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The longitudinal asymmetry in relativistic heavy ion collisions arises from the fluctuation in the number
of nucleons involved. This asymmetry causes a rapidity shift in the center of mass of the participating zone.
Both the rapidity shift and the longitudinal asymmetry have been found to be significant at the top CERN
Large Hadron Collider (LHC) energy for collisions of identical nuclei, and the longitudinal asymmetry is
important for reconstructing the colliding vertex and correcting the rapidity shift. However, much discussion
of the longitudinal asymmetry has treated the initial condition as a nonzero momentum contributed only by
the number of participants, i.e., the asymmetry depends only on the number of participating nucleons. So
we naturally raise a physical problem, can other initial conditions, such as two typical initial conditions for
nuclei, geometric configuration, and momentum distribution, provide effects on the longitudinal asymmetry?
Therefore, in this work we consider other effects on the longitudinal asymmetry other than the fluctuation in
the number of participants, e.g., the α clustering structure as well as the intrinsic momentum distribution in the
target and projectile nuclei for the collisions in the framework of a multiphase transport (AMPT) model. By
introducing systems with different α-clustering structure and intrinsic momentum distribution, we calculated
the ratio of the rapidity distributions of different systems and extracted expansion coefficients to analyze the
difference contributed by these factors. We also investigated the possible effect of the non-Gaussian distribution
on the rapidity distribution. These results can help us to constrain the initial conditions and reconstruct the
colliding vertex in ultrarelativistic heavy ion collisions, and suggest a quantitative correction on the final state
measurement and a possible correlation between the initial condition and the final state observable in LHC and
BNL Relativistic Heavy Ion Collider energy.
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I. INTRODUCTION

For decades, the relativistic heavy-ion collision experiment
has been an important approach to study properties of strong
interaction as well as quark-gluon plasma (QGP) which was
supposedly existed in the early universe [1–14]. Generally in
relativistic heavy-ion collisions, we treat colliding nucleons
as two parts, i.e., participants that take part in collisions and
spectators that simply pass through the collision zone without
interaction. For a collision between nonidentical nuclei, the
number of participating nucleons from each nucleus is nat-
urally different. However, for a collision between identical
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nuclei, the number of participants may also fluctuate event
by event. That means the numbers of participants in two
colliding nuclei may also lead to an inequality. This inequality
from participant number fluctuation will lead to a nonzero net
momentum of the nucleon-nucleon center of mass frame, but
assumed fixed momentum for each nucleon in advance. Thus
the center of mass of participants will shift from the collider
center of mass of the system, further results in the rapidity
shift at final state. This effect was usually called longitudinal
asymmetry [15,16]. The longitudinal asymmetry reflects the
fluctuation of the nucleon at initial state, and may manifest
in some phenomena. For instance, the � polarization was
investigated in Ref. [17] which applied the ultrarelativistic
quantum molecular dynamics (UrQMD) model [18–21] and
gave global spin polarization of � hyperon for 108Ag + 108Ag
and 197Au + 197Au collisions at

√
sNN = 2.42–62.4 GeV.

In that work it was compared with measurements from the
HADES Collaboration [22] and STAR Collaboration [23] and
fitted well at lower energies. They concluded that the global
polarization was a result of the global angular momentum
of the system, so that the longitudinal asymmetry involving
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initial momentum spatial asymmetry may also be correlated
to the polarization phenomena.

Previous study on longitudinal asymmetry usually focuses
on the effects from participant fluctuation between target
and projectile. Thus a motivation naturally arises, can other
effects at initial state of collision provide additional sig-
nificant contribution to longitudinal asymmetry? Based on
this motivation, we consider two important effects at initial
state—α-clustering structure in light nuclei and short range
correlation, which may intensify the longitudinal asymmetry.

An α-clustered nucleus was proposed by Gamow [24],
which could be regarded as a special case of nuclear structure.
In that view, in stable nuclei especially for 4N nuclei, some
small groups (like α) made up of two protons and two neu-
trons are likely to exist. Then in the nucleus these groups are
connected in different shapes like triangle in 12C, tetrahedron
in 16O, and so on. The clustering effect is important to nuclear
equation of state, nucleosynthesis, and many other problems
[25–28]. Various observables have therefore been proposed
to study the clustering of nuclei in the heavy-ion reaction,
such as collective flow [29–31] and multiplicity correlation
[32,33]. A recent review can be found in [34,35]. So we
assume that such geometry configurations are likely to affect
the fluctuation of numbers of participants at initial state, and
further contribute to the longitudinal asymmetry.

Another effect taken into our account is the short range
correlation (SRC). The SRC can partly arise from the nucleon-
nucleon short-range central interaction [36,37]. And the
intrinsic momentum distribution of nucleons is a direct re-
flection, which shows us the probability to find a nucleon at
certain momentum in a nucleus. When using high values of
nucleon momentum and removal energy to describe nucleon
spectral function, the function can be written in the form of
a convolution integral involving the momentum distributions
describing the relative and center-of-mass motion of a cor-
related nucleon-nucleon pair embedded in the medium [37].
High momentum tail (HMT), as a direct result from SRC,
can be found in the momentum distribution of nucleons, and
some studies show that the contribution of HMT is mainly
provided by proton-neutron pairs [37,38]. In Ref. [39] the
related phenomenon in an extended quantum molecular dy-
namics (EQMD) model has been discussed, and the effects
on emission time distribution, momentum spectrum, and mo-
mentum correlation function of two emitted protons of the
12C − 11B reaction are also investigated, which demonstrate
the importance of the SRC. The intrinsic momentum distribu-
tion of the nucleon may also affect the shift of initial center of
mass, then affect the longitudinal asymmetry.

Under a multiphase transport (AMPT) frame, it is simu-
lated that 12C + 12C collisions with/without an α cluster at
center of mass energy

√
sNN = 6.37 TeV and 200 GeV, 12C

+ 12C collisions with/without intrinsic momentum distribu-
tion at 200 GeV, as well as 197Au + 197Au collisions with
Woods-Saxon configuration and high-momentum-tail config-
uration at 200 GeV. The 0–10 % centrality is always adopted
in all simulations. With the same

√
sNN and configuration

(such as the default Woods-Saxon), a comparison between
different systems, for example, C + C and Au + Au, reveals
the system size dependence of longitudinal asymmetry. Also

for the same configuration like Woods-Saxon, comparison
between at 200 GeV and 6.37 TeV in C + C collisions shows
us the energy dependence of longitudinal asymmetry. Simi-
larly, at the same

√
sNN , a comparison between systems with

Woods-Saxon (WS) and α-cluster reveals the effect on longi-
tudinal asymmetry from geometry configuration, comparison
between systems with free-Fermi gas and high-momentum
tail reveals an effect on longitudinal asymmetry from intrin-
sic momentum distribution, in which the high-momentum-tail
case can show us how the short range correlation in a nucleon
pair changes longitudinal asymmetry.

The paper is organized as follows. In Sec. II, we give
brief introductions of the models used in our simulation—the
AMPT model, the α cluster structure, and the HMT effect.
Then we introduce basic methods to calculate these longitudi-
nal asymmetry parameters and to provide a correction of our
α-cluster effect and HMT effect. We also suggested possible
reasons to explain the differences between different results,
and linked these reasons to some further investigations in later
works. In Sec. III, we use AMPT to simulate C + C and Au +
Au collisions with different initial conditions, and extract their
longitudinal asymmetry parameters and expansion coeffi-
cients. We then compare the parameters and coefficients from
different systems and point out their differences. In Sec. IV,
we explain the effect on longitudinal asymmetry from the ini-
tial condition, which can give us insights and guidance on how
to constrain the collision conditions, reconstruct the colliding
vertex, and relate the observed final state to the effect of dif-
ferent systems in future experimental measurements. Finally,
in Sec. V we give the conclusion and outlook of our work.

II. MODELS AND METHODS

A. Introduction to AMPT

A multiphase transport model [40–42] is composed of
four stages to simulate relativistic heavy-ion collisions. It has
successfully described various phenomena at the BNL Rela-
tivistic Heavy Ion Collider (RHIC) and CERN Large Hadron
Collider (LHC) energies and becomes a well-known event
generator. The AMPT has two versions: string melting (SM)
and default. In the SM version, the Heavy Ion Jet Interaction
Generator (HIJING) [43,44] is used to simulate the initial
conditions, then Zhang’s parton cascade (ZPC) [45] is used to
describe interactions for partons which are from all hadrons
in the HIJING but spectators, after which a simple quark
coalescence model describes hadronization process, finally a
relativistic transport (ART) model [46] simulates the hadron
rescattering process. The default version of AMPT only con-
ducts the minijet partons in partonic scatterings via ZPC and
uses the Lund string fragmentation to perform hadronization.

AMPT model [40,42] can describe the pT spectrum and en-
ergy dependence of identified particles such as pion, kaon, φ,
proton, and � produced in heavy-ion collisions [41,47,48], as
well as the collective flows and temperature during evolution,
etc. [49–53]. Chiral and magnetic related anomalous phe-
nomena can also be described by the AMPT model [54–59].
Further details of the model description and the selection of
the parameter set can be found in Refs. [40–42].
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B. α-cluster structure

In recent several decades, various theoretical models were
developed to study the α-cluster structure, such as the Fermion
molecular dynamics (FMD) model [60,61], the antisymmet-
ric molecular dynamics (AMD) model [62,63], the extended
quantum molecular dynamics (EQMD) model [26,64–66],
and so on. In our simulation, the initial nucleon distribution in
nuclei is configured in the HIJING model with either a pattern
of Woods-Saxon distribution or an exotic nucleon distribution
which is embedded to study the α-clustered structure [26,30].
The parameters set for the triangle structure are inherited from
an EQMD model [26]. EQMD is extended from the QMD
model, which can give reasonable α-cluster configurations
for 4N nuclei by taking the effective Pauli potential and dy-
namical wave packet into account. More details for parameter
setting can be seen in Refs. [26,30].

C. High momentum component (HMT)

The high-momentum-tail caused by short range correlation
is also proposed to contribute to the longitudinal asymme-
try in heavy-ion collisions. By comparing calculated results
from the model with inclusive and exclusive experiments
[37,38,67,68], the momentum distribution can be described as
two parts: n0(k) corresponding to low-momentum part which
is dominated by single particle features of nucleon structure,
n1(k) corresponding to high-momentum part which is dom-
inated by short-range properties of nucleon structure. In a
simple way, one can write the momentum distribution as [68]⎧⎪⎪⎨

⎪⎪⎩
n(k) � n0(k) = 1

4πA

∑
α<αF

Aαnα (k) for k < k̂

n(k) � n1(k) = CAndeut (k) for k > k̂

, (1)

where the subscript F in αF means Fermi level and Fermi
momentum, and other variables can all be parametrized from
light nuclei momentum distribution fitting [68]. For the above
distribution, it is always compared with free-Fermi gas (FFG)
distribution in this work. More details for parametrization can
be found in Ref. [68]. In this work, we add this distribution
into the initialization of AMPT model. The default case is
the Woods-Saxon distribution, which generally describes only
the potential of the nucleon. The FFG case is where the
momentum distribution of all nucleons is below the Fermi
momentum. However, for our focus—HMT—the nucleon’s
momentum could reach a high momentum tail, corresponding
to n1(k) resulting from SRC.

D. Methodology

Generally, the longitudinal asymmetry can be character-
ized by some parameters [15]. Here, we give the rapidity
shift y0, asymmetry of participants αpart, and asymmetry of
spectator αspec:

y0 = 1

2
ln

A

B
, (2)

αpart = A − B

A + B
, (3)

αspec = (N − A) − (N − B)

(N − A) + (N − B)
= B − A

2N − (A + B)
, (4)

where A and B are numbers of nucleons participating from
the two colliding nuclei (naturally for identical nuclei A and B
are equivalent), and N is the total number of nucleons in each
nucleus. And it should be noted that y0 �

1
2 ln A

B is appropriate
when m0 � p, fortunately it is possible in the LHC at TeV
scale m0/p < 10−6 and in RHIC at GeV scale m0/p < 10−4.
Hence we can also write the equation as y0 = 1

2 ln 1+αpart

1−αpart
.

Further, when αpart is small enough, it is easy to see that
y0 ≈ αpart.

With these definitions we can classify vast events in terms
of their y0, for each event of a nucleus-nucleus collision has
its own rapidity shift y0 which is only determined by initial
A and B. And although we cannot directly acquire the A and
B, the practical experiments provide us an indirect method: by
gaining energy deposited in the zero-degree calorimeters on
either side of the interaction vertex in collider experiments
[69], we can measure the αspec, then y0 can be calculated
through the transformed equation

y0 = 1

2
ln

(A + B)(1 + αspec) − 2Nαspec

(A + B)(1 − αspec) + 2Nαspec
. (5)

And further, to keep consistent to the measurement αZN in
ALICE experiments [69], the longitudinal asymmetry can also
be defined by the number of neutrons in spectators, denoted as
An

spec and Bn
spec, instead of αspec:

αZN = An
spec − Bn

spec

An
spec + Bn

spec

. (6)

In Fig. 1, according to different αZN regions [69], we plot
y0 distribution in Au + Au (Woods-Saxon case and HMT
cases), C + C (Woods-Saxon, FFG, and HMT cases) colli-
sions at center of mass energy

√
sNN = 200 GeV, and C + C

[Woods-Saxon and triangle (Tri.) case] at
√

sNN = 6.37 TeV
by using AMPT (string melting) model and the distribution
is consistent with other models’ simulations at RHIC or LHC
energy [15,16,69].

In the distribution of y0 shown in Fig. 1, we should note that
if the nucleon intrinsic momentum distribution in the nuclei is
taken into account, the definition of rapidity shift y0 should be
corrected as

y0 = 1

2
ln

1 + αmom

1 − αmom
, (7)

where αmom = |PA
z |−|PB

z |
|PA

z |+|PB
z | , PA

z and PB
z are the longitudinal mo-

mentum of the participants from the two colliding nuclei. Note
that PA

z and PB
z would be not equal to the beam momentum due

to the effect of the nucleon intrinsic momentum distribution.
Also for the FFG and HMT cases, the αZN which is used to
divide positive or negative regions should take momentum
distribution into account, the An

spec and Bn
spec in Eq. (6) should

be naturally replaced by P
Aspec
z and P

Bspec
z .

Now that we have the y0 distribution classified by αZN ,
the longitudinal asymmetry of the different regions becomes
obvious. Naturally, for events in αZN < −0.1 region (which
we call the negative αZN region), y0 distribution shows us
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FIG. 1. Distribution of parameter y0 in different αZN region for C + C at 200 GeV, C + C at 6.37 TeV, and Au + Au at 200 GeV with
0–10 % centrality in AMPT (string melting) frame.

a positive shift, also y0 distribution for events in αZN > 0.1
region (which we call positive αZN region) shows us a negative
shift, and in the |αZN | < 0.1 region, y0 distributed in middle
region. This negative correlation between αZN and y0 can be
understood from Eq. (4), for the behavior of y0 intuitively
reveals the physical picture of longitudinal asymmetry. For
example, in an event, if A > B, we have y0 > 0 according
to Eq. (2). So the rest neutrons as spectators in the projectile
(noted as An

spec) will generally be less than the rest neutrons as
spectators in the target (noted as Bn

spec), thus we have αZN < 0
according to Eq. (6).

Similarity between our y0 distribution (especially in the
Au+Au case) and the tuned Glauber Monte Carlo (TGMC)
simulation of the Pb+Pb case by the ALICE Collaboration
can be seen in Ref. [69]. And further we can see the charged
particles’ rapidity distribution of our eight systems in Fig. 2.
It seems that our results are close to the ideal Gaussian
distribution as proposed in Ref. [15] just by comparing our
figures with works in Ref. [15] at RHIC energy. Then more
issues beyond ideal cases or experimental results will also be
discussed in this work, by fitting and the extraction of cn we
will see, besides the ideal Gaussian shape, the deformation of
the rapidity shift will also reflect the longitudinal asymmetry,
and fortunately we will disclose that the intrinsic momentum
distribution can indeed affect the longitudinal asymmetry by
changing the shape of rapidity distribution.

To further investigate the rapidity shift from the longitudi-
nal asymmetry, it is proposed to take the ratio of the rapidity
distribution of particles with positive asymmetry to that of

negative asymmetry in collisions,
( dN

dy )+asym

( dN
dy )−asym

[16], in which the

‘+asym’ corresponds to positive y0 region (αZN < −0.1) and
‘−asym’ corresponds to negative y0 region (αZN > 0.1), so

the ratio can be expressed in Taylor expansion,(
dN
dy

)
+asym(

dN
dy

)
−asym

∝
∞∑
0

cnyn. (8)

If the rapidity distribution of the particles is in a Gaussian
type, dN/dy ∝ exp(− (y−y0 )2

2σ 2 ), Eq. (8) becomes(
dN
dy

)
+asym(

dN
dy

)
−asym

∝ exp

(
2yy0

σ 2

)
∝

∞∑
0

cn(y0, σ )yn, (9)

where the Taylor expansion coefficients cn are related to the
Gaussian parameters y0 and σ and yield cn(y0, σ ) = (2y0/σ

2 )n

n! .
However, the rapidity distribution of particles does not always
follow a Gaussian pattern and the non-Gaussian effect will be
discussed later.

III. RESULTS OF LONGITUDINAL ASYMMETRY FROM
DIFFERENT SYSTEMS

A. y0 and numbers of participants

Panels (a1)–(a4), (b1)–(b4) in Fig. 1 show the y0 distri-
butions at initial sate in C + C and Au + Au collisions at√

sNN = 200 GeV and C + C collisions at
√

sNN = 6.37 TeV,
respectively, for different αZN regions. The results are con-
sistent with results for Au + Au simulation at RHIC energy
and Pb + Pb measurement in ALICE experiment from various
works [15,16,69]. In this calculation nucleon distributions
are configured either as the Woods-Saxon type in 12C or the
α-clustered triangle shape in 12C. The y0 distributions in C
+ C collisions present similar behavior for the different con-
figurations of the nucleon distribution in the collided nuclei,
but show stronger fluctuations than for the larger collision
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FIG. 2. Normalized dN/dy distribution in the positive, middle, negative y0 regions for our eight different systems, corresponding to αZN <

−0.1, −0.1 < αZN < 0.1, and αZN > 0.1.

systems shown in Fig. 1(a4) and 1(b4), and also show stronger
fluctuations than for larger

√
sNN in Fig. 1(a2) and 1(b2).

For y0 distributions in C + C collisions with configuration
for collided nuclei with nucleon momentum distribution in
HMT and FFG, it can be seen that the y0 distribution in
Fig. 1(a3) and 1(b3) is affected by the nucleon intrinsic
momentum distribution comparing with that in Woods-
Saxon distribution in Fig. 1(a1). The former case shows a
larger width of the y0 distribution contributed by momentum
distribution.

Further in Fig. 1, by comparing C + C (WS, 200 GeV) to
C + C (WS, 6.37 TeV), or C + C (Tri., 200 GeV) to C + C

(Tri., 6.37 TeV), the systems at higher
√

sNN (6.37 TeV) show
smaller y0 fluctuation than those at lower

√
sNN (200 GeV).

And a large system (Au + Au) also shows smaller y0 fluctua-
tion than a small system (C + C). These physical pictures are
consistent with works at RHIC energy in Ref. [15]. But if we
consider initial intrinsic momentum distribution, we can see
that y0 fluctuation is enhanced by the unfixed momentum in
beam direction (in FFG and HMT). Then in Fig. 2, it can be
seen that the rapidity distribution at final state directly corre-
sponds to different y0 shift in Fig. 1. The rapidity distribution
with positive shift in αZN < −0.1 reflects the positive y0 shift
in αZN < −0.1 and vice versa.
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FIG. 3. The ratio of dN/dy for our eight different systems, along with fitting curves and standard polynomials for comparison.

B. Expansion coefficient

After plotting initial distribution of parameters, we can
calculate cn based on Eq. (8). It is clear that the longitudinal
asymmetry becomes harder to be measured as the collision
energy increases or the regions become close to the middle
region [15], thus the later extraction of more parameters like
expansion coefficients may become harder to distinguish in
investigation. As a result, we choose taking positive and neg-
ative regions which are far from the midregion so that the
events from both sides around symmetry events can provide
distinct ratios to investigate further significant properties of
longitudinal asymmetry.

The rapidity distributions of charged particles are shown
in Fig. 2 for events from the positive and negative rapidity
shift regions in C + C collisions and Au + Au collisions,
respectively, for different initial state configurations and col-
lision energies. To illustrate the longitudinal asymmetry, the
differences between the positive and negative shift regions

are expressed by the ratio of
( dN

dy )+asym

( dN
dy )−asym

as shown in Fig. 3.

According to Eqs. (8) and (9), a third order polynomial is
performed to fit the ratio and the coefficients c0, c1, c2, and
c3 are extracted [15,16]. The extracted coefficients cn (n = 0,
1, 2, 3) are plotted in Fig. 4 for different collision systems with
specific initial configurations.

For the α cluster structure case and the Woods-Saxon case
in Fig. 4, at the same

√
sNN , there is no obvious difference

between cn(Tri.) and cn(WS) (here. n = 1, 2, 3) within the
uncertainty for the same order. If we compare their central
values, c1 in the triangle case is slightly smaller than c1 in the
Woods-Saxon case, and c2 behaves similarly to c1, while c3 is
larger in the triangle case. In summary, the difference between
the Woods-Saxon configuration and the cluster configuration
is not clear.

For the case of intrinsic momentum distribution, according
to Fig. 4, in C + C cases we can see that the first order terms
c1 in the WS case are smaller than those in the FFG and HMT
cases. However, c2 and c3 in the WS case are larger than those
in the FFG and HMT cases, respectively, and the high-order
terms c2, c3 in the HMT case are larger than those in the FFG
case, even considering their uncertainties. And it is interest-
ing to see that the difference for cn between Au+Au(WS)

and Au+Au(HMT) behaves similarly to the C+C system,
suggesting to us that HMT may have a similar effect on
longitudinal asymmetry in both small and large system sizes.

IV. EXPLANATION AND FURTHER DISCUSSION

A. Ideal Gaussian rapidity distribution
and deformed rapidity distribution

Before discussing the results for cn, we should first con-
sider the parameters in ideal Gaussian distribution affect cn.
According to Eq. (9), cn can be directly determined by initial
shift y0 and final rapidity width σ . However, in experiments
or transport model simulations, the rapidity distribution does
not always have the ideal Gaussian distribution, so that Eq. (9)
requires y+asym

0 = y−asym
0 , σ+asym = σ−asym, which means that

cn is very sensitive to y0, σ as explained in Ref. [69]. We
can provide a simple method of estimating the magnitude of

the sensitivity. We denote σ+asym

σ−asym = m,
y+asym

0

y−asym
0

= n, and choose

σ+asym = σ, y+asym
0 = y0 (just for convenience), the widths

and means in Fig. 2 give (m − 1) ∼ 10−3, n ∼ 10−1. Ignor-
ing small higher order quantities such as (1 − m2), y2

0, we
can estimate the difference between the simulated rapid-
ity distribution and the standard Gaussian shape: rat iosimu

rat iogaus
∼

exp m(n+1)yy0

σ 2 . Both our simulation and Refs. [15,69] give y0 ∼
10−1, σ ∈ (2, 4), so we can easily estimate that changing y0

and σ in the order of 10−3–10−1 can only lead to ratiosimu

being about 1.2 times larger than ratiogaus. So, besides the
sensitivity of y0 and σ , we think that more of the difference
of cn is due to the deformation of the rapidity distribution.

Since cn from different initial momentum cases show the
most significant difference, we also choose to plot Q − Q
to compare our WS, FFG, and HMT cases with Gaussian
distributions. In statistics, Q − Q plots are usually used to
characterize the normality of a given distribution, each dis-
tribution has its variable values corresponding to different
percentiles, by plotting the scatter of our data sets on the y axis
against the scatter of the Gaussian distribution on the x axis,
we can visually see how close our data sets are distributed to
a Gaussian distribution. In general, an approximate linearity
like our fitted lines in Fig. 5 means that the distribution of our
data is close to a Gaussian shape. And meanwhile the intercept

064906-6



EFFECTS OF THE α-CLUSTER STRUCTURE AND … PHYSICAL REVIEW C 108, 064906 (2023)

1 2 3C+C(200GeV)    C+C(6.37TeV)    Au+Au(200GeV)

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
> 

   
   

   
   

0
<y

WS

Tri

FFG

HMT

1 2 3C+C(200GeV)    C+C(6.37TeV)    Au+Au(200GeV)
0

0.005

0.01

0.015

0.02

0.025

0.03

   
   

   
   

  
1c

1 2 3C+C(200GeV)    C+C(6.37TeV)    Au+Au(200GeV)

0.001−

0.0005−

0

0.0005

0.001

0.0015

0.002

   
   

   
   

   
   

2c

1 2 3C+C(200GeV)    C+C(6.37TeV)    Au+Au(200GeV)

0.0004−

0.0002−

0

0.0002

0.0004

0.0006

0.0008

0.001
   

   
   

   
   

   
 

3c

(a) (b)

(c) (d)

FIG. 4. 〈y0〉 and cn extracted from our eight different systems, markers correspond to different configurations.

shows y0 and the slope shows σ . The scatter and fitted lines
in Fig. 5 do not show any significant difference between the
WS, FFG, HMT cases and the Gaussian distribution. But we
can still notice that the rapidity distribution with momentum
distribution (FFG and HMT) give different slope and inter-
cept from the WS case, implying to us the effect of intrinsic
momentum distribution on rapidity deformation.

B. Effect on cn from rapidity shift and rapidity deformation
in longitudinal asymmetry

Beyond the explanation for the analytic form of the Gaus-
sian distribution, the practical meaning of the expansion
coefficient can be understood better from the definition of
Taylor expansion that describes function by a combination
of polynomials. From this point of view, our expansion co-
efficients cn actually presents a contribution from powers of
rapidity at different orders. To give a more intuitive expla-
nation, we plot each rapidity ratio along with three standard
polynomials: y, y2, y3 in Fig. 3(c). And then we also plot each
component cnyn in Fig. 6 to show their contribution to the
ratio. Here, different values of cn are shown in Fig. 4. It is

clear that in systems with higher
√

sNN (C + C, 6.37 TeV)
or larger size (Au + Au, 200 GeV), the effect of longitudinal
asymmetry is obviously smaller than that in C + C (200 GeV).
In Fig. 6(a), 6(b), and 6(c), we can see yellow (C + C, WS,
6.37 TeV), green (C + C, Tri, 6.37 TeV), violet (Au + Au,
WS, 200 GeV), and black (Au+Au, HMT, 200 GeV) lines are
closer to 0 than red (C + C, WS, 200 GeV), orange (C + C,
Tri, 200 GeV), cyan (C + C, FFG, 200 GeV), blue (C + C,
HMT, 200 GeV) lines, and the longitudinal asymmetry of
systems at the same

√
sNN with different configurations (C

+ C, WS, 200 GeV in red line and C + C, Tri, 200 GeV in
orange line, C + C, WS, 6.37 TeV in yellow line, and C + C,
Tri, 6.37 TeV in green line) are so close that they can hardly be
distinguished. So our best choice to discuss how deformation
changes the longitudinal asymmetry is to compare C + C
(WS, 200 GeV), C + C (FFG, 200 GeV), and C + C (HMT,
200 GeV) systems.

In polynomials we can see, in different regions of rapidity,
that the contribution of y, y2, y3 are different. As the rapidity y
increases from 0 to 1, then to the region greater than 1, the
deformation effect contributed by y2 and y3 becomes more
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FIG. 5. The Q − Q plot to examine normality of systems with
different initial momentum and parametrize deformation effect at
final rapidity distribution.

and more significant so that cnyn, especially c3y3, can be
comparable to c1y1 as shown in Fig. 6(a),(c). In the −1 <

y < 1 region, we have |y| > |y2| > |y3|, which means the
direct rapidity shift y as the linear (also as the leading order)
component of the ratio dominates the largest contribution to
the ratio+/− in this region. According to Ref. [69], c1 shows a
linear dependence on 〈y0〉. For those cases in which y0 only
depends on the fluctuation of participants (like all the WS
and Tri. cases), c1 dependence on 〈y0〉 is consistent with our
expectation and those simulation in ALICE. For systems at
the same

√
sNN in the Woods-Saxon and Triangle cases, by

comparing 〈y0〉 with c1 in Fig. 4, we can see that c1 shows
similar linear dependence on 〈y0〉, and similar dependence can
also be shown even in the error (width) of 〈y0〉 and c1 in Fig. 4.
We can see these c1 in |y| ∈ (0, 1) are mainly dominated by
rapidity shift.

However, when we discuss the region in y ∈ (1, 5), Fig. 6
reminds us that deformation of rapidity distribution also con-
tributes to the ratio, meanwhile for the C+C FFG and HMT
cases, their c1 dependence on 〈y0〉 are different from the
WS case. In Fig. 4 we can see FFG (200 GeV) and HMT
(200 GeV) have smaller 〈y0〉 than WS (200 GeV), but larger
c1 than WS. In Fig. 2, it is difficult to see the slight defor-
mation intuitively in the rapidity distribution. But fortunately,
according to Figs. 1, 3, and 4, 6, we can infer how the rapidity
distribution deformed at final state in Fig. 2.

For convenience, we can call the region in |y − 〈y0〉| < 〈y0〉
as peak, and the region in 2〈y0〉 < |y| < (5 − 2〈y0〉) as ridge.
In Fig. 3(b), we can see that around y = 0 both C + C (FFG,
200 GeV, green) and C + C (HMT, 200 GeV, blue) show larger
ratios than C + C (WS, 200 GeV, red). That means, in |y| ∈
(0, 1) rapidity distribution in FFG and HMT give larger ratios
of (dN/dy)peak

(dN/dy)ridge
than the WS case (normalized dN/dy has been

shown in Fig. 2). This conclusion is a result from deformation
of peak and ridge in Fig. 2, and in Fig. 1 we can infer the
origin of this deformation.

In Fig. 1(a1), 1(a3), and 1(b3), we can extract that y0 distri-
bution in C + C (FFG, 200 GeV) and C + C (HMT, 200 GeV)
show lower peaks and larger width than that in C + C (WS,

200 GeV), namely, in αZN < −0.1, σW S = 0.1011 < σFFG =
0.1016 < σHMT = 0.1057. These larger widths are caused by
additional momentum distribution from FFG and HMT, as we
defined in Eq. (7). Hence, we see the effect from intrinsic mo-
mentum distribution on longitudinal asymmetry at final state.

But momentum distribution does not only affect c1 by caus-
ing deformation in y ∈ (−1, 1). In Fig. 3(b), as y increases to
±5, we can see that a ratio of C + C (WS, 200 GeV, red)
exceeds C + C (FFG, 200 GeV, green) and C + C (HMT,
200 GeV, blue), especially in (−5,−4) and (4,5), after a small
peak, the ratios in the FFG and HMT cases fall closer to 1.00
than the WS case. It reminds us that in the region close to
±5, rapidity distributions in FFG and HMT are both depressed
since obviously the ratios are closer to 1. This depression is a
result of deformation at marginal y distribution (y → ±5). To
discuss the origin of this deformation, we should go back to
check the asymmetry from the intrinsic momentum distribu-
tion in Fig. 1. By comparing initial y0 distribution in Fig. 1 and
final rapidity ratio in Fig. 3, we can see the asymmetry in both
initial and final states is consistent. In y0 distribution, FFG
and HMT provide larger width around y0 = 0 with less events
around y0 = 0.6 than the WS case. Meanwhile in Fig. 3, FFG
and HMT show larger ratios in peak and ridge regions with
smaller ratios in the marginal region. Comparison of cn be-
tween WS, FFG, and HMT proved that asymmetry from FFG
and HMT at initial state transformed into a different ratio at
final state. Intrinsic momentum from FFG and HMT generates
more events with larger y0 in peak and ridge, corresponding
to larger width of y0, but the intrinsic momentum cannot
support larger y0 to extend to edge around y0 = 0.6. Then
the asymmetry transformed into rapidity asymmetry in Figs. 2
and 3, intrinsic momentum from FFG and HMT provides
us enhanced ratio in peak and depressed ratio in ridge and
margin. That is why we see larger c1 and smaller c2, c3 in
FFG and HMT than WS.

To test our interpretation, we also extract skewness and
kurtosis of rapidity distribution in different systems and αZN

regions in Fig. 7. According to knowledge from statistics,
the skewness is defined as μ3

σ 3 , and the kurtosis is defined

as μ4

σ 4 − 3, in which μn = 〈(X − 〈X 〉)n〉 and σ =
√

�(Xi−〈X 〉)2

N .
The skewness describes how far the events distribution devi-
ates from the mean value, for a standard Gaussian distribution
the skewness is 0, and a positive skewness shows a longer
small tail on the right of the mean value because a few events
with higher X distribute on the right. And the kurtosis de-
scribes how the events concentrate around the mean value,
for a standard Gaussian distribution the kurtosis is also 0, and
higher kurtosis means more events distribute around the mean
value. The values of skewness in four different configurations
(WS, Tri, FFG, HMT) do not show significant dependence,
but in the same configuration we can always see the skewness
in the positive region is smaller than the one in the middle
region. When both are smaller than the one in the negative
region, the relationship is consistent to the physical picture
of rapidity shift. The central values of kurtosis in FFG and
HMT cases show a rising trend than Woods-Saxon cases as
baseline. According to the statistical significance of kurtosis,
higher kurtosis means more events concentrate to distribute
around the mean value, that is to say, FFG and HMT cases
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FIG. 6. Different components cnyn for our eight systems.

have more events around the peak and less events in ridge
and margin. This deformation of rapidity distribution leads to
the anomaly of ratio and cn. And further, comparing to the
HMT case, larger kurtosis in the positive region and smaller
kurtosis in the negative region in the FFG case means in the
peak region more events distribute in +asym and less events
distribute in −syem, which leads to higher c1 in FFG than
HMT. Here, we see that the kurtosis also supports our physical
picture for the effect on longitudinal asymmetry from intrinsic
momentum distribution.

Lastly, we can discuss the difference between FFG and
HMT. According to Fig. 6, we can see that the fitting line
of ratio+/− of FFG (green) is higher than HMT (blue) in
most regions of peak and ridge as we mentioned in Fig. 2.
Considering that c1 dominates ratio+/− as shown in Fig. 6, we
can say the effect of deformation in FFG is mainly shown as
generating more events in the peak of rapidity distribution and
less events at the edge close to ±5. It is reasonable that FFG
indeed provides additional momentum distribution on y0, be-
cause there is no interaction between nucleons, but meanwhile

FFG cannot provide more particles emitted to larger rapidity
(y ∼ 5). To compensate the over-increasing c1 which domi-
nates in the midrapidity region, c2 and c3 are both near enough
to 0, even negative as shown in Figs. 6 and 4. But the SRC
mechanism in HMT provides a way to emit more particles
with larger rapidity. According to Refs. [37,38,67], HMT can
cause more high energy nucleon emission at the final state, so
in the beam direction more particles with larger rapidity can
distribute close to ±5. That is why Figs. 4 and 6 show us that
c2, c3 of HMT provide larger and positive contributions than
those of FFG. In summary, intrinsic momentum distributions
are transformed to different deformation of the final rapidity
distribution, and their effect on longitudinal asymmetry can
be characterized by cn.

C. Prospect and alternative improvement in experiments

For both the initial condition and longitudinal asymmetry
we introduced above, some experiments have been carried
out to investigate them prospectively. Considering different
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FIG. 7. The skewness and kurtosis of rapidity distribution from different configurations and αZN regions in our eight systems.
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progresses in various experiments, here, we can simply show
some feasibility on our suggested future experiments. The
SRC experiments on Jefferson Laboratory extend to systems
with larger removal energy, momentum, and more complex
nuclei which can give us insights about effects from HMT.
Measurements of rapidity distribution or longitudinal asym-
metry in heavy ion collisions have been proceeded as Au+Au
or Pb+Pb at RHIC and LHC. Also some are planned to inves-
tigate them at FRIB and FAIR, etc. [67,69]. It is possible to
test some joint measurements, for instance, electron-nucleus
scattering [70] experiments can help us estimate the HMT
component and short-range-correlation effect in ion collisions
[37,67], meanwhile collective flow vn, characteristic spectra
of giant dipole resonance (GDR), dihadron azimuthal cor-
relation, and backward-forward multiplicity correlation can
help us to distinguish α-cluster structure [26,30–33,35,71,72].
Lastly the energy deposition in the detector and rapidity mea-
surement reveal the longitudinal asymmetry [69]. Also, for
some practical application, we suggest to measure the rapidity
spectrum or compare with previous data, and use probes of
the α cluster or HMT mentioned above in RHIC or ALICE
experiments to distinguish different configurations, then mea-
sure coefficients 〈y0〉 and cn in different configurations to
match their longitudinal asymmetry. Then according to our
work one can give these systems’ initial rapidity shift and
nonzero momentum shift, which can be used to reconstruct
the colliding vertex or correct the initial angular momen-
tum, this reconstruction and correction may affect the initial
condition in the polarization problem, chiral magnetic effect
measurement, and so on, so we hope our work on longitu-
dinal asymmetry can be applied in observable measurements
in these experiments. Despite the limited progress of the
experimental program, RHIC and ALICE have provided us
abundant benchmarks for the rapidity distribution and lon-
gitudinal asymmetry of various systems. These results can
benefit future measurements that may be performed in more
experiments on different colliders and systems such as O+O
colliding at FRIB, SRC experiments at JLab, and so on. By
carrying out these experiments in symmetric nuclei collisions,
we can give insight or provide an improvement of the physical
picture on longitudinal asymmetry, further to constrain condi-
tions of collision and describe final rapidity more precisely.

V. SUMMARY

This paper presents a comparison of the longitudinal asym-
metry for systems with different α cluster structure and
intrinsic momentum distribution in AMPT model. αZN and y0

are calculated to characterizing the rapidity shift, as performed
in experimental measurements by ALICE [69]. To study the
effect of different initial conditions on longitudinal asymme-
try, we introduce α cluster structure and different intrinsic
nucleon momentum distribution into the simulation in AMPT

model, where the intrinsic momentum distribution is added to
the parameter y0 as shown in Fig. 1(a3) and 1(b3). With these
data we use a third polynomial fitting to extract the expansion
coefficients cn in Fig. 4. The comparison among different
initial conditions shows us the effects of the α clustering
structure and the initial momentum component.

Based on our analysis, we propose that the dependence of
the longitudinal asymmetry is the result of the competition be-
tween the rapidity shift and rapidity deformation. In the |y| <

1 region, c1 is mainly linearly dependent on the initial rapidity
shift if we do not consider the momentum distribution, and
the momentum distribution will lead to rapidity deformation,
shown as a larger ratio in peak and ridge. However, in the
large rapidity region, c2 and c3 reflect the deformation of the
final-state rapidity distribution. HMT caused by SRC provides
a larger rapidity distribution when y is close to ±5, which
enhances the longitudinal asymmetry of c2 and c3. To further
support our interpretation, we extracted the skewness and kur-
tosis from different configurations. By comparing skewness
and kurtosis from different shift regions and configurations,
we demonstrate that the particle rapidity distribution caused
by different configurations, especially FFG and HMT, provide
deformation in different regions as expected, resulting in ad-
ditional longitudinal asymmetry. And this phenomenon shows
a consistency with the anomaly of coefficients cn, which can
be measured in future experiments.

Finally, we discuss the practical application of our cal-
culation in experiments, including a joint measurement on
the α-clustering effect, high momentum component effect,
and longitudinal asymmetry with deformation, some depen-
dent experiments have been performed in different detectors
[31,34,67,69]. And we respectively introduced different ex-
periments for the joint measurement, so that researchers can
ensure the feasibility of suggested experiments in the future.
In order to test the results of this work, we propose to in-
vestigate the collision of symmetric nuclei of the C + C
system, and in the future we expect that these investigations
by observables related to initial conditions can provide us with
insights to constrain the nuclear structure and the intrinsic
momentum distribution of the nucleon in the nuclear, as well
as the correction for the deformation of the final rapidity
distribution.

ACKNOWLEDGMENTS

This work was supported in part by National Key R&D
Program of China under Grant No. 2018YFE0104600, the Na-
tional Natural Science Foundation of China under Contracts
No. 11890710, No. 11890714, No. 12147101, No. 12275054,
No. 11875066, No. 11925502, No. 11961141003, and the
Strategic Priority Research Program of CAS under Grant No.
XDB34000000, Guangdong Major Project of Basic and Ap-
plied Basic Research No. 2020B0301030008, and Shanghai
Special Project for Basic Research No. 22TQ006.

[1] M. Connors, C. Nattrass, R. Reed, and S. Salur, Rev. Mod. Phys.
90, 025005 (2018).

[2] A. Bzdak, S. Esumi, V. Koch, J. F. Liao, M. Stephanov, and N.
Xu, Phys. Rep. 853, 1 (2020).

064906-10

https://doi.org/10.1103/RevModPhys.90.025005
https://doi.org/10.1016/j.physrep.2020.01.005


EFFECTS OF THE α-CLUSTER STRUCTURE AND … PHYSICAL REVIEW C 108, 064906 (2023)

[3] A. Rothkopf, Phys. Rep. 858, 1 (2020).
[4] J. Chen, D. Keane, Y. G. Ma, A. Tang, and Z. Xu, Phys. Rep.

760, 1 (2018).
[5] M. I. Abdulhamid et al., Phys. Rev. Lett. 130, 202301 (2023).
[6] A. Tumasyan et al., Phys. Rev. Lett. 129, 022001 (2022).
[7] L. L. Zhu, B. Wang, M. Wang, and H. Zheng, Nucl. Sci. Tech.

33, 45 (2022).
[8] M. Wang, J. Q. Tao, H. Zheng, W. C. Zhang, L. L. Zhu, and A.

Bonasera, Nucl. Sci. Tech. 33, 37 (2022).
[9] S. W. Lan and S. S. Shi, Nucl. Sci. Tech. 33, 21 (2022).

[10] Y. C. Liu and X. G. Huang, Sci. China Phys. Mech. Astron. 65,
272011 (2022).

[11] Y. Zhang, D. Zhang, and X. Luo, Nucl. Tech. (in Chinese) 46,
040001 (2023).

[12] C. M. Ko, Nucl. Sci. Tech. 34, 80 (2023).
[13] K. Sun, L. Chen, C. M. Ko, F. Li, J. Xu, and Z. Xu, Nucl. Tech.

(in Chinese) 46, 040012 (2023).
[14] R. Rapp, Nucl. Sci. Tech. 34, 63 (2023).
[15] S. Thakur, K. Saha Sumit et al., Eur. Phys. J. A 58, 13 (2022).
[16] R. Raniwala, S. Raniwala, and C. Loizides, Phys. Rev. C 97,

024912 (2018).
[17] X.-G. Deng, X.-G. Huang, and Y.-G. Ma, Phys. Lett. B 835,

137560 (2022).
[18] M. Bleicher, E. Zabrodin, C. Spieles et al., J. Phys. G 25, 1859

(1999).
[19] K. Xiao, P. C. Li, Y. J. Wang, F. H. Liu, and Q. F. Li, Nucl. Sci.

Tech. 34, 62 (2023).
[20] P. C. Li, J. Steinheimer, T. Reichert et al., Sci. China Phys.

Mech. Astron. 66, 232011 (2023).
[21] B.-S. Xi, X.-G. Deng, S. Zhang, and Y.-G. Ma, Eur. Phys. J. A

59, 33 (2023).
[22] F. Kornas (for HADES Collaboration), talk given at Strangeness

Quark Matter 2021 Online.
[23] M. S. Abdallah et al. (STAR Collaboration), Phys. Rev. C 104,

L061901 (2021).
[24] G. Gamow and E. Rutherford, Proc. Math. Phys. Eng. Sci. 126,

632 (1930).
[25] L. Qin, K. Hagel, R. Wada et al., Phys. Rev. Lett. 108, 172701

(2012).
[26] W. B. He, Y. G. Ma, X. G. Cao, X. Z. Cai, and G. Q. Zhang,

Phys. Rev. Lett. 113, 032506 (2014).
[27] W.-B. He, Q.-F. Li, Y.-G. Ma, Z.-M. Niu, J.-C. Pei, and Y.-X.

Zhang, Sci. China Phys. Mech. Astron. 66, 282001 (2023).
[28] W. He, Y. Ma, L. Pang, H. Song, and K. Zhou, Nucl. Sci. Tech.

34, 88 (2023).
[29] W. Broniowski and E. Ruiz Arriola, Phys. Rev. Lett. 112,

112501 (2014).
[30] Y.-A. Li, S. Zhang, and Y.-G. Ma, Phys. Rev. C 102, 054907

(2020).
[31] C.-C. Guo, W.-B. He, and Y.-G. Ma, Chin. Phys. Lett. 34,

092101 (2017).
[32] Y.-A. Li, D.-F. Wang, S. Zhang, and Y.-G. Ma, Chin. Phys. C

46, 044101 (2022).
[33] Y.-A. Li, D.-F. Wang, S. Zhang, and Y.-G. Ma, Phys. Rev. C

104, 044906 (2021).
[34] Y.-G. Ma and S. Zhang, Influence of nuclear structure in rela-

tivistic heavy-ion collisions, in Handbook of Nuclear Physics,
edited by I. Tanihata, H. Toki, and T. Kajino (Springer Nature,
Singapore, 2020), pp. 1–30.

[35] Y.-G. Ma, Nucl. Tech. (in Chinese) 46, 080001 (2023).

[36] A. N. Antonov, V. A. Nikolaev, and I. Z. Petkov, Z. Phys. A
297, 257 (1980).

[37] C. Ciofi degli Atti, S. Simula, L. L. Frankfurt, and M. I.
Strikman, Phys. Rev. C 44, R7(R) (1991).

[38] Z. Wang, C. Xu, Z. Ren, and C. Gao, Phys. Rev. C 96, 054603
(2017).

[39] L. Shen, B.-S. Huang, and Y.-G. Ma, Phys. Rev. C 105, 014603
(2022).

[40] Z.-W. Lin, C. M. Ko, B.-A. Li, B. Zhang, and S. Pal, Phys. Rev.
C 72, 064901 (2005).

[41] G.-L. Ma and Z.-W. Lin, Phys. Rev. C 93, 054911 (2016).
[42] Z.-W. Lin and L. Zheng, Nucl. Sci. Tech. 32, 113 (2021).
[43] X.-N. Wang and M. Gyulassy, Phys. Rev. D 44, 3501 (1991).
[44] M. Gyulassy and X.-N. Wang, Comput. Phys. Commun. 83, 307

(1994).
[45] B. Zhang, Comput. Phys. Commun. 109, 193 (1998).
[46] B.-A. Li and C. M. Ko, Phys. Rev. C 52, 2037 (1995).
[47] X.-H. Jin, J.-H. Chen, Y.-G. Ma et al., Nucl. Sci. Tech. 29, 54

(2018).
[48] H. Wang, J. H. Chen, Y. G. Ma et al., Nucl. Sci. Tech. 30, 185

(2019).
[49] H. Wang and J. H. Chen, Nucl. Sci. Tech. 33, 15 (2022).
[50] Z.-W. Lin, Phys. Rev. C 90, 014904 (2014).
[51] C. Shen and Y. Li, Nucl. Sci. Tech. 31, 122 (2020).
[52] R.-X. Cao, S. Zhang, and Y.-G. Ma, Phys. Rev. C 106, 014910

(2022).
[53] Q. Chen, G. Ma, and J. Chen, Nucl. Tech. (in Chinese) 46,

040013 (2023).
[54] X.-L. Zhao, G.-L. Ma, and Y.-G. Ma, Phys. Rev. C 99, 034903

(2019).
[55] J.-H. Gao, G.-L. Ma, S. Pu, and Q. Wang, Nucl. Sci. Tech. 31,

90 (2020).
[56] Y.-C. Liu and X.-G. Huang, Nucl. Sci. Tech. 31, 56 (2020).
[57] C.-Z. Wang, W.-Y. Wu, Q.-Y. Shou, G.-L. Ma, Y.-G. Ma, and S.

Zhang, Phys. Lett. B 820, 136580 (2021).
[58] X. L. Zhao, G. L. Ma, and Y. G. Ma, Phys. Lett. B 792, 413

(2019).
[59] W.-Y. Wu, C.-Z. Wang, Q.-Y. Shou, Y.-G. Ma, and L. Zheng,

Phys. Rev. C 103, 034906 (2021).
[60] H. Feldmeier, Nucl. Phys. A 515, 147 (1990).
[61] M. Chernykh, H. Feldmeier, T. Neff, P. von Neumann-Cosel,

and A. Richter, Phys. Rev. Lett. 98, 032501 (2007).
[62] Y. Kanada-En’yo, M. Kimura, and A. Ono, Prog. Theor. Exp.

Phys. 2012, 01A202 (2012).
[63] Y. Kanada-En’Yo, M. Kimura, and H. Horiuchi, Eur. Phys. J. A

25, 305 (2005).
[64] W. B. He, Y. G. Ma, X. G. Cao, X. Z. Cai, and G. Q. Zhang,

Phys. Rev. C 94, 014301 (2016).
[65] B. S. Huang, Y. G. Ma, and W. B. He, Phys. Rev. C 95, 034606

(2017).
[66] S. S. Wang, X. G. Cao, and T. L. Zhang, Nucl. Phys. Rev 32, 24

(2015).
[67] M. Patsyuk et al., Nat. Phys. 17, 693 (2021).
[68] C. Ciofi degli Atti and S. Simula, Phys. Rev. C 53, 1689 (1996).
[69] S. Acharya, J. Adam et al., Phys. Lett. B 781, 20 (2018).
[70] S. Li, R. Cruz-Torres, N. Santiesteban et al., Nature (London)

609, 41 (2022).
[71] C. Zhang, A. Behera, S. Bhatta, and J. Jia, Phys. Lett. B 822,

136702 (2021).
[72] B. Alver and G. Roland, Phys. Rev. C 81, 054905 (2010).

064906-11

https://doi.org/10.1016/j.physrep.2020.02.006
https://doi.org/10.1016/j.physrep.2018.07.002
https://doi.org/10.1103/PhysRevLett.130.202301
https://doi.org/10.1103/PhysRevLett.129.022001
https://doi.org/10.1007/s41365-022-01028-8
https://doi.org/10.1007/s41365-022-01019-9
https://doi.org/10.1007/s41365-022-01006-0
https://doi.org/10.1007/s11433-022-1903-8
https://doi.org/10.11889/j.0253-3219.2023.hjs.46.040001
https://doi.org/10.1007/s41365-023-01231-1
https://doi.org/10.11889/j.0253-3219.2023.hjs.46.040012
https://doi.org/10.1007/s41365-023-01213-3
https://doi.org/10.1140/epja/s10050-022-00667-0
https://doi.org/10.1103/PhysRevC.97.024912
https://doi.org/10.1016/j.physletb.2022.137560
https://doi.org/10.1088/0954-3899/25/9/308
https://doi.org/10.1007/s41365-023-01205-3
https://doi.org/10.1007/s11433-022-2041-8
https://doi.org/10.1140/epja/s10050-023-00932-w
https://doi.org/10.1103/PhysRevC.104.L061901
https://doi.org/10.1098/rspa.1930.0032
https://doi.org/10.1103/PhysRevLett.108.172701
https://doi.org/10.1103/PhysRevLett.113.032506
https://doi.org/10.1007/s11433-023-2116-0
https://doi.org/10.1007/s41365-023-01233-z
https://doi.org/10.1103/PhysRevLett.112.112501
https://doi.org/10.1103/PhysRevC.102.054907
https://doi.org/10.1088/0256-307X/34/9/092101
https://doi.org/10.1088/1674-1137/ac3bc9
https://doi.org/10.1103/PhysRevC.104.044906
https://doi.org/10.11889/j.0253 3219.2023.hjs.46.080001
https://doi.org/10.1007/BF01892806
https://doi.org/10.1103/PhysRevC.44.R7
https://doi.org/10.1103/PhysRevC.96.054603
https://doi.org/10.1103/PhysRevC.105.014603
https://doi.org/10.1103/PhysRevC.72.064901
https://doi.org/10.1103/PhysRevC.93.054911
https://doi.org/10.1007/s41365-021-00944-5
https://doi.org/10.1103/PhysRevD.44.3501
https://doi.org/10.1016/0010-4655(94)90057-4
https://doi.org/10.1016/S0010-4655(98)00010-1
https://doi.org/10.1103/PhysRevC.52.2037
https://doi.org/10.1007/s41365-018-0393-1
https://doi.org/10.1007/s41365-019-0706-z
https://doi.org/10.1007/s41365-022-00999-y
https://doi.org/10.1103/PhysRevC.90.014904
https://doi.org/10.1007/s41365-020-00829-z
https://doi.org/10.1103/PhysRevC.106.014910
https://doi.org/10.11889/j.0253-3219.2023.hjs.46.040013
https://doi.org/10.1103/PhysRevC.99.034903
https://doi.org/10.1007/s41365-020-00801-x
https://doi.org/10.1007/s41365-020-00764-z
https://doi.org/10.1016/j.physletb.2021.136580
https://doi.org/10.1016/j.physletb.2019.04.002
https://doi.org/10.1103/PhysRevC.103.034906
https://doi.org/10.1016/0375-9474(90)90328-J
https://doi.org/10.1103/PhysRevLett.98.032501
https://doi.org/10.1093/ptep/pts001
https://doi.org/10.1140/epjad/i2005-06-035-y
https://doi.org/10.1103/PhysRevC.94.014301
https://doi.org/10.1103/PhysRevC.95.034606
https://doi.org/10.11804/NuclPhysRev.32.01.024
https://doi.org/10.1038/s41567-021-01193-4
https://doi.org/10.1103/PhysRevC.53.1689
https://doi.org/10.1016/j.physletb.2018.03.051
https://doi.org/10.1038/s41586-022-05007-2
https://doi.org/10.1016/j.physletb.2021.136702
https://doi.org/10.1103/PhysRevC.81.054905

