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Pre-equilibrium evolution of conserved charges with initial conditions
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Heavy-ion collisions can be well described through relativistic viscous hydrodynamics, but questions still
remain when hydrodynamics is applicable because the initial state may begin very far from equilibrium. Thus,
a pre-equilibrium evolution phase is used to bridge the gap between the initial state and hydrodynamics.
K@MP@ST is one such pre-equilibrium model that propagates the energy-momentum tensor by decomposing it
into the background and fluctuations around that background, whose evolution is captured by Green’s functions.
We extend this formalism to include conserved charges and calculate the corresponding nonequilibrium Green’s
functions in the relaxation-time approximation. The ICCING algorithm initializes conserved charges in the initial
state by sampling g — ¢¢ splitting probabilities and is, thus, perfectly positioned to implement Green’s functions
for charge propagation. We show that this method alters the initial-state charge geometries and is applicable in

central to mid-central collisions.
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I. INTRODUCTION

Ultrarelativistic heavy-ion collisions provide an opportu-
nity to study the extreme limits of deconfined quarks and
gluons. In the very early stages of the collisions, the energy is
predominantly composed of saturated gluons emerging from
the low-x wave functions of the colliding nuclei [1]. This
initial state is followed by pre-equilibrium dynamics, leading
to the formation of a quark-gluon plasma (QGP) character-
ized by deconfined quarks and gluons acting as a nearly
perfect fluid [2,3]. The measured distributions of final-state
hadrons resulting from the freeze-out of this fluid thus encode
a complex superposition of the features of the initial-state
geometry, pre-equilibrium dynamics, and hydrodynamic evo-
lution. Thus, simulations of all stages of heavy-ion collisions
are crucial to reconstruct the early stages of the collision and
interpret experimental data (see Ref. [4] and citations within).

To simulate heavy-ion collisions, one starts with an initial-
state characterization of the energy-momentum tensor 7"
and currents J* of conserved charges which is far from ther-
modynamic equilibrium. The initial state at proper time 1y and
any pre-equilibrium dynamics which follow determine the ini-
tial conditions at proper time Thyaro > To Of the hydrodynamic
equations of motion. This hydrodynamic evolution continues
until the system has frozen out into baryons and mesons.
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Apples-to-apples comparisons to experiments are possible af-
ter a further simulation of the hadronic gas phase, where the
system is described in terms of hadrons and their interactions
[5-T7].

Because the QGP behaves as a nearly perfect liquid [4], the
geometric structure from the initial-state 7#” and J* leaves
an observable imprint on the final-state hadron distributions
[8—15]. This both makes models of the initial conditions
particularly important in the prediction of experimental ob-
servables and also allows us to constrain these models by
direct confrontation with data. Specifically, observables which
are less sensitive to the hydrodynamic phase, such as the
cumulant ratio v,{4}/v,{2} in central collisions, can provide
a direct window into initial-state effects [16—18].

Until recently, initial-state models have primarily fo-
cused on descriptions of the energy density € = T%. Recent
progress has systematically included more initial-state vari-
ables including initial flow 7% and initial shear 7%/ [19-26].
Initial conditions of conserved charge densities p = J°
[27-31] have also been developed, although primarily con-
cerned with baryon density pp due to its role in the search
for the quantum chromodynamic (QCD) critical point. Re-
cently, an open-source Monte Carlo event generator, known
as ICCING (Initial Conserved Charges in Nuclear Geometry),
was developed which is capable of initializing all three con-
served charge densities [32,33]: baryon density, strangeness
density, and electric charge density (BSQ). ICCING is a
model-agnostic algorithm which constructs the initial condi-
tions for the BSQ charge densities for a given energy density,
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by treating the energy density as being composed of glu-
ons and stochastically sampling their probability to split into
quark-antiquark (gg) pairs. The g — ¢4 splitting probabilities
can be specified according to any desired microscopic model,
among many other parts of the code. The ICCING algorithm
is constructed in a modular fashion to account for a variety
of different physical inputs relevant throughout the code. The
sampling process is done by seeding a random point from the
input energy distribution and selecting a fraction of energy
from a circle centered on that point. The radius of this “gluon,”
the probability distribution from which the fraction of energy
is sampled, and the minimum amount of energy allowed for
a gluon are external inputs set by the user for this step of
the process. This extends to the rest of the algorithm which
is explained in full in Refs. [32,33].

To constrain the parameters used in ICCING initial condi-
tions from experimental data, a necessary next step would be
to evolve these initial conditions using a (2 4 1)-dimensional
[(2 + 1)D] viscous hydrodynamics code that simultaneously
solves all of the hydrodynamic equations of motion, including
all of the conserved currents as well as the energy-momentum
tensor. This task is technically challenging, not only be-
cause of the challenges associated with evolving the new
conserved currents themselves, but also because of the need
for a fully four-dimensional equation of state. These issues
have started to be addressed and are expected to appear soon
[34]. There is a further challenge in the connection of the
initial state to the hydrodynamic evolution since the former
is far from equilibrium. Recent work [25] has shown that
moving directly from initial conditions to hydro produces a
large fraction of fluid cells that violate nonlinear causality
constraints [35], about 30%, while there is uncertainty about
the causal status of the remaining cells. This study found
that including a pre-equilibrium evolution stage reduces the
number of acausal cells but does not fully eliminate them.
Generally, a proper description of the pre-equilibrium dy-
namics is not only theoretically desirable but can also affect
flow observables in small and large collision systems [36-38].
Based on a microscopic description in QCD kinetic theory,
the authors of Refs. [24,39] developed the nonequilibrium
linear-response formalism K@MP@ST which allows us to
propagate the energy-momentum tensor 7" from early times
up to the point where a fluid-dynamical description becomes
applicable. The K@GMP@ST code was used in Ref. [25] as
the pre-equilibrium stage. Coupling the ICCING code to a
pre-equilibrium stage would further extend its usefulness. So
far the pre-equilibrium description in K@MP@ST itself does
not contain what is needed to evolve the conserved charge
densities from ICCING, but the methods that are used, namely
nonequilibrium Green’s functions, could be applied to our
case.

The main idea of K@MP@ST is to extract the energy-
momentum tensor 7#"(x) at time T = Thyqdro from an initial-
state model. For this the system is evolved by using effective
kinetic theory from an initial time 7o tO Thyaro. Fluctua-
tions §7""(x) of the energy-momentum tensor around the
background energy-momentum tensor T, (x) are considered
within this framework. In practice the perturbations are as-
sumed to be small and therefore can be linearized. This gives

rise to linear-response theory, where the complete energy-
momentum tensor 7#"(x) can be obtained by a sum of TB" G” (x)
and a term involving nonequilibrium Green’s functions, which
capture the evolution of the perturbations. This provides a
powerful method to compute 7#¥(x) because numerical sim-
ulations only need to be done once to obtain the background
evolution and the Green’s functions. In the past few years
different groups have begun to incorporate KBMP@ST within
their fluid dynamics simulations, making direct connections
to experimental data [40-42].

While KGMP@ST is based on QCD kinetic theory, more
recently studies have been made in which the same Green’s
functions are computed in simpler models, such as the Boltz-
mann equation in the relaxation-time approximation (RTA)
[43,44]. The assumption of relaxation time approximation
drastically simplifies the theoretical description and allows
for an efficient way to compute the non-equilibrium Green’s
functions. In the relaxation-time approximation the general
formalism of KGMP@ST can also be expanded in a much sim-
pler way to include conserved charges and compute Green’s
functions for the corresponding current. These Green’s func-
tions for charge and energy propagation can be included in
ICCING by some careful reworking and provide a meaningful
pre-equilibrium evolution for the conserved charge densities.

To test the effect of these new pre-equilibrium charge evo-
lution equations, we look at the event averaged two-particle
eccentricities (see Appendix E) which describe the geom-
etry of the initial state and have been shown to be good
predictors of the final-state flow harmonics [10] except in
peripheral collisions where nonlinear corrects become signif-
icant [17,18,45]. Because of this linear mapping, it is possible
to cancel out many of the medium effects by taking the ratio
of four-particle to two-particle cumulants, which also are a
measure of the fluctuations of a certain type of initial-state
geometry. These are well understood for the energy density
and have only started to be studied for BSQ charge densities
[32].

In this paper we couple the Green’s functions coming from
relaxation-time approximation to the ICCING algorithm by
treating energy and charge differences after gluon splittings
as small perturbation around the background. For that we first
introduce the basics about our Green’s functions calculation
in Sec. II. Section III is dedicated to the applications of
these response functions in the ICCING algorithm, while we
present our results in detail in Sec. IV. Conclusions are found
in Sec. V.

Besides this we provide additional calculations in the Ap-
pendix about the background evolution (Appendix A), the
perturbations around this background (Appendix B) and about
the Green’s functions (Appendix C). In Appendix D we men-
tion technical aspects regarding spherical harmonics, and in
Appendix E the definition is given for the initial-state eccen-
tricities and cumulants.

II. GREEN’S FUNCTIONS FROM KINETIC THEORY

To introduce the nonequilibrium Green’s functions we
follow the same idea as Ref. [39] by dividing the space-
time dynamic into a background evolution and perturbations
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around this background. On the technical side we follow
Ref. [43], where the authors solved the equations of motions
in term of moments of the distribution functions. This formal-
ism will be extended to include conserved charges.

Although we are not primarily interested in the background
evolution in this study, we need to address it briefly since
its dynamics enters the time evolution of the energy and
number density. Therefore Secs. I A and II B are dedicated
to introduce the background evolution. Further results on our
study regarding the background evolution can be found in
Appendix A. Afterwards we consider the dynamics of small
space-time perturbations in Sec. IIC (see Appendix B for
further details). The evolution of these perturbations will be
captured in terms of nonequilibrium Green’s functions, which
are introduced in Sec. IID. For completeness, the Green’s
functions that are not relevant for our study are presented in
Appendix C.

A. Boltzmann equation in relaxation-time approximation

The starting point of our analysis is the Boltzmann equa-
tion in the relaxation-time approximation (RTA),

P = U1 = =P o, o
(1a)
Pdufa = CLA] = —wm — fuea(PuB" (), a(O),
(1b)

where x = (1%, x, x%) describes a four-dimensional vector in
Minkowski space, B(x) = u(x)/T (x) with u*(x) being the
local rest-frame velocity obtained by Landau matching, 7 (x)
being the effective temperature, and a standing for the quarks
up, down, and strange. By f and f, we denote the singlet and
valence distribution functions,

f=vfe+y Z [fqa +?qa]’ (2a)

fa=v[fo. = fu] (2b)

with g standing for gluon, g standing for quark, a = u, d, s,
such that Ny = 3, and vy = 16, v, = 6 being the spin-color
degeneracy factor. The corresponding equilibrium distribution
functions are the Bose-Einstein distribution function for glu-
ons and the Fermi-Dirac distribution function for quarks and
antiquarks. Each quark flavor has its own chemical potential
Uaq(x) which governs the evolution of the valence charge
distribution (1b), while the flavor singlet distribution (la)
evolves according to the effective chemical potential 1(x)
for all flavors. We also emphasize that we assume the same
relaxation time tgx for every species; while this is a fairly
restrictive assumption, we use it as a first step to explore
the geometrical impact of charge diffusion. As we consider
the evolution in a conformal system, 1z is proportional to the
inverse temperature such that [46]

nT
e+

wT(t)=5 = const, 3)

where 7 is the shear viscosity, e the energy density, P the
pressure, and T the effective temperature of the system. The
velocity u*(x) is the local rest-frame velocity which is deter-
mined via the Landau-matching conditions

TH ()uy (x) = e(x)u" (x), (4a)
which ensures energy-momentum conservation [47]. In ad-

dition to this, we also have the matching conditions for the
conserved charges n,(x),

NEx)u, (x) = na(x), (52)

such that the effective temperature 7' (x) and effective chemi-
cal potential 1, (x) can be determined from'

e(x) = eeq(T (x), pn(x)), (6a)
Na(X) = Naeq(T (%), u(x)). (6b)

We emphasize that the above-mentioned quantities 7""(x),
respectively N/*(x), are defined to have contributions from all
species of particles such that

TR =T 4 [T+ T, (7a)

Nk =N — NI (7b)

As we are interested in longitudinally boost-invariant expand-
ing systems it is convenient to work in Milne coordinates

3
=002 — (B3P = arctanh(%), 8)

such that g,, = diag(+1, —1, -1, —7%) and /—g(x) =7.
Furthermore we consider the quarks and gluons to be mass-
less, such that their momentum can be parametrized as

P = (pr cosh (y), p, pr sinh (y)), 9)

with y = arctanh(p®/p°) being the momentum space rapidity
and pr = |p|. In the Milne coordinates the Boltzmann equa-
tion takes the following form:

[P 0; + p'd; + p",1f (x, p)

n
- _%R(X)[f(x, P) = feg(puB" (), n(0))1,  (10a)
[p79: + p'o; + p"0y)fulx, p)
s
- _%Rm[fa(x, P) = faca(PuB (). ()], (10b)

where

1 :
p- =prcosh(y—n), p'= opr sinh(y —1n), (11)

and i = x, y. It turns out that, when analyzing the dynamics of
a boost-invariant medium, it is more convenient to work with
the (dimensionless) longitudinal momentum variable

py = —tprsinh (y —n). (12)

'Here the reader should think of T'(x) and u.(x) as effective
quantities, which are defined in such a way, that they correspond to
the temperature and chemical potential in thermal equilibrium. The
subscript eff is dropped for better readability.
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With respect to this coordinate we arrive at the following form
of the Boltzmann equation:

[pa +p3— }f(x D)

puuu(x)

= ———1f(x, p) = feq(puB" (), n(0))], (132)

[p ¥+ p'o; — }fa(x D)

S (x)[fa(x ) —

Jaeq(PuB" (x), La(x))], (13b)
where p’ = [pT + (py /T)*]'/? represents the massless on-
shell condition.

B. Background evolution

To investigate the dynamics of the system in the pre-
equilibrium phases, we make the assumption that the system
can be divided into a background and perturbations around
this background. In the pre-equilibrium stage the plasma ex-
periences a rapid longitudinal expansion. However, in the
transverse plane the plasma is initially at rest and the ex-
pansion only builds up on timescales that are comparable
to the systems size. Therefore, we can neglect the trans-
verse expansion at early times and consider the idealized
situation of Bjorken flow. Accordingly, the background is
assumed to be longitudinally boost invariant, parity invariant
under spatial reflections along the longitudinal axis as well
as azimuthally symmetric and translationally invariant in the
transverse plane. The aforementioned symmetries constrain
the distribution functions of the background to the following
form:

(14a)
(14b)

S, p) = feo(T, prs Ipy)s
Jfa(x, p) = fapc(T, pr, IpyD).

For such a system the energy-momentum tensor is diagonal in
Milne coordinates with entries

The = diag(e, Pr, Pr, P/7%), (15)

where e is the energy density, Pr the transverse and P, the
longitudinal pressure. As the energy-momentum tensor is di-
agonal in Milne coordinates, the Landau-matching Eq. (4) is
solved trivially with

u =W, uu")=(1,0,0,0),

e = eqq.

(16a)
(16b)

Regarding the conserved charges and their respective currents

one finds
Nl = (N, Ny, NY) = (14, 0,0, 0), (17)

where n, = ny, — 7

9a*

Finally, the Boltzmann equation takes the familiar form

70; fc(T, pr. |Pyl)

= _‘(LRI:fBG(T’ prs |pyl) — feq(T( )7“'(‘[))]
(18a)

70; fu.8c(T, P, |Pyl)

__= '
= _; |:fa,BG(T’ pPr, |Pn|) - fu,eq<m’ Mu(f)):|-
(18b)

Our strategy to solve these equations follows [43,48] and
consists of expanding the distribution functions in terms of
spherical harmonics Y}'(¢, 6) according to

dp,

E"(t) =13 )

P
x (27T)2p Yl (¢Pv‘9p)fBG(Ts pT9 |pi’]|)s

(19a)

_ [ dpy
Nym(r) = an)

d’p ym ;
X/(zn)z 1 (@p, Op) fa(T, Pr. Pyl
(19b)

and solve the equations of motions for these moments. Since
the evolution of the background is not the main focus of this
work, we simply note that a detailed analysis for vanishing
charge densities can be found in Ref. [43]. While in this work,
we only consider energy-momentum and charge perturbations
on top of a charge neutral background, we provide additional
discussion on the background evolution in the presence of
nonvanishing density in Appendix A.

As we are interested in the evolution around vanishing
background charge density, we should mention that we can
extract the background energy density at any given time as a
function of the initial energy density according to the follow-
ing method:? By following [43,49,50], we can compute the
energy density at late times [t%/3e(7)]o as a function of the
initial energy density as

4 /s

4/9
W) (et)p, (20)
To

[t (1)) = coo<

where the constant Co, &~ 0.9 [43,49] quantifies how effi-
ciently the initial energy is converted into thermal energy,’
and 7/s is the shear viscosity to entropy density ratio,* which
is constant for a conformal system with vanishing net charge
density. In our calculations we choose #/s = 1/4m, although
the actual value can be scaled out of the equations of motion.
By (et)o we denote the initial energy density per unit area and

2For the sake of readability we drop the subscript BG for the energy
density for a moment.

3See Appendix A4 for further details on how to determine the
constant Cy.

*Note that in Eq. (3) we had /T /(e + P) instead of 7/s. How-
ever, since we now look at a vanishing background charge density,
1T /(e 4 P) actually simplifies to 7j/s.
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rapidity

dEy  dEp,
dnd?x  dnd?x

dEo,
et)y =
(et + Z ( dndx T
which becomes constant in the limit T — 0 in kinetic theory.
Inverting the Landau matching condition, Eq. (4) for van-
ishing chemical potential gives

dEy 5
=), @D
dnd2x

1/4
T(r)= [ e(r)} , (22)

T2 Vegy

with vegr = v, + %21\7_ rv, the overall effective degeneracy fac-
tor of all partons, such that [t*3e(1)] can be expressed as

2 1/9
[*e(0)le = m(4nﬁ/s>4/9(%) (e’ @3)

In the next step we introduce an attractor curve (), which
depends on the dimensionless time-variable [49]

T(t)T
4q/s’

ﬁ):

(24)

This attractor curve smoothly interpolates between free-
streaming at early times and viscous hydrodynamics at late

times
E < 1) =Ccla?, (25a)

J

2
3rwo’
The attractor curve connects the asymptotic value [t/ 3e(0)]so
to its counterpart at any given time [t*/3¢(z)] according to

[2*e(7)]
[t43e()]o
and has been calculated in Refs. [43,49] for the Boltzmann
equation in the RTA and in Refs. [49,50] for Yang-Mills and
QCD kinetic theory. Based on this attractor curve, we can

therefore relate the initial energy density to the energy density
at a later time via

E@>»1)=1- (25b)

E() = (26)

= ) e
30 T4/3 ’
27)
assuming that the system can locally be described by confor-
mal Bjorken flow up to this timescale.

epg(e(y)) = Coo(47T77/S)4/9<

C. Perturbations around Bjorken flow

So far we addressed the evolution of a homogeneous,
boost-invariant background. Now we consider linearized
perturbations around this background, caused by small space-
time dependent variations of the initial energy or charge
densities. We linearize the kinetic equations, such that we
can derive an evolution equation for the perturbations of the
distribution functions 8 f and § f;:

) T Sut T
[pfaf +po; - ”—Zan}sf(x, p =510 p) + M{[feq — fC )+ }
T TR TR

_PrT ) { T(v)dtg

T(r) ™

—(0,1)

R (g — FCr p)] + —2— } + f—R > 51 COLS 0+ Farg].

w T()| w oT T(r)*
(28a)
and
o+ — 220, |51 p) = s e, p+ 22O (= e py +
TP O et w we IR PR T (e
prodT(x)[ T(r)dtg )2 o p_’ o1
- ; T(‘L') |: . ﬁ(fa,eq - fa(xa P)) + m (;,e(;:| + " SMa(x) a.e()l’ (28b)
[
where As
_ P’
8f(-x7 p): Vg(sfg(x’P)‘i‘VqZ[qua(x’ p)+5fq[,(x’p)]s feq :fCQ(m’M(T)>’ (31)
) (29a) faeq = fa_eq<%, M(r)), (32)
8fa(x, p) = vg[8f,, (x, p) — 8, (x. p)]. (29b)

Here we used a shorter notation for the derivatives, namely

n

frr(x,y) = 8—ﬁf(x y) (30)
’ T 9y gm >
y

the derivatives are with respect to p*/T () for the (1, 0)-
derivative and with respect to u(7) for the (0, 1)-derivative.

The perturbations §u*(x) of the rest-frame velocity, the
temperature §7 (x), and the chemical potential du,(x) are
determined by the linearized Landau-matching conditions.
Details can be found in Appendix B 1.
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1. Evolution equations for perturbations in the transverse plane

From now on we concentrate on perturbations in the transverse plane, i.e., only for the transverse coordinates x. To solve the
equations of motion we expand the perturbations in a Fourier basis such that

d2k ik-x
8£(z.%, B, |pl) = f St e (33)

for i € {g, ga. q,} and where 8 (7, p, |py|) = 8 fi(t, k, p, |py]). The definition of § fi(z, p, |pyl) and & fo, k(7. P, |py|) is anal-
ogous to the cases before. Decomposing the velocity perturbation in the transverse plane into components parallel, § u]H((r), and
transverse, 8uﬁ-(r), to the wave vector in the transverse plane k we therefore find

8T (z,X) = / dz—kaTk(r)e“"X (34a)
’ 2r)? ’
Si1a(z. %) = / LLIppse (34b)
a ) (27_[)2 a, )
Su'(t,x) = f ¢’k 4 Su (r)eﬂ]ﬁek (34¢)
’ () K k|~
Sut(t,x) =0, du"(z,x)=0. (34d)

Note that u (7, x) = 0 vanishes identically due to the assumption that boost invariance along the beam axis is not broken for
the perturbations. This assumption could be relaxed in future work, but is important here for coupling to a (2 + 1)D geometry
as in ICCING. Denoting

k-p Kkp .
K ) Ky cos(¢pk) sin(6p), (35a)
k x k'p/ . .
|k|pf = ¢ |k|1;t = sin(epi) sin(6p), (35b)

where ¢px = ¢pp — ¢k is the angle between p and k in the transverse plane and sin(6p) = pr/p" and inserting the Fourier integrals
above into Eq. (28) allows us to find an evolution equation for 6 fx and 6 f; k. such that we have

13:8fi(T, P, [pyl) = — [lflkl ]5fk(f p. [y

k| p*
L (1,0)
tR( e )Ik| - x (T )|k| T>|:(feq Jx, p))+T( )feq }
T §Ix()|[ T (7)ot L0 ) —o.n
- ler) [ - R(feq fix, p))+m < ] Z(Suak(X) TN+ Fgneqls (36a)
and
-p T
rarafa,k(rv p7 |p7]|) = - |:lt|k| |k| - _L__i|8fa,k(f’ P, |pn|)
—1< (r) L(r) )[(f — falx, p))+—f“‘”]
R Ikl v Ik|p* e T ()
T §Tx(7) T(r)arR |2 T 01
T T [ (fa eq — Ja(x, p)) + e ;,eq} + - S 1ak(X) fyeq- (36b)

In Egs. (36) we sorted the terms by the several perturbations. The first term on the right-hand side corresponds to free streaming,
while the second term describes the relaxation of the perturbations. In the following lines one sees that the perturbations of the
velocity, temperature, and chemical potential cause a change of the equilibrium distribution, while the velocity and temperature
perturbations also affect the relaxation of the out-of-equilibrium background.
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2. Solving the equations of motion in the transverse plane

To solve Eq. (36) we follow the same strategy as for the background. Therefore, we define the perturbed moments according

to
d
SE\ (1) =13 (2’; ") (2n)2p’Y;"<¢pk,ep)afk(r,p, 1P (37a)
N (o) = [P Y2 (ke 093 (7. . [py1).
al,k (2 ) (2 )2 Pk ak p p’l
(37b)

As the derivation of the equations of motion for the moments
are not of primary interest here, we shift the explicit calcula-
tion into Appendix B.

Similar to the background, we are able to obtain the com-
ponents of §7}" and SN, as combinations of low-order
moments. A full list can be found in Appendix B 2. Further-
more we can also relate the perturbations of the intensive
quantities to the perturbation of the extensive quantities for
n, = 0 according to Eq. (A15) by

T — 4e’
6 on,
Sitak = — 22t (38b)
v, T

Therefore, we can replace 67k and §u, x with dex and én, ,
which is useful since we can express these quantities by low-
order moments again

t38ex(v) = VATSEY (1), (39a)
2
T e+ Prsuy(r) = —\| S [6E Th(0) = SE Th(0)].
(39b)
(e + Pr)duy (v) = z,/23 [BET\ (D) +SE T\ (D).
(39¢)
T8nax = VATSNY . (39d)

This results in a closed set of equations since all appearing
perturbations can be written as linear combinations of mo-
ments.

The equations of motions will be solved numerically.
For this we truncate the evolution at /,,x = 512. To find a
reasonable value we compared our results to the analytical
free-streaming equations. This comparison shows that conver-
gence is reached much faster for §E'7", than for §N,7"y. More
details can be found in Fig. 14 in Appendix B 5.

We note that, in addition to [43] we also need to invert the
matching conditions (6). This we do numerically at each time
step. More details on this can be found in Appendix A 3.

D. Nonequilibrium Green’s functions

In principle, we can obtain all information about the
evolution of the system from the moments. However, we
find it more convenient to consider Green’s functions of the

(

energy-momentum tensor and the charge current. Therefore,
we consider linear-response functions Gf:; for the energy-

momentum tensor, respectively, and (Fab)" for the charge
current. Here G and F describe the Green’s functions in
momentum space. As we show below, the Green’s functions
can be related to macroscopic quantities [Eqs. (44) and (49)],
which are, however, related to low-order moments according
to Egs. (39). This is another powerful property of our formal-
ism because it is easy to quantify the system’s response to
perturbations once one have solved the equations of motions.

For our study, only G;; and (Fab)§ are relevant, such that
we only present the result for these two here. The other
Green'’s functions can be found in Appendix C.

1. Nonequilibrium Green’s functions
of the energy-momentum tensor

We follow the construction of the response functions ac-
cording to [24,39] and express 8T}, (7) as

8T1’(”(r)
e(t)

1.

T L 573 (10)

e(to)

In the following we omit the explicit dependence on 7 for
better readability since we are mainly interested in the limit
79/tr — 0, where the kinetic framework describes the equili-
bration process from directly after the collision until the onset
of the hydrodynamic regime. Besides this, we also introduce
the propagation phase k by

(40)

« = [K|(T — 7). 4D
When expressing the evolution equations for the moments in
terms of «, this change of variable introduces additional terms
in the time derivative [43], which were taken into account.

Similarly to Ref. [39], we decompose the response func-
tions into a basis of Lorentz scalars (s), vectors (v) and tensors
(¢). For G this means

G'l(k, ) = G(k, x). (42)

Since the normalization of the linearized perturbation is arbi-
trary, we adopt the convention

de(ty) _

43
e(t) “3)
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FIG. 1. (left) Evolution of the energy-momentum Green’s function G! in response to initial energy perturbations. (right) Evolution of the
charge Green’s function F* in response to initial charge perturbations. The different curves in each panel correspond to different times .

such that we can express the decomposed response function
in terms of 87" () (see Ref. [39]) according to
ST " (x)  Se.(x)

s _ k —
Gk, x) = D e (44)

2. Nonegquilibrium Green’s functions of the current
of conserved charges

For the Green’s functions corresponding to the conserved
charges, we follow the same strategy. Before we compute
them, we first recall that, in Bjorken flow,

tn(t) = const. 45)

In particular we have tn(t) = 1on(tp), i.e., we need a slightly
different definition for the charge Green’s functions:

T8Nl (T) = (Fup)i (K, T, T) 108N 4 (T0). (46)

Note that in general different flavors can couple to each other
via the response function. However, for vanishing densities,
there is no coupling between the response for different quark
flavors and all flavors will have the same response functions,
such that the response matrix is proportional to the identity in
flavor space, i.e., (Fyp)* = F§,,

We decompose the charge Green’s functions also in a
scalar-vector-tensor basis such that we have

Fik, 7) = Fi(k,x). (47)
It is possible to express the response functions in terms of
SN f «- Adopting the normalization
708N (1) = 1, (48)
we find

Fi(k, x) = TONL(x) = T8n,(x). (49)

Note that we also drop the index a on the components SNi
because they will be the same for all species for vanishing
background number charge densities.

3. Numerical results for the nonequilibrium Green’s functions

We present the results for the response functions G and F$
in Fig. 1, where we plotted the different response functions in
dependence of the propagation phase « and time @ [Eq. (24)].

The different panels correspond to the different response
functions and are labeled by the components of the energy-
momentum tensor and the charge current that they affect,
e.g., G* is labeled by “energy response” because this function
describes the response of 67" (t), which corresponds to the
energy. Each curve in each panel corresponds to the response
function at a different time as indicated by the color code.
In addition, we also plotted the free-streaming behavior for
each response function, which corresponds to the black line at
w=0.

Due to the fact that we consider the perturbations for the
charge density and chemical potential around vanishing back-
ground densities, the evolution of the response function G
does not change in comparison with the results in Ref. [43]
This can already be seen at the level of the equation of motion
in Eq. (B24a) for vanishing densities. For early times (% <
1) one observes the free-streaming behavior, characterized
by wave-like modes with both peaks of excess density and
troughs of depleted density (the diffusion wake). Towards
later times larger x modes become damped, which can be
explained by viscous effects of the medium. At the onset
of the hydrodynamic regime (@ ~ 1) only long wavelength
modes survive, which indicates that the free-streaming initial
conditions are getting washed out during the evolution of the
system. The shift of the peak for later times towards larger
values of the propagation phase can be understood by noting
that at early times, shortly after the collision, the system is
highly anisotropic and expands in the transverse plane with
a phase velocity close to the speed of light. As the system
evolves in time, it will become more and more isotropic and
the phase-velocity will approach the speed of sound resulting
in the shift of the peak.

For the charge-density response £% we see that for early
times (% < 1) the behavior is similar to the one of G¢. How-
ever for later times the damping of the modes sets in earlier
than for G¢, such that for « > 10 there are already no visible
deviations from zero any more. Due to the damping of these
functions we see that, at @ ~ 1, when the hydrodynamic
regime sets in, again only long-wavelength modes survive.
Moreover, the absence of oscillations in the spectrum signals
the transition from propagating to diffusive behavior of the
charge perturbations, as will become evident in coordinate
space.
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to different times w.

We note that these results are obtained for perturbations
around zero density. Therefore further studies are necessary
to clarify the impact of perturbations around nonvanishing
densities. In particular, considering nonvanishing densities
will remove the degeneracy between the flavors leading to
interesting phenomena such as cross diffusion [51-53].

E. Green’s functions in coordinate space

So far we computed the Green’s functions in Fourier space,
which provides useful insight into the underlying physics and
dynamics of such far-from-equilibrium systems. However, the
Green’s functions in position space will provide additional
and useful information to understand the system’s evolution.
Similar to the decomposition in Fourier space, we can decom-
pose the Green’s functions in coordinate space as well into
a basis of scalars, vectors, and tensors such that, for the two
Green’s functions, we find

Gy (r, 1) = Gi(Ir|, 7),

T

Fi(r,7) = F(Ir], 7),

(50a)
(50b)

for the energy-momentum tensor and charge current, respec-
tively. The relation to their counterparts in Fourier space is
given by the following Fourier-Hankel transforms:

1 ~
Gy(rl, 7) = E/d|k||k|Jo(|k||l'|)G§(|k|,T), (5la)

1 .
Fi(lrl, ) = E/d|k||k|Jo(|k||l‘|)F§(|k|,T), (51b)

where J, are the Bessel functions of the first kind.

The results for the Green’s functions in coordinate space
are presented in Fig. 2. The corresponding Green’s function is
plotted as a function of Ax/Ar, i.e., the propagation distance
in units of the elapsed time, while the color coding indicates
the evolution time @. In the evolution of G} the propagation
of sound waves is clearly visible. In the free streaming evo-
lution and also still at early times the waves propagate with
(almost) the speed of light. Towards later times, the peak
shifts to smaller values of Ax/At approaching the speed of
sound ¢; = 4/1/3 and exhibits a negative contribution at small
Ax /At which corresponds to the diffusion wake.

Since at early times the net charge density is carried
by free-streaming particles, the charge response F% has the
same free-streaming behavior. One observes that this behavior
of the charge Green’s function F§ persists up to @ ~ 0.5.
Subsequently, the Green’s function transitions to a different
behavior, where one can clearly see the diffusion of charges
that results in a pronounced peak centered around Ax/At =
0, and no longer the free propagation of charges.

III. APPLICATIONS

Now that we have obtained both the energy-momentum
and charge-dependent Green’s functions, we can couple them
to ICCING initial conditions. The upgraded version of ICC-
ING 2.0 will be available on GitHub [54] upon publication.
We study the impacts of combining linearized pre-equilibrium
Green’s functions with initial geometries produced by ICC-
ING. As we will show, the assumption of linear response
leads to nontrivial effects on the resulting energy and charge
perturbations.

A. Using Green’s functions in ICCING

The starting point of the construction of an initial-state
profile of the energy-momentum tensor and the conserved
charges, is the generation of an initial energy density profile
based on the initial-state model TRENTO.> Then, this en-
ergy density at 7y is used to compute the background energy
density at any proper times T > 9. To describe the fluctu-
ations of conserved charges about this background, we use
ICCING [32,33]. The ICCING algorithm is a Monte Carlo
event generator run subsequent to TRENTO which simulates
the fluctuations due to g — gg pair production. In particular,
ICCING generates (2 + 1)D distributions of the fluctuating

3In practice, the output of TRENTO is a “reduced thickness func-
tion” which is taken to be proportional to the entropy density. The
coefficient of proportionality is fixed by comparison to experimen-
tal multiplicities in central collisions, and the properly normalized
entropy density is converted to an energy density using the lattice-
QCD-based equation of state from Refs. [55,56].
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BSQ charge densities: baryon number, strangeness, and elec-
tric charge. By incorporating the Green’s functions into the
energy and charge redistribution algorithm in ICCING, we can
study the impact of perturbations in both energy and charge on
the evolution.

A single gluon splitting produces two types of perturba-
tions relative to the background. The first is a negative-energy
perturbation (“hole”) due to removing a gluon from the
background. The second is a positive-energy perturbation
displaced relative to the gluon, which deposits the energy
density corresponding to the quark-antiquark pair. All three
(quark, antiquark, and gluon) can be treated as perturbation
around the background. The propagation of the perturbations
generated by ICCING are treated via the Green’s function

J

e(fhydrOa X) = eBG(€Trento(70), X)|:1 + /
©]

d2)C()

o (AT)?

ni(ThydrOs X) =

(Ar)sz<

where we integrate the Green’s function evolution over all xq
in the past causal light cone [x) — x| < Ar.

Furthermore, x is the point of interest and AT = Tpygro —
79. We have implemented the pre-equilibrium evolution given
in Eq. (52) in a new C++ class GreensFunctions.h which
interacts with the event class Event.h in nontrivial ways and
can be found at the GitHub link upon publication [54].

The energy and BSQ charge densities of a single, periph-
eral, ICCING PbPb event at /syy = 5.02 TeV evolved for
1 fm/c using the Green’s functions are shown in Fig. 3 for
our default parameter set (see Table 2 in Ref. [57], with the
exception of 7y which here equals 0.1 fm).

The behavior of the baryon and electric charge distri-
butions are similar to default ICCING [57] and follow the
bulk geometry while the strangeness distribution is more
rarefied due to the larger mass threshold required to pro-
duce strange quarks. A significant difference is seen in the
size of the charge fluctuations, whose radius now depends
on the evolution time. To understand the effects of apply-
ing the Green’s functions, we can look at individual quark
splittings, the background evolution, and radius dependence
separately.

To start, it is important to have a grasp on the full effect
the evolution has on a single quark-antiquark pair. The energy
density and charge density for a quark splitting evolved for
0.2 fm/c and 1 fm/c are shown in Fig. 4. The top panel
of Fig. 4 occurs soon after the quark splits and the bottom
panel is at the end of the evolution. For small evolution times,
we clearly see three different types of perturbations in the
top row of Fig. 4: (mostly) positive-energy perturbations cor-
responding to the deposition of the gg pair, and a (mostly)
negative-energy perturbation corresponding to the subtraction

[x — Xo|
AT

T
: w) f[anq(ro, Xo) — 8ng(T, X0)1,

G until some time Tpyaro When hydrodynamics becomes
applicable.

In addition to the perturbations in the energy densities,
the charge densities of quarks created by the gluon splitting
process can also be evolved by the same formalism. Since
TRENTO does not provide any charge information, we can
treat the quark charges as perturbations around a vanishing
background charge density, which is exactly how the charge
Green’s functions are constructed. First we evolve the back-
ground according to the energy attractor £(@) using Eq. (27),
then we can use the Green’s functions G} and F{ in order to
describe the propagation of energy and, respectively, charge
perturbations that occur whenever a splitting happens.

We can compactly express this as

2
Xo Ix —xo| _ 1
2(Ar)2G§( T w)
AT) T €Trento (T0, X0)

x [8e4(70, X0) + deg(To, Xo) — deg(70, Xo)]:|,

(52a)

(52b)

(

of the parent gluon from the background. The quarks also
come with associated positive/negative charge densities being
deposited, whereas the gluon subtraction has no impact on the
charge densities.

The dominant effect seen in Fig. 4 is that the energy
and charge perturbations grow in size over time and have a
wave-like structure leading to nontrivial interference. Note
that the central positions of the quarks do not change due to
the evolution prescribed by the Green’s functions; rather, they
are determined from the g — ¢¢ splitting function used by IC-
CING. The Green’s functions do not interact with any part of
the quark sampling algorithm in ICCING and only determine
how the energy and charge densities of the perturbations are
distributed.

Next, we can look at how the Green’s functions distribute
the energy and charge for the quarks. To illustrate the spatial
profiles of energy and charge density produced by the Green’s
functions, Fig. 5 shows the results of a single g — ¢¢ splitting
in a low-temperature region (top) and a high-temperature re-
gion (bottom). The Green’s functions have different behavior
depending on the local value of the initial energy density
e(tp). This dependence arises because the natural unit of time
W depends on the effective temperature T [see Eq. (24)]. As
a result, splittings which occur in hot spots transition more
quickly from propagating behavior for small @ to diffusive
behavior for large @. This is clearly seen in the charge-density
plots of Fig. 5. The top panel, where the splitting occurs at
low temperatures, retains significant spatial structure of the
charge distribution associated with the propagating modes of
the Green’s function. But if the splitting occurs at higher
temperatures (bottom panel), the charge density is distributed
according to the diffusive modes from Fig. 1. This results in
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FIG. 3. Density distributions for an ICCING event with Green’s function evolution of energy and charge perturbations from g — ¢4

splittings after 1 fm/c of evolution.

charge distributions which wash out the spatial structure of the
Green'’s functions, as seen in Fig. 5.

There is also a connection here to the Knudsen number Kn
since Kn = tz/1 o« (tT)~! so & o< Kn~! [43] such that, at
late times, one expects a smaller Kn number. This provides
physical intuition for the dependence of the charge fluctua-
tion on the location of splitting, hotter spots in the medium
will have larger Kn and thus produce more Gaussian charge
densities while cold spots will have smaller Kn and produce
charge densities in a shock wave form. The implications of
this difference in behavior based on the location of splitting
may become more important when analyzing events across
systems of different energy.

While this result is interesting and an effect of the physics
included in the Green’s functions, it could be worrying since
one of the core assumptions of the ICCING algorithm is that
all charge must be correlated with some energy. The problem
with a linearized treatment of the Green’s functions is that
large negative corrections to the energy density could over-
turn the background energy density, resulting in grid points
with net negative energy. This problem would be nonphysical

and require some sort of remedy. Moreover, even if the net
energy density is not driven negative by a large perturbation,
one may still be unable to match a fluid cell with very low
energy density but very high charge density to a reasonable
equation of state.

These potential problems arising from large perturbations
could be solved by going back to the linearized approximation
made in Sec. IIC, which is broken when the local redis-
tributed energy or charge density is greater than or close to
the background. There are several ways in which to solve this
problem, the first of which would be by artificially damping
the magnitude of the perturbations relative to the background
in order ensure that the linearization remains valid. This would
introduce a new problem though, since the artificial damping
may not affect a gg pair equally. If the quark is deposited in
the periphery of the event, but the antiquark is deposited closer
to the center, then the positive and negative charge densities
will be damped in different amounts, leading to a violation
of charge conservation. To correct this, one could suppress
the quark and antiquark in the same way mirroring the
effect.
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Another possible solution—the one we pursue here—is to
veto any quark splittings that would create energy density
perturbations that are large with respect to the background.
This is a very simple solution but adds a new complication
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because it effectively eliminates quark production at the edge
of the event, and reducing the “cold quark” Green’s functions
contribution. Another unintended effect of this solution would
be that a quark-antiquark pair produced near the periphery
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FIG. 5. Density distributions for a single strange quark splitting from different areas of the event: a cold region on the top, and a hot region
on the bottom. Here the separation of the two quarks is artificially increased to better illustrate the behavior of the Green’s functions.
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FIG. 6. Comparison of ¢,{2} across energy and BSQ distributions for different Green’s function evolution times.

with a smaller radius, for example, from evolving for only
0.5 fm/c, would survive the veto, but a pair evolved for longer
time would be rejected. Evidently, this problem could be cured
by also including the transverse expansion of the background
energy density in the pre-equilibrium stage, but that is beyond
the scope of this paper and is left for future work. Despite
its shortcomings, the solution of vetoing quark splittings if
the energy perturbation is not small compared with the back-
ground has been chosen here both for its simplicity and its
flexibility.

Because our procedure should be only a small effect on
the total energy density, we do not expect large changes to
the energy density eccentricities, which are defined in Ap-
pendix E. Thus, before looking at the eccentricities of the
charge densities, we should look at the effect that the different
processes have on the energy density with the hope that any
affect is minimal. Since the energy density eccentricities are
a good predictor of the final state and these initial conditions
have been used extensively in comparisons to experimental
data, the hope is for a minimal effect. In Fig. 6, the en-
ergy ellipticity and triangularity is plotted for the original
TRENTO event, the locally evolved background used for the
Green’s function evolution, the TRENTO event after default
ICCING, and the full ICCING coupled to Green’s functions
simulation. When comparing the evolved background with
the TRENTO profile, we observe small changes at the per-
cent level which can be attributed to the phenomenon of
inhomogeneous longitudinal cooling [36,38]. In essence, ther-
malization proceeds more quickly in more highly energetic
regions, leading to a slightly faster decrease of the energy
density of the hotter regions of the QGP as compared with
the colder regions of the QGP. However, as we see in Fig. 6,
in practice this effect is rather small. Similarly, we see that for
default ICCING, there is a slight modification in peripheral
events and the most central events that should not have a
significant effect on the agreement with experimental data.
Adding both the modifications from the ICCING sampling
and the Green’s functions evolution has no significant effect
on the energy geometry beyond the background evolution.
This indicates that any small changes in energy density distri-
bution generated by ICCING are quickly washed out and will
not make it to the final state. Additionally, previous compar-

isons to experimental data for all charge particles should still
be valid.

IV. IMPACT ON ECCENTRICITIES

Now let us look at the contributions, that different parts of
the Green’s function evolution have on the event averaged ec-
centricities. Because we will be dealing with time-dependent
quantities, we define the time evolution for applying the
Green’s function:

At = Thydro — 70, (53)

where 19 is our initial time when we begin the Green’s func-
tion evolution and Thyqro is Where we stop the evolution and
switch to hydrodynamics. We start with studying the conse-
quences of our perturbative cutoff effect on the eccentricities,
then we compare the Green’s function expansion to a trivial
Gaussian smearing to determine any nontrivial effects. After
these two effects are studied we explore the time dependence
of the Green’s function on various eccentricities, which are
the main results for this work.

Eccentricities of charge are defined the same as for energy,
see Appendix E, except that the center of mass is taken to
be that of the energy density and the observable is calculated
for the positive and negative charge densities separately, since
otherwise the observable would be zero. When there is no
charge density from quark-antiquark splittings, the eccentric-
ity is defined as zero. While adequate, the definition of the
eccentricities for energy are not the best possible estimators
for the charge density and more development can be made in
this direction [57].

First, we study the effect of the suppression of gluon split-
ting to ensure positive-energy densities. To avoid problematic
regions with negative-energy density, we restrict quarks from
splitting if their redistributed energy densities approach a cer-
tain threshold compared with the background. The selection
criteria is examined for each point in the quark densities and

is determined by
E,/Ep, < P, (54a)

where P is the perturbative cutoff. In Fig. 7, several val-
ues were selected for an evolution time of At =1 fm/c to
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illustrate the effect this cutoff has on the charge densities.
Both &,{2} and e3{2} are shown. The effect of applying the
perturbative cutoff vs no cutoff at all is clearly the dominate
effect. This signifies that there are many quark-antiquark pairs
above 40% Centrality that produce negative energy and thus
the mismatch between the locally evolved background and
nonlocal quark perturbations is quite significant. For P = 0.9
and evolution of 1 fm/c, the percentage of events that produce
no quarks at all in the 65%—75% centrality class is 98.9%. The
peak of the charge eccentricities thus signifies that number
effects dominate the charge geometry. With such an extreme
response to this perturbation parameter it is reasonable to
assume the model as currently formulated breaks down at
this point and should not be used beyond an evolution time
of 1 fm/c. However, we do not find a significant difference
between the most generous value of a 0.9 cutoff vs the 0.5
mark with only small change when P goes to 0.1. In the
remaining results we explore only the 0.9 cutoff since we
do not anticipate a strong dependence on the cutoff for other
observables as well.

Next, we try to disentangle the effect of the expanding ra-
dius from the structure introduced to the quark densities based
on the background energy. In our Green’s function approach,
the overall size of the quarks expand over time and that may
be the dominate (albeit trivial) effect of applying the Green’s
function. Thus, to determine any nontrivial consequences of
the Green’s function, we apply a simple Gaussian smearing to

_Energy Density (GeVifm?®)

the quarks, as illustrated in Fig. 8, and compare the Gaussian
smearing, defined as

expl—r*/R(t)*]

Gi(r,t) =F(r,t) = RO ,

(35)

to the Green’s function method. In Fig. 9, we see that there
is a negligible difference between the Green’s function and a
simple Gaussian smearing, implying that the dominant effect,
when looking at event averaged geometry, is the size of the
density perturbations and not the structure introduced by the
Green’s functions.

In Fig. 10, we show &,{2} adding back in the perturbation
cutoff and evolving for At = 1.0 fm/c. The solid curves are
from default ICCING without any pre-evolution, the dashed
curves add in evolution but only allow the radius of the quark
and gluon density perturbations to change while holding the
density profile fixed, and the dotted curves add in the full
Green’s functions. Several things are happening in Fig. 10
that need to be disentangled. First, the Gaussian smearing
with the perturbative cutoff (compared with default ICCING
with no time evolution) has the general effect of shifting
the peak in &;{2} to lower centralities and also leading to a
larger &,{2} in central collisions. The shift from the Gaussian
smearing compared with default ICCING occurs both because
as the quarks grow in size the positive and negative densities
will cancel out more and wash out the geometry in regions

Chlarge Density (fm'3)

2»,
1,
€ o .
>
1 - [ .
_pl.  =0.03-0.02-001 0 001 002 |} -0.03-0.02-0.01 0 001 0.02 003
3 -2 -1 0 1 2 3 4-3 -2 -1 0 1 2 3 4
x (fm) x (fm)

FIG. 8. Illustrative density profiles of the Gaussian smearing option at At = 1.0 fm/c which separates structure introduced by the Green’s

functions from the radial dependence.
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1.0
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FIG. 9. Comparison of &,{2} between default ICCING, Gaus-
sian smearing, and Green’s functions with an evolution of At =
1.0 fm/c. The perturbation cutoff is not used here.

with low densities (i.e., peripheral collisions) and because
quark-antiquark splitting is suppressed due to the perturbation
parameter.

Now that we know the effect of just a trivial Gaussian
smearing, the next question is what effect does the nontrivial
Green’s function have? In Fig. 10 we can see that the Green’s
function shifts the peak of the eccentricities even further to
lower centralities for all BSQ densities. To understand this
effect, let us break down the fundamental differences be-
tween a trivial Gaussian smearing and the Green’s functions.
There are two differences between the Gaussian smearing and
Green’s functions density perturbations one of which is that
the density profile of the Gaussian smearing is smooth and
mostly uniform with sharp edges and only negative values of
energy coming from the gluon hole, as shown in Fig. 8. The
Green’s functions, on the other hand, have a density profile
that has a wave structure with the largest energy density values
coming from the ring at the edge of the quarks and gluons,
as previously shown in Fig. 4. The Green’s function density
profiles also contain negative energy at the center of the quarks
and a large amount around the edge of the gluon. Applying
the perturbative cutoff removes any net negative energy from

1.0
—Energy ——ICCING (Default)
——Baryon (+) —— ICCING (Gaussian Smearlng)

0.8¢ —— Strange (+)- ICCING (Green's Functions) -
Charge (+) - 1

- 0.6
N
R
Vo4
0.2 PbPb [5TeV]
At =1.0fm, Ej/Egy < 0.9
0.0

0 20 40
Centrality (%)

FIG. 10. Including perturbation cutoff of 0.9 for comparison be-
tween default ICCING, Gaussian smearing, and Green’s functions
for At = 1.0 fm/c.

the final output in these two methods, which strongly affects
Green’s function method because of the concentration of the
energy density around the edge of the quarks. While the Gaus-
sian smearing also breaks perturbative assumptions the effect
is much smaller than for the Green’s function. The structure
of the Green’s function density perturbations is relatively
“microscopic” and so when compared against the Gaussian
smearing, without the perturbation cutoff in Fig. 9, there is no
difference. Since the perturbation cutoff is defined here as mi-
croscopic, then a difference is seen in Fig. 10 when including
the more complicated structure of the Green’s functions. The
sensitivity to microscopic differences in the density perturba-
tions may disappear with different choices of the perturbation
cutoff method. However, the unique structure of the Green’s
function density perturbations will still be important when
coupling to hydrodynamics since there would be a nontrivial
change to gradients.

Finally putting all the pieces together, Fig. 11 shows the
Green’s functions evolution with the perturbative cutoff for
different evolution times, At = 0.5 fm and At =1 fm, for
both elliptical (left) and triangular eccentricities (right). For
an evolution time of At = 0.5 fm/c, we consistently see a
shift in the peak of all BSQ charge eccentricities toward the
left, reflecting an increase in the dominance of number effects
on the geometry as supported by the rarity of quark producing
events. However, for At = 0.5 fm/c, the most central colli-
sions do not appear to be strongly affected by the expansion.
For an evolution of 1.0 fm/c, there is a much greater suppres-
sion from the perturbation correction and this significantly
affects all centrality classes, such that the most central colli-
sions see enhanced eccentricities but peripheral collisions are
suppressed. The shift in the peak towards smaller centrality
classes (combined with a suppressed eccentricity in peripheral
collisions) indicates that the model starts to break down the
further in time the evolution is pushed. Thus, there appears
to be a small window in which we can apply the Green’s
function expansion and still obtain a reasonable number of
quark-antiquark pairs (after applying the perturbative cutoffs).
Generally, we find very similar qualitative behavior in both &,
and e3. However, €3 is much more sensitive to BSQ densities
and has the most significant difference between the energy
eccentricities vs the BSQ eccentricities. Therefore, high-order
harmonics will likely provide the best observable when com-
pared with experimental data.

One of the most important quantities for direct com-
parisons of initial state models with experimental data is
en{4}/€,{2} because medium effects cancel in the most cen-
tral collisions (especially for n = 3 [57]). The eccentricity
ratios, €,{4}/e,{2}, are shown in Fig. 12 for n =2 (left)
and n = 3 (right). The ratio ¢,{4}/¢,{2} measure the fluc-
tuations of geometry with values close to 1 indicating few
fluctuations whereas small values indicate a large amount
of fluctuations. Comparing elliptical and triangular flow, we
find quite different results. For elliptical flow, for more cen-
trality to midcentral collisions the fluctuations appear to be
nearly identical to the energy density fluctuations (although
ultracentral collisions have some small differences). However,
for peripheral collisions where the perturbative cutoff plays a
strong role, then we see there is always a centrality wherein
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FIG. 11. Comparison of ¢,{2} across energy and BSQ distributions for different Green’s function evolution times using the perturbation

cutoff.

large deviations are seen compared with the energy density
distribution. Electric charge and baryon density fluctuations,
for default ICCING, are nearly identical to the energy density
fluctuations. However, the longer you have a Green’s function
evolution, then you see deviations at lower and lower cen-
tralities (i.e., for At = 1 fm, the deviation occurs at ~40%
centrality). Naturally for strangeness this effect is larger be-
cause one is dealing with a smaller number of quark-antiquark
pairs.

The effect for triangular flow is quite different. Generally,
we find that the application of ICCING leads to an overall
decrease in the triangular flow fluctuations, regardless of the
BSQ charge. Additionally, the Green’s function evolution ap-
pears to enhance that effect further for At. In contrast, for
elliptical flow we did not see this effect and the fluctuations
were the same (at least within some centrality classes) before
and after applying ICCING. That being said, we do find that
the effect of certain centralities being strongly affected by
the perturbative cutoff showing up in triangular flow as well.
These are features that could eventually be looked for in
experimental data, if measurements of v,{4}/v,{2} are made
with identified particles.

® PbPb [5TeV], E4/Egg < 0.9
e ‘F‘?-\""~£\
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V. CONCLUSION AND OUTLOOK

We extended the method to compute nonequilibrium
Green’s functions of the energy-momentum tensor developed
in Ref. [43] by adding conserved charges and computing the
corresponding Green’s functions for the charge current for
perturbations around vanishing background charge densities.
Using the ICCING model that initializes conserved charges
through g — ¢g splittings, we successfully coupled these
Green’s function to ICCING allowing for a pre-equilibrium
phase with conserved charges. The inclusion of this pre-
equilibrium evolution is a nontrivial addition to the ICCING
algorithm and the successful implementation demonstrates the
flexibility of the algorithm.

To quantify the system’s response to initial perturbations
in terms of Green’s functions, it is necessary to consider the
background evolution (see Appendix A 4) which is used in
the energy evolution of the system. We find that the sys-
tems dynamics can be quantified in terms of the moments
SET\, 8N x [Eq. (37)]. Furthermore the Green’s functions
can be obtained directly from these moments, which makes
this method a powerful tool to obtain the response functions.
When comparing the energy and charge Green’s function we

97 BbPb [5TeV], E,/Egy < 0.9

08 <\
~—
Sos
U
5 Baryon (+)
|- + 4
F 04 Strange (+)
Charge (+)
0.2 Default
At=0.5fm
: : At=1.0fm
0.0 A = .
0 20 40 60 80 100

Centrality (%)

FIG. 12. Comparison of ¢,{4}/¢,{2} across energy and BSQ distributions for different Green’s function evolution times using the

perturbation cutoft.
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see distinct differences in their behavior. In the energy case we
find the propagation of sound waves, where in free-streaming
and even at early times they propagate with almost the speed
of light, while at later times this shifts towards the speed of
sound. In contrast, for the evolution of conserved charges
we find a transition from free-streaming propagation in the
beginning to a diffusive behavior at late time as the system
continues to thermalize.

To understand the effect the Green’s functions have on
initial-state charge geometries, we compare between the de-
fault version of ICCING and ICCING with the Green’s
functions, supplemented by an approximation which simpli-
fies the spatial structure of the Green’s functions to simple
Gaussian smearing. We see that, for ¢,{2}, there is no dif-
ference when including the complicated structure of the
Green’s functions to the Gaussian smearing, although that
structure becomes important for observables sensitive to mi-
croscopic differences. A mismatch between the evolution of
the background, described as a local process, and the charge
perturbations, described as a nonlocal process, leads to the
possibility of sites with negative energy. This issue is fixed
by suppressing quark-antiquark production that would vio-
late some perturbative condition. This perturbative corrective
measure significantly suppresses quark-antiquark production
in peripheral events but less so in central to midcentral. The
primary difference then between default ICCING and ICC-
ING with the Green’s functions arises from a combination of
smearing effects that occur during an expansion in time and
the suppression of nonperturbative quark-antiquark pairs. This
leads to large eccentricities in central collisions but nearly
vanishing eccentricities in peripheral collisions.

This work constitutes the first step toward including
charge evolution in KGMP@ST and illustrates the effect pre-
equilibrium evolution has on conserved charge densities. An
implementation of this method in KBMP@ST would solve the
mismatch between the background and perturbation evolu-
tions which are local and nonlocal, respectively. Exploring the
effect of the pre-equilibrium evolution of conserved charges
on the hydrodynamic evolution of the system and on final-
state observables would be beyond the scope of this paper but
is an interesting open question that will be explored in a future
work. It would also be interesting to compute these Green’s
functions for charges in QCD kinetic theory and compare
them to the approximation introduced in this paper. Another
possible direction is extending these Green’s functions around
a nonvanishing background which would be useful when
looking at systems that contain baryon stopping.

Last but not least, the assumption of conformal symmetry
can be loosened and exploring the effect of breaking confor-
mality in the pre-equilibrium stage is an interesting topic that
deserved further detailed studies.
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APPENDIX A: BACKGROUND EVOLUTION

1. Evolution equations for the spherical harmonic moments

To solve Eq. (18), we adopt the ideas of Ref. [48], where,
instead of finding solutions for the distribution functions, one
studies the moments of the distribution function.

For the distribution functions fgg and f, g, we consider
the following moments:

E}()=1" g’; o (2 )2 DY} (g Op) fi (T, prs 1o,
(Ala)
dp,, ym
/" (T)= an) (2 )2 Y (ép, Op)faBc(T, Prs |Py)-
(Alb)
In Eq. (Al) the angles are defined by tan¢, = p'/p* and

cos 6 = p,/(tp"), while Y}' are the spherical harmonics
given by

YT, 0) = yI'Pl(cos §)e™?, (A2a)
with
w @I+ 1T —m)!
I Al rmr (A2b)
and
m I+m
Proy= S e L 0y (A

21 l | d.Xl +m
being the associated Legendre polynomials.

Based on the explicit form of the spherical harmonics
one can find the nonvanishing components of the background
energy-momentum tensor by low order moments as well as
the traceless condition

A7
e(r) = ‘/4/_3 ES (o),

(A3a)

Var |1 1

Pr(v) = W[EES(” - ,/EE‘;(r)}, (A3b)
Va [4

P (1) = 7;[ E{(t)+ EE%@)}. (A3c)
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Furthermore, by plugging in the equilibrium distribution func- Applying 79, to the definitions of the moments and us-
tion, we find that ing identities for Legendre polynomials (see Appendix D)
43 leads directly to the equations of motion, which are
m _ T mo iven as
El |eq(r) - \/T_ﬂe(t)Sloa ' (A4) ¢ m m m m m m m
T E () = b]' LET 2,(T) + b ET () + b]' HhET, 5 (T)
representing the rotational symmetry of the equilibrium. In .
the same way we are able to reconstruct the components of — —[E "r)—E 'l"(r)|eq], (Aba)
the charge current via low-order moments. The net particle R
number of specie a is given by TN, (v) = B)'_,N,[_»(t) + B/ (N, ()
Nz +B]"\,N,} ,(T)
ng(t) = _JT %(‘[) (A5) TI,+2 1+2
T m m
__[Nal(r)_Nul(T)|eq]' (A6b)
The chemical potential can be extracted by inverting the Lan- R
dau conditions Egs. (4) and (5). The appearing coefficients 4" and B}" are given by
|
m C+DHU+m-DU+m) [QI+DU—-—m—1)(U—m)
b'_, = , (A7a)
’ (1—41?) QI =-3)l+m—-1(+m)
500+ 1)—3m?
bly=——""", ATb
T3 40+ 1) -3 (ATD)
m (-1 [d-—m+DU-—m+2)U+m+1)(I+m+2)
I+2 = , (A7c¢c)
(21 +3) QI+ D2L+5)
respectively,
1+ D — D 20+ D) —m— 1) —
B;”_zz( +DU+m -1 +m) [Q2L+ DU —m—1)( m)’ (ASa)
’ (1—41%) QI =3)l+m—-1(+m)
I(1+1) —3m?
mo_ , A8b
Lo 4l +1)=3 (ASD)
m ! (—m+DU-—m+2)({+m+ DI +m+2)
B = : (A8c)
(21 +3) QI+ 1D2I+5)

2. Initial conditions

To solve the equations of motion for E7' and N} we need to specify the initial conditions for the moments. For early-time
dynamics at T < 1 the system cannot maintain considerable longitudinal momenta. Therefore the initial distribution is naturally
of the form that the transverse momentum is much larger than the longitudinal one. Taking also into account previous results
[58-64] one sees that the case of a (longitudinal) support in form of a Dirac § function corresponds to a nonequilibrium attractor
of the kinetic equations, i.e., that different initial conditions will approach the same curve for later times. We therefore choose

1 dNn, 1 dN, dNp ; dN,
fBG<ro,pT,|pn|>=<2n>35(pn>[ —E Z( e _ | e )}z(zm%(pn)—‘) (A%)

vednd2pd2x v, <~ \dndpd2x ' dnd’pd’x dnd2pd2x’
fun(zo, prs 1py]) = <2n>3a<p,,>viq[ d:ﬁ;@X - d:ﬁ;gx] = (2n>38(p,,)%, (A9b)
where we choose the normalization such that the initial energy and charge densities are kept constant:
d‘;% _ ;321; ; (jfgqu + gfgz";) = floiglo 19e(19) = (e1)y = const, (A10a)
;;\3)2; _ j]:((;»zq; _ g;vgz"; — rloiino Toha(To) = (1,7 ) = const. (A10b)
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On the level of the moments the initial conditions are given by
E7(10) = 15 (et)oy]' P} (0)8", (Alla)
1(70) = (na 0oy P} (0)8™. (A11b)

3. Relation of intensive and extensive quantities

In contrast with the cases in Ref. [43], we additionally need to invert

e = T4|:vg7t 3\)4 Z L1 _|_ Lis(— Za)]:| (Al2a)
T’ Vg 1 270
ng =Vg— 72 [L13( ) L13( Za)] 6 ) [ T Ma + Ma] (Alzb)

with z, = exp(u,/T) to determine the temperature 7 and the chemical potentials u, as a function of energy density e and
number density n,. This is done numerically for each time step. The relations are given by

u 58 _3u 55 u_3 u 53 _3su 5s
(ST:—TX Xd Xs0€ Ny Xd XsON g XuXsO0Nd Mg XuXd ”7 (A13a)

92 xa xs + 92 xuXs + N2 XuXa — 4eXuXaXs

Sty = [9(’1;)(5 + n3Xd) + Gy — 46)XdXs]8nu —3a,ng xs0ng — 3ouhs Xadns + oty xa Xsbe (A13b)
M2 xaxs + g xuxs + I xuxa — 4exuxaxs — OMZxaxs + 9 xuxs + N2 xuxa — 4€xuxaXs
5 {9n2 xu + [9n2 + Brapa — 4€)xu] xs}0na —3atan, xs8n, — 30ans xudns + ca xuxse (A130)
Had = s c
On2xaxs + NG XuXs + 92 XuXa — 4 xuXaXs  OMZXaXs + O XuXs + N2 XuXd — 4€XuXa Xs
{9n§)(u + [9n5 + GBngps — 46))(,,])([1}87% —3ogny xadny, — 3 xudng + g Xuxade (A13d)
S92 xaxs + I xuXs + O xuXa — AexuXaXs  OMEXaXs + N2 XuXs + IMEXuXa — BeXuXaXs
Here y, is the susceptibility, which is given by
3
Xa = = ( ““+T> (A14)
6 \ 72
For the special case of perturbations around n, = 0 the susceptibilities reduce to y, = %Tz, which yields
1)
5T =T, (A15a)
4e
6 dn,
(S,LLa = —F (A15b)
q

4. Background evolution in conformal systems

In this section we consider the evolution of a conformal system. In conformal systems 7z is proportional to the inverse
temperature such that [46]

RwlI(t)=5—— = t (A16)
— — n
R const,

where 7 is the shear viscosity, e the energy density, P the pressure and T the effective temperature of the system.
At this point we introduce the dimensionless time variable x = 7/, as this produces a natural timescale for the evolution of
the system. Due to the change of variable we need to transform also the appearing derivatives according to

ox 1 T 1
T, =T—0;,=7T|— — —Z(BIIR) 0y = |1 — —710.78 |x0, = a(x)x0y, (A17)
ot R T TR
where we call
1
ax)=1—x0; ;g =1— —10, T8 (A18)
TR
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the scale factor. As 1z is not constant, the scale factor will take a complicated form. However, it can be related to the moments
again as we find

9 @ 3n2 312 xuxs + 302
at) = ol _ XuXZX‘a(x)e —|—2 My Xd Xs +2 15 XuXs + 305 XuXd A1)
T gnuXdXS + gnquXs + 9ns XuXd — 4eXuXdXs
where
4 x

The quantities appearing can be expressed in terms of the low-order moments [see Egs. (A3a) and (AS)]. We note at this point
that for n, = 0 the scale factor reduces to

19, T XuXd Xs@(x)e 2 ( 0 =0 E%(X))
alx) =1+ =1-——" == B EY + 1) (A21)
T Tdexoraxs 3 T a\T0t ot P pocy
which is the form used in Ref. [43].
Using the change of variables the equations of motion can be written in terms of x as
aCOXET = bl LE] ) +bGET + b ,E T —x[ET = ET ], (A22a)
a()xdN,} = Bl' oNi_y + BoNy| + Bl N — X[NJT = N7 | |- (A22b)

For our analysis we are varying the initial charge number densities in order to see its impact on the evolution of the background.
Nevertheless, we keep the ratios between the three species the same, namely

u 8
"uBG = = Ny BG = 0.0, (A23)

9
ngec 1

as these ratios correspond to typical values in heavy-ion collisions.

Our results for a conformal system can be seen in Fig. 13. In conformal systems without conserved charges it was found
that the evolution is controlled by the dimensionless time variable @ = t7 (t)/(4m7/s) [49]. We generalize this to systems with
conserved charges and choose to present the different quantities as functions of the dimensionless time variable

tT(t) (e + P) . 5
4 nT T 4n

w =

X, (A24)

where T'(1) = [Uff ze(T)]'* and vegr = vy + 3 x Tv,.
At the top of Flg 13 we show the different curves we obtain for the ratio 1, /7. We see that, at late times, when hydrodynamics
is applicable, the ratio becomes constant according to

3
6 6 2\ 2
<%) = —% = —(ve;fg ) <n—f) = const. (A25)
eq Vq Vq €4/ eq

In the bottom-left panel we show the ratio of longitudinal pressure and energy, P;/e. We see that the ratio is essentially zero at
early times as the longitudinal pressure needs to build up first and that at late times a smooth transition to the hydrodynamical
behavior

P 1 4
Lt =— - (A26)
€/ hydro 3 9w

is provided around time @ = 1.5. In the corresponding figure this behavior is indicated by the colored dashed curves. Note that
the validity of the hydrodynamic limit Eq. (A26) is guaranteed for small values of (u,/T )eq, While for larger values of (14, /T )eq
this is a priori not clear and needs further studies. We also see the effect of the chemical potential. As one can see in the inset
plot, the P, /e ratio increases more slowly for increasing (i, /T )-ratio. Nevertheless, the differences are very small, which can
be explained by the assumption that we choose the same relaxation scale for all particles. It is expected to improve the results if
one assumes different timescales for gluons and for quarks like following the approach of Ref. [65]. Regarding the bottom-right
panel of Fig. 13 we show the results for the energy attractor

(*e)/(t €)oo, (A27)
where
(t*3e)s = lim t*3e(1) = const (A28)
T—>00
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FIG. 13. Background evolution for conformal systems. (top) u,/T ratio for different initial values for n,. (bottom left) Longitudinal
pressure over energy for different values of (i, /T )cq. The colored dashed curves in the P; /e plot correspond to the hydrodynamical behavior
at later times, P, /e = 1/3 — 4 /97 for i — oo. (bottom right) Energy attractor for different values of (1, /T )eq. The colored dashed curves
in the (t%3e)/(t*3e)4 plot correspond to the free streaming behavior of the energy attractors at early times, (t*°¢)/(743¢)o = éﬁ)“/ ° for
W < 1. More details on how to fit the dashed curves in the two plots are given in the text. Inset plots are given in order to show that there are
deviations between the curves. On the two axes of the inset plots are the same quantities plotted as for the larger plot, but the labels are omitted
for better readability.

describes the asymptotic energy density scaled with 7#/3. It is convenient to consider 7#/?¢ because this becomes constant at late
times as ideal hydrodynamics predicts. The value of the constant can be obtained by the numerical solution of the equations of
motion and depends on the chemical potential which is considered as the energy evolution couples to the charge number via the
scale factor. In the figure we also show the free-streaming behavior, which we can parametrize according to [43]

4

(t*3e) 4
ey~ G @’ (A29)

at early times (corresponds to the dashed colored curves) and the hydrodynamical behavior

(t*3e) 2
(7%3¢) 3rd
at late times (corresponding to the black dashed curve) [43]. We emphasize that in the case of a conformal system we also
observe a smooth transition from the early-time free-streaming regime to the late-time viscous hydrodynamical regime, which
starts to describe the evolution around times @ = 1.5.
Regarding the free-streaming behavior we fit the energy attractor at early times for the curves corresponding to different
chemical potentials using

(t*e)

4
- 9
(74/33)00

=Cclw (A31)
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TABLE I. Values of C, obtained by numerical fits.

(1u/T)eq 0.02 0.11 0.24 0.37 0.56

Ceo 0.87643 0.87712 0.87927 0.88374 0.89349

to extract the values of C,. The results can be seen in Table I. We emphasize that the role of Co, is as follows: At late times
the system can be described by viscous hydrodynamics. However, the approach to this regime depends on the theory, such that
different theories approach viscous hydrodynamics differently. This difference in the approach to the late-time behavior results
in a mismatch of the ratios of initial energy density to the final energy density (see Ref. [43] for a comparison of K6MP@ST QCD
kinetic theory to results obtained in conformal relaxation-time approximation without conserved charges), where Cy, is used to
express the late-time energy density in terms of the initial energy density, such that we find Eq. (A31) at early times. In Yang-Mills
kinetic theory one finds Cs, =~ 0.9 [24,39,49]. Looking at Table I we see that in conformal relaxation-time approximation with
conserved charges the value of Cy, increases as we increase the initial charge number density. However, it will stay below the
value in Refs. [24,39,49].

APPENDIX B: PERTURBATIONS AROUND BJORKEN FLOW

1. Linearised equations of motion and Landau matching

By linearizing the kinetic equations around the boost-invariant and homogeneous background one finds an evolution
equation for the perturbation of the distribution functions § f and & f;:

. T 8
[pfar + o — %877]8]“()6, p)=— I;—Sf(x,p) + M[(feq Fe P+ 5 )f;;"’}
p (ST()C) T(‘L’) 8‘ER 1.0) 0.1 —(0.1)
T® T(f)[ e o1 e I ”’”m ( }JF_ZSM”(X) ca T Fgeal
(Bla)
and
. i Su*(x) P* e
|:P o +Pai - %ani|8fa(xa P) __(Sfa( P)+ " |:(faeq fa(x P))+ T( ) ;eé]

_PPATW)[T(x) 0tk o _f o
@ T(1) |: x oT —(fa. eq = fa(x, p)) + mf( :| Rsﬂa(x) aeq’ (B1b)

The perturbations §u* (x) of the rest-frame velocity, the temperature 57 (x), and the chemical potential §u,(x) are obtained by
the linearized Landau matching.
As the velocity u* is normalized to u,u* = +1, we immediately find that u,du" = 0, from which

dut =0 (B2)

directly follows. The perturbed energy-momentum tensor and the perturbed charge current are given by

STH = / e f”_() (P20 P8 (5, p), (B3a)
SNy = dp 2 3(p*)260(p°)p"8 fulx, p). (B3b)
¢ @n)* /=g)
Using this, the perturbed eigenvalue problem for the energy-momentum tensor reads
(uy + Su, )(TH +8THY) = (e + Se)(u” + du”), (B4a)
while the one for the charge current is given by
(uy +8u,4)(Nﬁf +8NL’j) =n, + én,. (B5)
By using the leading-order solutions we can deduce the different components, namely,
Se=8T", su" =0, o&u'= oT™ . Su' = or™ , 8n,=38N’. (B6)
e+ Pr e+ P
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2. Evolution equations for the perturbed moments

The perturbation of the distribution functions are expanded in terms of spherical harmonics according to

d
SE (1) = 7'/3 / (217’:) / (27_[)2[7 YT (ks )8 fic (T, By 1) (B7a)
d
SN\ (7) = (2’; . (2 )2 Y7 (Boks 6p)8 fuk (T, B 1py]): (B7b)

Similar to the background, one can obtain the components of STﬁ " as combinations of low-order moments [43]:

38T = VanSEY |, (B8a)
ik 4 2
5!!@5‘/3”3 = ?”(315 HL—SET), (BSb)
ik . 2
e”ﬁr‘%ST;J = —,/?((SEﬂ( +8ETL), (BSc)

~
g

3 (—0)sT)"

I
o«;
,_o

(B8d)

3
ST = /j SE \/7 SES \. (B8e)
kkk 38Ty = \/g \/4:3 2.k T \/:5( SET% +3ES3), (B&f)
e’f%(lr““aﬂ{ =—i 2]5 (BE 35 — 0E53). (B8g)
1 s oy — i [P0 1)~ 5E ) (B8h)
k| 15 ’
k| 15V 2 ,
R8T = f—stg,k + \/?wg,k. (B8j)

It is also possible to obtain the components of SN é‘ «» Which are given by

T8N\ = VATSN ) 1o (BYa)
ik 2

s'fiﬂnszv;’k =i,/ ;T(azv;llk SN (B9b)
K o

elJ;l(TtaNé,k =/ T(51\/ SN, (B9c)

4
T(—T)SN! = ,/T”azvaolyk. (B9d)

Note that we decomposed transverse components parallel and perpendicular to the wave vector k.
To shorten the notation in the following we define

(AE)! = (Eeq — E + ES), (B10a)
(AN, = (Naeq — Na + NI (B10b)

a,eq
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By direct application of the time derivative to the moments we can find their evolution equations to be

T3, 8E ] = b 25E Lk BOSE T 4+ B SSE T

Y [ul,faEl—Jrll,k+ul,+8El-:rllk+dl,78El—ll,k+dl, El+llk]
m 8Ty 10) on | FOD \m T 8Ty T(t) dtg "
TR{(SElk-i-— (ES; Z Stax[(ES by + Eqea)l'] | — =T ﬁ(Eeq—E)l
I
T u — m m—
- TTk[”l (AE T ' (AE)H +d)_(AE) ) +d) (AE)
R
T 6ul m+l m—+1 m m m
o T_?[ (AE)T) +u 1+(AE)1+1 _dz.—(AE)z— —d; (AE 1+1] (B11)
R
and
TN = B[ 28N 15 + Bl'oSN 1 x + Bl 20N 110
i|k|f m m m m m— m n
B [ SN 7+ ul SN+ SN+ dl SN ]
" 6Tk T 8Ty T(t) dtr m
- [5Naz ko (NN = Spax (N ) } T T ﬁ(’\’a,eq —No);
T 81/!” m+1 m+1 m m—l
- T_T[ (AN)ZY + uw)! (AN +di_(ANG)D +d] (AN, )1+1]
R
T 8ul m—+1 m+1 m m—1
B 1_2_[ 1—(AN) +“1+(AN )1+1 - 1,—(ANa)171 - +(AN )1+1] (B12)

where we used Appendix D in order to express the angle relations in terms of moments. The coefficients ", and d}’,_ are given
by

(l—m)(l—m—l) " (+m+ DI +m+2)
\/ o, = _\/ A (B13a)

, G+mi+m—1 (I —m+ 1)l —m+2)
G- =" w1 = \/ 3+4I+2) (B13b)

while the 5" and B} are the same as in the background evolution equations [see Egs. (A7) and (AS8)]. The derivatives of the
moments are defined to be

d ‘L’ T
e =" [ o W P (00 B
d T
(EG) (@) = (2’;”) (2 )219 REACCY “’“(T’ZT), u(f)>, (B14b)
dpy, d? ap
(1,0) — m (1,0)
(Naeq) (t)_/(ZT[) (2JT)2 (¢pkv T( ) aeq(T( )s /’L( )) (B14C)
d
e = [ [ S viom.a ;?;;(T’Z e >> (B14d)
A straightforward computation of the derivatives shows that we can relate them to
(EL")1(0) = —4(Eeg)' (), (B15a)
(ESV) (1) =31 (Nueg)}' (), (BISb)
(N (@) = =3(Naeg)f' (D), (B15¢)
(NODY(T) = 808", (B15d)
a.eq \/E 10
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However, as we are interested in perturbations around vanishing background density, the equations will simplify since

(Naeq)]'(t) =0 (B16)
for u(x) = 0. Nevertheless, the susceptibilities
v, (312
are nonzero for zero density but reduce to
Yg 2
Xa(ta = 0) = ET . (B18)

We can also relate the perturbations of the intensive quantities to the perturbation of the extensive quantities for n, = 0 according
to Eq. (A15):

(STk Sek

=== B1
T 4e”’ (B192)
6 8nak
8 = ——. B1%9b
Ma,k Vq T2 ( )

Therefore, we can replace 7 and S, k With Sex and dn, k, which is useful since we can express these quantities by low-order
moments again:

t*38ex (1) = VATSE{ \ (1), (B20a)
21
e+ Prvu (0) = =\ T [BETL(1) = 8B4 (D)], (B20b)
2
3 (e + Pr)duic(v) = i/ ?”[SE @O +SETA ()], (B20c)
T8,k = VATSN ) . (B20d)

This results in a closed set of equations since all appearing perturbations can be written as linear combinations of moments.

At the level of the equations of motion we see that the dependence on the direction of the transverse wave vector kK has
disappeared and the equations only depend on |K|. This is due to the decomposition of the distribution functions into spherical
harmonics and represents the azimuthal rotation symmetry of the background in the transverse plane.

The equations of motion above [Eqgs. (B11) and (B12)] are considered at a fixed value of the wave number |k|. However, it is
more convenient to rewrite the equation of motion in a mode where we consider it for a fixed value of the propagation phase

k = |K|(t — 10). (B21)

By making this change of variable from |K| to «, we also need to rewrite the time derivative according to
T
T0: |k = T ljk|(r—70) + ﬁﬂ(l(f — 70)k|(z—70)| - (B22)
— T

This means that we find an additional term resulting from the change of variables.

Furthermore, for conformal systems it is convenient to work again with the dimensionless variable x = 7 /1. Following the
same procedure as for the background, we need to transform the derivative by making use of the scale factor (see Appendix A 4).
By introducing s(t) = (t — 19)/t with

a(x)xdys(x) =1 — s(x), (B23)

we finally find the equations we are using to compute the Green’s functions:

[s(x)a(x)xdy + kI JSE T
= SQO[B)'_28E Lo i + DI'6SE ' + b 58E T ]

iK m m m m m m— m m—
- 3[”1,7515 ) SETH  +dl SET +d) SET (]
m (STk m (STk T(‘L') BrR m
— xs(x)|:3El,k + T(Eéao))l i| _ xs(x)T?ﬁ(Eeq - L),
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SMH
— xs(x)—[u, _AE + ' (AEY +d) _(AE) + 4] (AE)']

I+1
Sul m+l m—+1 m m m
—xs(x)j[ul _(AE ! ' (AE)H —dY _(AE) ! —d) (AE), (B24a)
and
[s(x)a(x)x0x + kSN, =s(0)[B)' 28N )iy 4+ Bl'0ON ) + B 58N o ]
i/<
) [ 75Nm+1 kT U, +8Na”llii K +dl' SN Lk Hdl 5Nan;+i k)
m 8Tk T(7) 0t m
— s @[N L — Srtar (V)] — 15002 E =2 SR W, — N
R
sul
- xs(x)—[u, (AN + ] (AN +d)_ (AN
(SML m+1 m
—xs(x)z—l[ul (AN + ] (AN = d) (AN, (B24b)
where
(AE)' = (Eeq —E +EZ)T, (B25a)
(ANa);n = (Na,eq - Na)l . (B25b)

Note that N}y = 0 since it is proportional to (Ng,eq);", Which is zero for vanishing background density.

3. Initial energy perturbations

So far we considered the evolution of linearized perturbations on top of a background modeled as a Bjorken flow. To describe
the early time dynamics of heavy-ion collisions we need suitable initial conditions for the perturbations to solve the equations of
motion. Here we consider initial energy and charge perturbations.

We follow the idea of Ref. [39], which means initial energy perturbations will be associated with an infinitesimal change of
the energy scale of the background distribution. For the initial distribution function of the perturbations we find, therefore,

8 fx(to, P, [Py = _<M8Ip|f(0)> ik o (B26)

—ik- B . . . . . . .
The factor ¢ ™ #™ takes into account the free-streaming behavior for times T < 79 < tg, While f g)é is given by Eq. (A9a). We

can insert Eq. (B26) into the definition of E'") to translate the initial condition to the moments according to

SE"\ (10) = 13/* (—i)" (1Kl 7o)y P} (0)(eT)p, (B27)

with (et ) being the asymptotic energy density of the background Eq. (A10a) and J,,(x) being the Bessel function of the first
kind of order m. In agreement with Ref. [39] we find for the energy and velocity perturbations

)
belm) _ (ko). (B28a)
P;
I sl () = —ih (Klo), (B28b)
P
CH T Sk (z0) = 0. (B28c¢)
e

4. Initial charge perturbations

The natural choice for the moments of conserved charges is an initial perturbation in terms of the number of quarks,
respectively the number of antiquarks. Therefore we choose initial perturbations of the form

2 r
8 fuk (20, P+ 1Pyl = 8 fyo k0, . 1Py]) = 87 g 1 (@0 B, 1paD) = (14 Lt — 14 L) f e 1™ = 0, f O e ™ W, (B29)
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FIG. 14. Top row shows G, bottom row shows F°. From left to right: the corresponding Green’s functions for /., = 64,128, 256, 512. The
black curve corresponds to analytic free-streaming solutions while the blue curve corresponds to our data. Clearly, for G* we find convergence
to the free-streaming very fast (no significant improvement for [y, > 128). For F'* we see acceptable convergence only for [, > 512, which

justifies that we choose /i, = 512 for our numerics.

In this particular case we choose

_ 8na(70)

. B30
14(7o) ( )

Translated to the level of the charge moments the initial con-
ditions are given by
SN 1k (10) = (=) Ju(IKl70)y;" P} (0)ta(nat)g,  (B31)

where (n,7)o is given by Eq. (A10b). For the perturbation én,
we find

dnax(t0)

= aao([k[70). (B32)

a

5. Numerics

The procedure for finding the Green’s functions numeri-
cally is more or less the same as for the background. However
we consider perturbations around zero densities, i.e., we set
the initial values for n, to zero. At a given /;,,x We truncate the
equations of motions for the moments.

Regarding [,,x our numerical studies have shown that we
need take a relatively high value of / in order to find conver-
gence for the charge moments. To check this, it is convenient
to consider free streaming. This is due to the fact that we
are able to compute analytically the behavior of the response
functions in free streaming. Based on this we can use free
streaming in order to check if the code runs correctly (at least
without perturbation terms in the equations of motion).

It turns out that we find convergence towards the free-
streaming behavior for the energy moments a lot faster than
for the charge moments in terms of /. The results of this
studies can be seen in Fig. 14. This justifies our choice of
Imax = 512.

APPENDIX C: NONEQUILIBRIUM GREEN’S FUNCTIONS
OF ENERGY-MOMENTUM TENSOR AND CURRENT OF
CONSERVED CHARGES
1. Green’s functions of the energy-momentum tensor

We follow the construction of the response functions ac-
cording to Refs. [24,39] and express 8T';" (7) as

ST (v) ! ST (zp)
e(t) 2 e(rg)
We decompose the several response functions into a basis

of scalars (s), vectors (v), and tensors (¢). For initial energy
perturbations we thus have

Gli(k, T, 70)

; (1)

Gii(k, 1) = Gi(k, x), (C2a)
i K .

Gk, 1) = —ime:(K,x), (C2b)

G (k, 1) = 8YG (i, x) + @G"k(/c x).  (C2c)
TT ™ - 5 , s , X).

k|2

Since the normalization of the linearized perturbation is arbi-
trary, we adopt the convention

Se(r) _ 1
e(7)

such that we can express the decomposed response functions
in terms of 87" () (see Ref. [39]) according to

. ST 7 (x) . dec(x)

(C3)

Gk, x) = ) = ) (C4a)
3 k; ST

Gk, x) = ia“HT()X)’ (C4b)
5 kk; |8TY
G, x) = [3” = |k—|zf} e(x()X)’ (Cde)
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FIG. 15. Evolution of the energy-momentum Green’s functions in response to initial energy perturbations in the constant-« mode. The
different panels correspond to different response functions; different curves in each panel corresponds to different times @.

3 Kk 8T (x)
Gt’k y = e A 8 K—
s (K, x) |: k|2 zJ:| e(x)

2. Green’s functions of the current of conserved charges

(C44d)

The Green’s functions corresponding to the conserved
charges are defined by

T8N} (1) = FE (K, T, 70) 08N} (10). (C5)
06| afreestreaming =——— | % S
: H
2 04 | =
g N
7° 0.2 {0
a 0 i = 3
N =
2 ' .

: '02 I i (I_I: L 2
o = [
£ 041} {5 0
8 S 1
06 | | E
o
o 5 10 15 20 3 Mo

Wave number: k=kAt

FIG. 16. Evolution of the charge Green’s functions in response
to initial charge perturbations in the constant-k mode. The different
panels correspond to different response functions; different curves in
each panel corresponds to different times @.

Note that we dropped the flavor indices on F# as we consider
perturbations around vanishing background densities. In such
a setting the Green’s functions decouple in terms of the flavor.
Following the same argumentation SN}, does not depend on
the flavor anymore neither. Like before, we decompose F
also in a scalar-vector-tensor basis according to

F;(k, T) = Fﬁ(/{, x), (Cé6a)
Fik,7)= —i%ﬁg(l(,x). (C6b)
Adapting the normalization
700N (19) =1 (C7)
we find
Fi(k,x) = T8N (x), (C8a)
F'(k,x) = iﬁlrazv;(x). (C8b)

|k

3. Numerical results for the nonequilibrium Green’s functions
of the energy-momentum tensor

The results for G* an £ are presented in the main text in
Sec. IID. In Figs. 15 and 16 we show the results for the other
Green’s functions. In addition to the points discussed in the
main part we can very clearly see the isotropy at later times
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FIG. 17. Evolution of the energy Green’s functions in response to initial energy perturbations in coordinate space. The different panels
correspond to different response functions; different curves in each panel corresponds to different times .

in the figure for the pressure response G2, After scaling the
response function, we see that at early times the longitudinal
pressure is zero while at times when the system can be de-
scribed by hydrodynamics (@ > 1), the longitudinal pressure
is established and we find the effect of isotropy as the response
function approaches one at zero propagation phase indicating
e = 3P in the hydrodynamic limit.
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FIG. 18. Evolution of the charge Green’s functions in response to
initial charge perturbations in coordinate space. The different panels
correspond to different response functions; different curves in each
panel corresponds to different times .

. uncti - u
4. Green’s functions of the energy-momentum tensor
in coordinate space

Similar to the decomposition in Fourier space, we can
decompose the Green’s functions in coordinate space as well
into a basis of scalars, vectors, and tensors such that we find

G (r, 1) = Gi(Ir|, 1), (C9a)

G (r,7) = ;—|G§(|r|, T), (C9b)
ij ij i, r'e/

GY.(r,7) =87G’(Ir|, 7) + WGS' (Jr], ). (C9Yc)

The relation to their counterparts in Fourier space is given by
the following Fourier-Hankel transforms:

1 ~
Gi(rl,7) = Z/dIkIIkIJo(IkIIl'I)Gi(IkI,T), (C10a)

1 ~
Gi(r|,7) = Z/dlkllklfl(lkllrI)G}’(Ikl,r), (C10b)

1 -
G (Ir], 1) = E/d|k||k|[Jo(|k||r|)G;’5(|k|, T)

Méﬁkum, )|, (C10c)
K| ||
—1 -
Gy (Il 1) = — / dIk|[Kk[A([kI[e)GF (K], 7).
(C10d)
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The Green’s function G in coordinate space was already Green’s functions, corresponding to different components of
shown in Sec. 2E. Although not relevant for our current the energy-momentum tensor, in Fig. 17.
study, for the sake of completeness we present the other

J

5. Green’s Functions of the current of conserved charges in coordinate space

For the charge Green’s functions the decomposition in coordinate space is given by

Fi(r,t)=F(r|, 1), (Cl1a)
Fir.1)= %Fz(m, o). (Cl1b)

The relation to their counterparts in Fourier space is given by the Fourier-Hankel transforms
1
Fi(rl, ) = 7 /d|k||k|10(|k||l‘|)F (Ikl, ), (C12a)

1 _
Fi(Ir|, 7) = g[d|k||k|-]1(|k||r|)F;)(|k|’ 7). (C12b)

Again, the coordinate space Green’s function for charge response, F'§, is already shown in Sec. 2E, while the Green’s function
associated with the current response is shown in Fig. 18.
APPENDIX D: IDENTITIES FOR SPHERICAL HARMONICS AND ASSOCIATED LEGENDRE POLYNOMIALS

While deriving the equations of motion for £ and N, we used several identities for the associated Legendre polynomials
and numerical coefficients. First we list the appearing coefficients:

m I+ DU +m) m [+m
A[,— = - . . SZ,_ = T
21+1 2[+1
AT Il—m+1) - _l=-m+1
by 241 7 M 241 7
f(z)m A EL . bl =ar, ),,}f )
1-2
ary = é(z)m — AV EL L ATLEL L by = ap,
ar . = _é:(Z),Wt A E Pt =" yl
142 = TS 42 LASI+L+ P42 = A0
I+2
1,-2= 1,=S1-1,—Pr.2 =41 27>
1-2
Allo=—A7 8 — AL - Bio =40,
Al — A é:m — A™ yl
142 = LASI+1,4> 2=
I+2
iy 7k e y}"
U@yt T @i+ oy epe
y[ m yl
W= . odn, = - (Dla)
@iy T @ e T
and
2). 2 2), (I —m)!
Eién = ;n— ;n—l,—’ ( )m = 51 _EL 1+ +EZ+EZ+1 — sgl;n = 57.[+§;n+1,+’ =(=D"——= +m (D1b)
These coefficients are now used to formulate the following identities in a compact way. For the background we use
d
(1- xz)aP;”(x) AP (x) + A P (x) (D2)
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and
xP['(x) = &"_P" | (x) + &' P[, (%), (D3)
together with
KPP (x) = £ P (x) + )P (x) + NS P (x). (D4)
Combining these identities we find
1 d
[(5 - x2> —x(1— xz)a}P;" (x) = a]' ,P!" ,(x) + d)"\P]'(x) + a' L P} (0), (D5)
respectively,
d
—x(1 - xz)an” (x) = A)' L P[5 (x) + AT Pl'(x) + A" L P (X). (D6)
Furthermore we make use of
P " (x) = o)'P}'(x), (D7)
and
1
VI= 2P () = 5 [P ) = P 0] (D8)
in order to find
sin (0)et Y (¢, 0) = u]' Y7, 0) + ul' Y (9, 0), (D9a)
sin (0)e Y (¢, 0) = d'_ Y] "¢, 0) + d) Y (8, 0), (D9b)

which are used to compute the additional terms in the equa-
tion of motion for the perturbed moments.

APPENDIX E: ECCENTRICITIES, CUMULANTS, AND
ANISOTROPIC FLOW

1. Standard initial-state eccentricities

Quantifying the geometry of the initial state is done using
the standard definition of the complex eccentricity vector £,
given as

gy o _rdrdgre i @) L
C [rdrdgrif(r,¢)

E,=¢,e

where f(r, ¢) is an initial-state distribution like the entropy or
energy density which specifies the initial state. The magnitude
of the eccentricity is ¢, and v, is the complex (event-plane)
angle. We can express this quantity in terms of the complex
position vector r = x + iy through r"e™? = r*:

[ d*rrf(r)

g,=—21 20
[ drirl"f )

(E2)

where boldface is used to denote the complex vector. Usually
these definitions are specified as applying only in the center-
of-mass frame. This can be expressed in terms of a general
coordinate system:

B [ d*r(r —rows)" f(r)
[ d?rir —rems|"f(r)’

E, (E3)

(

with the center-of-mass vector

[ &rfe) 1 / s
rcms = W = E d rrf(r). (E4)

A consequence of this definition is that the directed eccen-
tricity £ vanishes identically.

This method for describing the initial state is well suited
when the quantity f(r) being described is positive definite
like the energy or entropy density. However if f(r) = p(r) is
a charge density, particularly when total net charge is zero,
it becomes impossible to define a corresponding frame such
that £, = 0 when the total charge vanishes. Instead, there
is always a nonzero &£; proportional to the dipole moment.
Due to this inability to construct a center-of-charge frame and
ensure that £1 vanishes for a conserved charge with g, = 0,
the usual definitions (E1) or (E2) must be modified.

For a conserved charge density px(r) (here we consider
baryon number B, strangeness S, or electric charge Q for X),
regions of positive charge with px (r) > 0 and negative charge
with px (r) < 0 will be treated separately by decomposing

px = p ¥ 0(px) + 0¥ 0(—pa), (E5)

where the position argument r is suppressed for brevity. Then
the eccentricities corresponding to the positive and negative
charge densities are

s _ | [ dPrae —rows)' o)
" [drr —roms!" YO |

(E6)

A consequence of these choices is that when there is no charge
density, then the eccentricity is zero.
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2. Cumulants

To quantify the initial-state geometry, we use the cumu-
lants for the initial eccentricities &,,:

511{2} = <£;%)7

s} = \4/ 2(83)2 — (83)

(E7a)

(E7b)

These have been shown to be good predictors of the final-state
flow harmonics v,, due to a linear scaling relationship [10].
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