fi, of the ensemble members i ∈ 1, 2, . . . , M are
averaged for the model input x,

femu(x) = 1

M

M∑
i=1

fi(x), (12)

while the spread among the different ensemble members3 and
their mean correlation ρ are used to estimate the error on the
ensemble prediction via

σemu(x) =
√

1
M + M−1

M ρ

1 − ρ

√√√√ 1

M

M∑
i=1

[ fi(x) − femu(x)]

= cσ̂emu(x). (13)

The correlation among the different neural networks ef-
fectively introduces a correction factor, denoted as c, to the
standard deviation of the neural network predictions σ̂emu(x).

3It was tested with a Shapiro-Wilk test that the distribution of the
individual neural network predictions can be assumed everywhere to
come from a normal distribution [63].

FIG. 2. Correlation between the NN ensemble prediction and the
original FLUIDuM + FASTRESO output for ten different parameter
configurations x. Each data point represents the dN2/dy dpT value
in one experimental pT interval for either pions, kaons, or protons
measured in the 0–5% most central Pb-Pb collisions at

√
sNN = 2.76

TeV [32]. On the right, the residual distribution is shown in units of
the corrected (see text for more details) neural network ensemble un-
certainty. A normal distribution with mean 0 and standard deviation
1 is shown in orange to guide the eye.

This correction factor is determined by fitting a t distribution
to [ fmodel(x) − femu(x)]/σ̂emu(x) (here fmodel represents the
original FLUIDuM + FASTRESO output), which should ideally
follow a standard normal distribution if the prediction uncer-
tainty accurately captures the prediction error. We assume that
the correlation is independent of the position in parameter
space and the considered pT intervals, allowing the fit to be
performed once, considering all configurations x and data
points.

For each collision system, we train 100 neural networks
using the input data, splitting the data sample into 80% for
training and 20% for testing and validation purposes. The PY-
TORCH Python library [64] is employed to construct the neural
networks, while the hyperparameters of the neural networks
are optimized using a grid search approach facilitated by the
TUNE Python library [65]. The nature of our problem favours
shallow neural networks [1–3 hidden layers with O(100)
nodes], a learning rate around 0.01, and the use of a leaky
rectified linear unit activation function.

The neural network ensemble effectively captures the
true output of the model simulations, as demonstrated in
Fig. 2. The figure presents the correlation between the
(1/2π pT)(1/Nev) d2N/dy dpT values within experimental pT

intervals for pions, kaons, and protons, as estimated by the
emulator model and originally simulated for ten different
model parameter configurations x. It is evident that the emula-
tor accurately reproduces the FLUIDuM + FASTRESO output,
and the emulator uncertainties, which have been appropriately
corrected for the leftover correlation among the individual
neural networks (as discussed above), effectively capture
the residual spread. Furthermore, our ensemble consisting
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of 100 neural networks (NNs) exhibits a prediction error,
measured in units of the experimental data uncertainty, of
[ femu(x) − fmodel(x)]/σexp = 2.5 × 10−3. This level of accu-
racy is considered sufficient for the purposes of this study.
Additionally, our emulator significantly reduces the compu-
tation time by a factor 104.

B. Markov-chain Monte Carlo

To obtain the posterior probability densities of the N model
parameters, we employ Bayesian inference. The posterior
density is inferred from a probabilistic model, and (N − 1)-
dimensional integrals are performed to obtain marginal prob-

ability densities for each parameter. Due to the complexity
of our case, an analytic treatment is not feasible. Therefore, we
employ the numerical Markov-chain Monte Carlo (MCMC)
method, which is the most efficient approach for exploring
the probability space. In this method, samples are drawn
randomly but not independently by constructing a so-called
Markov chain. Each element of the chain is sampled in de-
pendence on its preceding element and only its preceding
element.

For our MCMC sampling, we utilize the EMCEE Python
library [66], which implements the affine-invariant ensemble
sampler with the so-called “stretch move.” The logarithmic
probability is quantified as the log of the posterior probability,

log [P( f |x)] ∝
{

− 1
2 [ f emu(x) − f exp]ᵀ�−1[ f emu(x) − f exp] if xmin

i � xi � xmax
i ∀ i,

−∞ otherwise.
(14)

Here, xi represents the ith model input parameter, xmin
i and

xmax
i denote their limits (as defined in Table I), f exp represents

a vector of all the experimental data, f emu(x) is the corre-
sponding vector for the emulator model for input x, and �

represents the covariance matrix, which consists of the data
and model covariance matrices (� = �exp + �emu). Since no
information about the correlations between the experimental
uncertainties exists, �exp is diagonal with its elements given
by the squared sum of the statistical and systematic uncer-
tainties. The model covariance matrix is computed from the
ensemble output as

� j,k
emu(x) = c

1

M − 1

×
M∑

i=1

[(
f j
i (x) − f j

emu(x)
)(

f k
i (x) − f k

emu(x)
)]

,

(15)

where the iterators j and k denote specific output values of the
vectors. All entries have to be scaled with the correction factor
c, as discussed in Sec. III A, to account for the correlation
among the different neural networks in the ensemble. In our
MCMC sampling, the prior probability distribution is given
by a uniform distribution,

p(x) ∝
{

1 if xmin
i � xi � xmax

i ∀ i,

0 otherwise.
(16)

To ensure that the Markov chain has converged suffi-
ciently, we require the sampling error of the MCMC method
to be smaller than 1%. The sampling error decreases by√

τ f /Nsamples, where τ f is the integrated autocorrelation time
[63]. This implies that the product of the number of walkers
(chosen to be 300 in our case) and the length of the chains
must be greater than 10 000τ f . To prevent too early stopping,
we also require that the change of τ f (calculated every 100
MCMC steps) is smaller than 1%.

In order to provide the reader with an initial demonstra-
tion of the power of our emulator-MCMC approach, Fig. 3

presents a comparison between the simulated and emulated
model predictions and the corresponding experimental data
for Pb-Pb collisions at

√
sNN = 2.76 TeV [32]. The top row

displays the output of the ten thousand FLUIDuM + FAS-
TRESO simulations used for the training of the NNs, and the
bottom row presents the predictions generated by the neural-
network ensemble emulator using n = 100 random parameter
configurations sampled from the Bayesian posterior distribu-
tion obtained through the MCMC chain. While the training
points exhibit a significant spread, which is expected as the
parameters are varied over wide ranges (see Table I), the
emulator predictions sampled from the posterior distributions
are significantly more constrained and closely follow the ex-
perimental data points.

IV. RESULTS

In this study, we focus on comparing against the exper-
imental measurements of transverse momentum spectra of
identified charged hadrons and strange hyperons in the 0–
5% most central Pb-Pb and Xe-Xe collisions. In contrast to
traditional Bayesian inference analyses, which often focus
on deriving a single “best-fit” scenario, our approach cen-
tres on using our framework to assess additional sources of
systematic uncertainties, such as potential physics that is not
included/parametrized in our model, the selection of experi-
mental data, and the treatment of possible unknown correlated
uncertainties in the experimental data. Through this extensive
exploration of the parameter space, we aim to better under-
stand the underlying dynamics of the system. We emphasise
that, in our analysis, all configurations are equally valid, and
we do not aim to single out one central result as the definitive
outcome.

The soft particle momentum range pT < 2 GeV/c (with
variations up to pT < 3 GeV/c) always serves as our primary
window of investigation, as it is believed to be governed by
fluid dynamic approximations of QCD dynamics. This mo-
mentum range is sensitive to important factors such as radial
flow, viscous transport coefficients, and the initial conditions
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FIG. 3. Comparison between simulated (top row; n = 10 000) or emulated (bottom row; n = 100) FLUIDuM + FASTRESO predictions with
experimental data for Pb-Pb collisions at

√
sNN = 2.76 TeV in the 0–5% centrality interval from the ALICE Collaboration [32]. Note that the

solid markers show the experimental data used in the MCMC procedure, while the open markers show the full experimental measurement. See
text for more details.

of the QGP [67–70]. Similarly to our previous work [23], our
default setup excludes pions in the pT < 0.5 GeV/c range
due to the well-known enhancement relative to hydrodynamic
simulations [14,71]. This low-pT pion excess is believed to
arise from physics features not fully accounted for in hydro-
dynamic simulations, such as (i) Bose-Einstein condensation
[72,73], (ii) increased population of resonances [74], (iii) cor-
rect treatment of the finite width of ρ meson [75], and (iv)
effects of critical chiral fluctuations [76].

A. Comparison of different collision system configurations

We start by exploring the impact of different collision
systems on the constraints of our model parameter. The
Bayesian posterior distributions are presented in Fig. 4. The
diagonal panels display the marginalized distributions of each
individual model parameters, while the off-diagonal panels
illustrate the joint distributions for pairs of these param-
eters marginalized over all others. The contours represent
the (0.5, 1, 1.5, 2)σ equivalent regions, encompassing 11.8%,
39.3%, 67.5%, and 86.4% of the samples. In addition, the
median values and 68% confidence intervals of the individ-
ual model parameters are reported in Table II. Specifically,
we present three configurations: (i) the combination of the
Pb-Pb at

√
sNN = 2.76 TeV, Pb-Pb at

√
sNN = 5.02 TeV, and

Xe-Xe at
√

sNN = 5.44 TeV collision systems in blue; (ii)
the Pb-Pb at

√
sNN = 2.76 TeV and Xe-Xe case in red; and

(iii) only the
√

sNN = 2.76 TeV data in green. The experi-
mental data incorporate the pion (0.5 < pT < 2 GeV/c), kaon
(0.2 < pT < 2 GeV/c), and proton (0.3 < pT < 2 GeV/c)
(1/2π pT)(1/Nev) d2N/dy dpT spectra in the 0–5% centrality
class. The central TRENTO configuration is used.

Remarkably, even with a limited number of pT spectra
observables, we find that most model parameters are well
constrained, underscoring the potential of Bayesian analyses
in providing valuable insights into the properties of the QGP.
The one parameter that appears to prefer higher values be-
yond the upper bound of the allowed interval is the minimum
value of the shear viscosity to entropy ratio parametrization.
We attribute this behavior to the limited sensitivity of the
current observables to the shear viscosity of the system. Fu-
ture work incorporating experimental flow data is expected to
further address this point. However, we emphasise that our
η/s parametrization is consistently applied throughout both
the partonic and hadronic phases, possibly leading to higher
minimum values compared to other Bayesian analyses, where
an afterburner is used for the hadronic phase [9,10,12–20].

When comparing the three scenarios, most parameters
are compatible within their uncertainties (which naturally
decrease when more experimental data is incorporated).
However, noticeable differences emerge, particularly in the
maximum temperature for the bulk viscosity to entropy ratio
and the chemical freeze-out temperature, which appear to be
influenced by the inclusion of the data for Pb-Pb at

√
sNN =
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FIG. 4. Bayesian posterior distribution of the model input parameters for three different combinations of the collision systems. The diagonal
panels show the marginalized distributions of individual model parameters, while the off-diagonal panels present the correlations among pairs
of model parameters. See text for more details.

5.02 TeV, the experimental data which we observed to be the
most difficult to fit. Since no immediate physical explanation
is available, we recommend further investigation in a future
analysis, especially as additional experimental observables are
included. Another notable distinction is observed in the Norm
and τ0 parameters for the various collision systems, with a
substantial increase between the Pb-Pb at

√
sNN = 2.76 TeV

and the other two systems.

B. Effect of modified initial conditions and inclusion
of strange hyperons

Shifting the focus to two other crucial aspects of our analy-
sis, we transition to Fig. 5, where we explore the implications
of the following scenarios: (i) a modification of the initial
TRENTO configuration to mimic a free-streaming phase, as
discussed in Sec. II A, and (ii) the inclusion of the experimen-
tal (1/2π pT)(1/Nev) d2N/dy dpT data of the strange hyperon
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TABLE II. Posterior parameter estimates corresponding to
Fig. 4. The reported values correspond to the median values and 68%
confidence intervals.

2.76–5.44–5.02 TeV 2.76–5.44 TeV 2.76 TeV

(ζ/s)max 0.083+0.012
−0.012 0.022+0.016

−0.014 0.023+0.022
−0.016

(η/s)min unconstr. unconstr. unconstr.
Tchem (MeV) 141+0

−0 144+1
−1 145+1

−1

Tkin (MeV) 122+2
−1 125+3

−2 123+3
−3

Norm2.76 36.0+3.1
−3.6 38.2+3.8

−4.3 34.6+4.5
−5.3

τ0,2.76 (fm/c) 0.76+0.21
−0.23 0.87+0.34

−0.40 0.69+0.39
−0.37

Norm5.44 103.7+4.6
−4.4 104.9+6.7

−6.2 n/a
τ0,5.44 (fm/c) 3.01+0.31

−0.31 3.32+0.40
−0.44 n/a

Norm5.02 109.0+4.5
−4.1 n/a n/a

τ0,5.02 (fm/c) 3.66+0.30
−0.30 n/a n/a

� (0.6 < pT < 2 GeV/c). We compare the resulting posterior
distributions with the single Pb-Pb

√
sNN = 2.76 TeV case

discussed earlier.
When employing the modified TRENTO settings to mimic

the free-streaming phase, we observe a notable decrease in
the values of the Norm and τ0 parameters. This decrease
can be attributed to the larger integrated transverse density∫

d2x TR(�x) in this configuration. Because of the relationship
expressed by Eq. (1), there exists a correlation between the
magnitudes of the Norm and τ0 parameters. Consequently,
interpreting the decrease of τ0 in a physical context becomes
challenging, and the smaller value indicates only partly the
(artificial) smoothening out of the initial entropy density pro-
file by reducing its “spikiness.”

Furthermore, the inclusion of the � hyperon data leads
to an increase in the chemical freeze-out temperature. This
finding is consistent with previous observations using hy-
drodynamic simulations [23,61], suggesting that strange and

FIG. 5. Bayesian posterior distribution of the model input parameters for three different configurations exploiting the
√

sNN = 2.76 TeV
Pb-Pb experimental data. The diagonal panels show the marginalized distributions of individual model parameters, while the off-diagonal
panels present the correlations among pairs of model parameters. See text for more details.
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FIG. 6. The median values and 68% confidence intervals of the marginalized Bayesian posterior distributions for each model parameter
across all analyzed configurations. Note that, due to the collision system dependency, the Norm and τ0 parameters for Xe-Xe and Pb-Pb at√

sNN = 5.02 TeV are reported only in Table II. The configuration involving only pions and kaons is depicted in a lighter color, reflecting the
lack of convergence to a single minimum in the MCMC procedure for this specific setup.

multistrange baryons are more sensitive to changes in the
transition temperature between the fluid evolution and the
hadronic transport phases. This aligns with proposals in the
literature indicating that strange hadrons may undergo chemi-
cal freeze-out earlier than nonstrange particles [77–80].

C. Exploring variations in the analysis setup

Figure 6 summarizes the previously discussed variations
by reporting the median values and 68% confidence in-
tervals of the marginalized Bayesian posterior distributions
for each model parameter. Several smaller variations, ex-
clusively applied to the Pb-Pb collision system at

√
sNN =

2.76 TeV, are included as well. We assessed the effect of
(i) using a constant shear viscosity to entropy ratio instead
of the temperature-dependent version; (ii) including pions
with transverse momentum below 500 MeV/c; (iii) increasing
the transverse momentum limit to 3 GeV/c for all parti-
cle species; (iv)–(vi) including (ζ/s)peak (150–200 MeV),
(ζ/s)width (10–100 MeV), or τshear (aslope = 0–10 MeV−1) as
the seventh model variable in the MCMC procedure; and
(vii)–(ix) considering only pions and kaons, pions and pro-
tons, and kaons and protons.

Overall, the values of the extracted model parameters
demonstrate a reasonable stability across all configurations.
When considering a constant shear viscosity to entropy ratio,
the results remain consistent with those obtained from the
temperature-dependent formulation [Eq. (3)]. The observation
that the constant value for η/s closely resembles (η/s)min

in the temperature-dependent parametrization suggests that,
in the latter case, we are primarily sensitive to the region
close to the phase transition. The inclusion of low transverse
momentum pions impacts several model variables. Specifi-
cally, it leads to a substantially smaller τ0, marginally lower
freeze-out temperatures, and a slightly larger (ζ/s)max. Given
the expected nonhydrodynamic origin of the enhancement in
the low-pT pion spectra [72–76], this underscores the im-
portance of restricting the analysis within the range where

hydrodynamics is expected to be applicable. Increasing the
upper pT limit, instead, yields a notable impact on the (η/s)min

value. This parameter now tends to favor lower values, nearing
the theoretical lower bound of 1/4π derived from AdS-CFT.
This behavior likely arises from the shear correction in the
computation of the final particle spectrum that scales with
p2

T [28,81], i.e., expanding the analyzed pT interval includes
points that are much more sensitive to the shear corrections
and we would thus expect a change in the (η/s)min parameter.

The introduction of (ζ/s)peak, (ζ/s)width, or aslope as the
seventh model variable in the MCMC procedure has a neg-
ligible impact on the values of the original six parameters.
These parameters remain consistent with those obtained from
the central Pb-Pb

√
sNN = 2.76 TeV configuration. However,

it is important to note that none of the posterior distribu-
tions for these seventh model parameters converge; all three
distributions touch the upper limit of their respective inter-
vals. This emphasizes the need for first-principle calculations
of the bulk viscosity which could replace the currently as-
sumed Lorentzian form. Finally, excluding one of the three
particle species (pions, kaons, or protons) results in small
changes in the Norm and freeze-out temperatures, but they
are still compatible within (1–2)σ . When considering only
pions and kaons, the posterior distributions exhibit a dual
structure, where one component aligns well with the central
Pb-Pb

√
sNN = 2.76 TeV configuration, while the other shows

significantly different values. Due to this configuration’s lack
of convergence, we choose to exclude it from further analysis.

D. Discussion and comparison to experimental data

We start the discussion by comparing our extracted model
parameters in Fig. 6 with those obtained from analogous
Bayesian inference analyses. The values for (ζ/s)max are
in agreement with analyses employing the same functional
form [9,10,15,16,19,20], and are compatible [18] or lower by
(2–3)σ [11,12,17] when compared to Bayesian analyses that
introduce a slight adjustment to allow for an asymmetry in
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FIG. 7. The top panels display the transverse momentum spectra for pions, kaons, and protons in the 0–5% centrality class for the three
collision systems. The spectra as simulated with the FLUIDuM + FASTRESO framework, using the extracted model parameters from our
Bayesian analysis (see Fig. 6), are compared with experimental data from the ALICE Collaboration [32,34,35]. The bottom panels present the
respective ratios between theory and experimental data for each hadron species. Note the experimental uncertainties are not taken into account
in the ratio.

temperature around the peak. Regarding the (η/s)min param-
eter, all other Bayesian analyses typically find values around
0.10 [9–20], while our posterior distributions hint at values
beyond the upper bound of 0.52. We remind the reader that we
attribute this behavior to two factors: (i) a limited sensitivity
of the current observables to the shear viscosity of the system
and (ii) a different strategy regarding the hadronic phase of
the system. On account of reason (ii), a direct comparison of
our extracted freeze-out temperatures with those from other
Bayesian analyses seems unfeasible. These analyses typically
employ a single freeze-out temperature Tswitch (converging
to values between 130 and 160 MeV), while their hadronic
afterburner continues to evolve until yields and momentum
distributions cease changing. However, since most of the
hadronic yields vary by less than 20% as a consequence of
inelastic collisions in the afterburner phase, the switching
and chemical freeze-out temperature are typically associated
with each other [82]. In this context, it is noteworthy that
we obtain values that are compatible with the switching
temperatures found in Refs. [17,18], 5–15 MeV lower with
respect to Refs. [13–16,19,20], and slightly higher than values
in Refs. [11,12]. Instead, the statistical hadronization model
of Ref. [62] suggests chemical freeze-out temperatures of
approximately 10 MeV higher, while blast-wave fits to the
pT distributions of identified hadrons in central collisions
estimate kinematic freeze-out temperatures about 20 MeV
lower than ours [32]. The extracted τ0 values for the Pb-Pb√

sNN = 2.76 TeV system align roughly with the time of the
prehydrodynamic phase in the other Bayesian analyses, typ-
ically spanning 0.3–1.0 fm/c [9–17,19,20]. However, due to

the correlation with the Norm parameter [as given in Eq. (1)],
our consideration of this parameter as system dependent (re-
sulting in significantly larger values for the Xe-Xe and Pb-Pb√

sNN = 5.02 TeV collision systems), and the absence of a
free-streaming phase in our setup, we would refrain from
interpreting them as being the same parameter in a physical
sense.

In Fig. 7, we translate the values of our model parameters
from Fig. 6 into a final FLUIDuM + FASTRESO prediction
for the pion, kaon, and proton (1/2π pT)(1/Nev) d2N/dy dpT

spectra in the 0–5% centrality class for the three collision
systems. For the analysis configurations for which the MCMC
procedure was only run for the Pb-Pb

√
sNN = 2.76 TeV sys-

tem, we use the Norm and τ0 from Table II for the calculations
of Pb-Pb at

√
sNN = 5.02 TeV and Xe-Xe at

√
sNN = 5.44

TeV. The theoretical uncertainty is estimated as the full en-
velope of the various trials.4 The simulations exhibit good
quantitative agreement with experimental measurements. The
theoretical uncertainties are approximately 20% for the Pb-
Pb

√
sNN = 2.76 TeV system and about 40% for the Xe-Xe

and
√

sNN = 5.02 TeV Pb-Pb systems. This difference can
be attributed to the fact that we primarily explored variations
of the analysis configuration using the Pb-Pb

√
sNN = 2.76

TeV system. In future work, where we will include anisotropic
flow observables and explore additional centrality classes, we
intend to conduct systematic variations for all three systems

4Excluding the “pT < 3 GeV/c” and “only π and K” cases as
previously discussed.
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simultaneously. We expect that the resulting theoretical un-
certainties will be of comparable magnitude for each system.

V. SUMMARY

In summary, we presented a Bayesian analysis employing
our TRENTO + FLUIDuM + FASTRESO framework to deter-
mine key parameters of the QGP. These parameters included
the shear and bulk viscosity to entropy ratios, the initialization
time, the initial entropy density, and the freeze-out tempera-
tures.

Modern machine learning tools were utilized to perform
a global search in multidimensional space to extract the
posterior distributions of the model parameters. In contrast
to previous Bayesian analyses employing Gaussian process
regression, this study pioneered the use of neural network
ensemble emulation. This innovation offered several compu-
tational advantages, including significantly reduced training
time, lower memory usage, the ability to handle any number of
inputs and outputs, and a rigorous uncertainty determination.

Another notable improvement in this work concerns our
theoretical framework. Instead of a single freeze-out, we now
separate the chemical and kinematic freeze-outs, incorporat-
ing the partial chemical equilibrium to describe the later stages
of the evolution. In addition, we replaced the use of a constant
value for the shear viscosity to entropy ratio with a Yang-Mills
theory based parametrization.

Our theoretical model is compared against experimental
measurements of transverse momentum spectra for identified
charged hadrons (π, K, p) and strange hyperons (�) in Pb-Pb
collisions at

√
sNN = 2.76 TeV and

√
sNN = 5.02 TeV, as well

as Xe-Xe collisions at
√

sNN = 5.44 TeV, from the ALICE
Collaboration. Our focus lays on the 0–5% centrality class,
where the FLUIDuM background-fluctuation splitting ansatz
works best. Furthermore, the restriction to only one centrality
class was imposed such that we are able to keep the initial-

state parameters, which play an important role in the centrality
dependence of the observables, fixed. In future work, we will
include anisotropic flow observables and explore additional
centrality classes.

Thanks to the computational efficiency of our framework,
we could employ it to assess systematic uncertainties by
varying key components of the analysis. In other words, we
did not focus on a single “best-fit” scenario but conducted
an extensive exploration of the parameter space to better
understand the underlying dynamics of the system. Multiple
variations—including data from various collision systems,
modified initial conditions, inclusion and exclusion of hadron
species, variations in the shear and bulk viscosity to entropy
ratios, and the use of different pT ranges—were performed.
Overall, the extracted model parameters exhibit a reasonable
stability across the configurations. Furthermore, our results
are in agreement with previous Bayesian analyses, except for
the (η/s)min, which we attributed to limited sensitivity of the
observables and a different theoretical strategy concerning the
hadronic phase.

Finally, we translated our extracted parameters into
FLUIDuM +FASTRESO predictions for the pion, kaon, and
proton (1/2π pT)(1/Nev) d2N/dy dpT spectra in the 0–5% cen-
trality class for the three collision systems. They demonstrate
strong quantitative agreement with experimental measure-
ments from the ALICE Collaboration.
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