Multiparticle correlations, cumulants, and moments sensitive to fluctuations in rare-probe azimuthal anisotropy in heavy ion collisions

Abraham Holtermann ©, ${ }^{*}$ Jacquelyn Noronha-Hostler $\odot,{ }^{\dagger}$ Anne M. Sickles $\odot,{ }^{\dagger}$ and Xiaoning Wang \odot^{\S}
Department of Physics, University of Illinois, Urbana, Illinois 61801, USA

(Received 9 August 2023; accepted 13 October 2023; published 4 December 2023)

Abstract

Correlations of two or more particles have been an essential tool for understanding the hydrodynamic behavior of the quark-gluon plasma created in ultrarelativistic nuclear collisions. In this paper, we extend that framework to introduce a mathematical construction of multiparticle correlators that utilize correlations between arbitrary numbers of particles of interest (e.g., particles selected for their strangeness, heavy flavor, and conserved charges) and inclusive reference particles to estimate the azimuthal anisotropies of rare probes. To estimate the fluctuations and correlations in the azimuthal anisotropies of these particle of interest, we use these correlators in a system of cumulants, raw moments, and central moments. Finally, we introduce two classes of observables that can compare the fluctuations in the azimuthal anisotropies of particles of interest with reference particles at each order.

DOI: 10.1103/PhysRevC.108.064901

I. INTRODUCTION

The quark-gluon plasma (QGP) is a state of hot nuclear matter created in the collisions of nuclei at the Large Hadron Collider (LHC) and the Relativistic Heavy Ion Collider (RHIC); for a recent review see Ref. [1]. The fluid nature of this matter has been confirmed using collective flow measurements at both colliders [2-4]. The early stages of heavy ion collisions produce predominately elliptical shapes due to the nature of the geometry of these collisions but other geometrical shapes are possible due to quantum-mechanical fluctuations of the quarks and gluons within the nucleus. Due to the asymmetric pressure gradients caused by these geometrical shapes, the fluid nature of the QGP converts these geometrical shapes into collective flow patterns in momentum space. These collective properties manifest as azimuthal anisotropies in the distribution of particle angles ϕ and are quantified by v_{n}, the Fourier harmonics for the distribution of particle yields around Ψ_{n}, the nth order event-plane:

$$
\begin{equation*}
\frac{d N}{d \phi} \propto 1+2 \sum_{n=1}^{\infty} v_{n} \cos \left[n\left(\phi-\Psi_{n}\right)\right] \tag{1}
\end{equation*}
$$

where nonzero harmonics v_{n} attest to collectivity within the strongly interacting, nearly perfect fluid nature of the QGP. The cumulant framework [5-8] has also been used extensively to measure $v_{n}[9-16]$. One particular advantage of using cumulants is that these measurements can provide sensitivity to both the root mean square (rms) values of the anisotropies, $\left(\left\langle v_{n}^{2}\right\rangle\right)^{1 / 2}$, over some collection of events, but also to higherorder fluctuations present in the distribution of event-by-event

[^0]v_{n}. Measurements of v_{n} are essential for constraining transport coefficients within relativistic viscous fluid dynamics using Bayesian analyses [17-21] and are one of the standard benchmarks that models must reproduce [22,23]. Previous work has demonstrated that experimental measurements of flow fluctuations [16,24-27] can play a crucial role in constraining initial-state models [28-30].

Up until this point we have discussed generic collective flow harmonics that are measured using a nearly inclusive set of particles dominated by those at low transverse momenta $\left(p_{T}\right)$ reference particles. However, a number of useful signals of the QGP come from particles of interest (POIs), a class of either identified particles (e.g., protons) or high- p_{T} particles that generally do not significantly overlap with reference particles. Typically these differential classes of particles have insufficient statistics from just POI angles to simply measure v_{n}^{\prime} using the same techniques as measurements of v_{n} using charged particles. Thus, the azimuthal anisotropies that characterize the distributions of exclusively POIs are measured using "differential" correlators and cumulants which rely on correlations between POI and reference particles [5,7].

Quantum-chromodynamics (QCD) and thereby the QGP is required to locally conserve quantities such as electric charge, baryon number, and strangeness. Realistic handling of these quantities is necessary to accurately compare theoretical models to experimental data. The study of fluctuations of v_{n}^{\prime} for conserved quantities is still in its infancy; however, recent work that includes baryon stopping in the initial conditions [31] and other work that includes gluon splittings into quark antiquark pairs $[32,33]$ would allow one to study the fluctuations of conserved charges in the azimuthal anisotropies; these studies may shed light on the effects of event-by-event fluctuations of baryon stopping and/or charge diffusion transport coefficients.

Additionally, jets are of great interest in heavy ion collisions [34]. They are created in large momentum transfer processes in the very early stages of the collision prior to the fluid formation; thus, they experience the same collision evolution as the fluid but they are not equilibrated with it because the associated momentum scale is much larger than the temperature of the fluid. Jets are sensitive to the short-lengthscale properties of the QGP and the average suppression of jets in the QGP can be used to constrain the strength of jet quenching [35-38].

In the case of jets, the value of v_{n}^{\prime} is understood to be sensitive to the path-length dependence of the interaction between the jets and the QGP $[39,40]$ and measurements have been made which show positive values for these v_{n}^{\prime} quantities [41-43]. Theoretically, hydrodynamical models have been used to elucidate decorrelations between the event plane angles Ψ_{n} and Ψ_{n}^{\prime} for reference particles and for POI respectively, as well as for event plane angles between two different harmonics [44-46]. This decorrelation of POI event planes from the reference particle event plane is important when considering event-by-event fluctuations in v_{n}^{\prime}. However, current techniques and observables do not provide a comprehensive way to study these jet-by-jet fluctuations in energy loss [47].

Measurements of mesons containing heavy, charm, and bottom quarks may provide interesting insight to various phenomena unique to heavy flavor particles. At high momentum, heavy quarks come from jet production and suffer energy loss $[48,49]$. At intermediate momenta, heavy quarks are understood to undergo Langevin-like diffusion as they move through the QGP $[48,50]$. Additionally, hadronization of heavy quarks is thought to be modified in heavy ion collisions with recombination processes playing an important role [51-53]. Due to all these effects, it is of great interest to measure the azimuthal anisotropies and their fluctuations of hadrons containing heavy quarks to constrain theoretical models [54-57].

Finally, both jets and heavy flavor lead to ambiguous signals in proton-nucleus collisions where positive v_{n}^{\prime} values for high- p_{T} particles are measured [58] but, there is no significant suppression [59-62]. Thus, studies of the fluctuations of v_{n}^{\prime} could provide new information in these small systems to understand the origin of the observed v_{n}^{\prime}.

In this work, we focus on the development of observables that utilize angular correlations between arbitrarily many reference particles with one or more POI. The POI selection varies with the physics of interest and could include high- p_{T} jets, heavy-flavor hadrons, or some other object classification. Our explicit intent is to derive observables that are sensitive to not just the rms of the v_{n} Fourier coefficients for POI, $\left(\left\langle v_{n}^{\prime 2}\right\rangle\right)^{1 / 2}$ but also higher-order fluctuations displayed by v_{n}.

Generally, we expect the fluctuations of v_{n}^{\prime} in POI to be affected by both the initial geometry of the collision, as for the reference particles, and by additional process specific fluctuations. Measurements of these quantities could provide unique information about the mechanism of jet energy loss [63]. Therefore, we qualitatively expect the fluctuations in v_{n}^{\prime} to be larger than those observed in the soft sector. This is illustrated in Fig. 1, which shows a typical example of a differential two-particle estimate for $v_{n}^{\prime}: v_{2}^{\prime}\{2\}$ as a

FIG. 1. Cartoon of $v_{n}\{2\}\left(p_{T}\right)$ as a function of p_{T}. Insets show examples of the distributions of $v_{n}\{2\}\left(p_{T}\right)$ for low- p_{T} particles (dominated by reference particles) and high p_{T} (particles of interest).
function of p_{T} for hadrons. The plotted $v_{2}^{\prime}\{2\}$ values are the average over the events in that particular event selection, typically a centrality bin in heavy ion collisions. The insets show example distributions of event-by-event v_{2} values relative to the mean. The goal of this work is to suggest experimental observables using multiparticle correlations to provide experimental access to these underlying fluctuation distributions.

Given the impact of these types of measurements in the soft sector, it is very likely that fluctuations of v_{n}^{\prime} can provide new insight into the processes discussed above. The very large data samples at the LHC [64], the forthcoming upgrades at the LHC, and the very large data samples projected from sPHENIX [65], provide new opportunities to make these measurements. Up until today, only a handful of experimental papers have explored multiparticle cumulants that contain one POI [66-71]. We expect this field to expand significantly with upcoming data.

In this paper we derive the formalism to study different types of multiparticle cumulants with an arbitrary number of POI in azimuthal anisotropy measurements for jets, and other rare probes. We generalize the following observables to include one or more POI: differential cumulants developed in Refs. [5,6], higher-order moments of v_{n}^{\prime}, multiharmonic cumulants developed by Moravcova et al. [72], and asymmetric cumulants developed by Bilandzic et al. [73]. Finally, we propose central moments of arbitrary order in POI angle dependence, and two observables to estimate the contribution to a cumulant or moment for an arbitrary number of particles. Finally, we summarize our work by discussing features of each specific observable and what types of fluctuations and POIs they are most ideal for measuring.

II. AZIMUTHAL ANISOTROPY AND CORRELATORS

The event-by-event azimuthal anisotropies of particles in heavy ion collisions are studied using a Fourier expansion for the distribution of particle angles around the beam axis, where v_{n} represents the contribution of the nth harmonic to the net particle yield:

$$
\begin{equation*}
\frac{d N}{d \phi} \propto 1+2 \sum_{n=1}^{\infty} v_{n} \cos \left[n\left(\phi-\Psi_{n}\right)\right] \tag{2}
\end{equation*}
$$

where the detector angle ϕ_{i} for each of the N particles is compared with the nth order event plane; an azimuthal angle about which the distribution of $n \phi_{i}$ is symmetric [74]. When using the symbol v_{n}, we specifically refer to the azimuthal anisotropy coefficients for reference particles, typically all measured charged particles.

Likewise, we can define a related quantity, v_{n}^{\prime}, as the Fourier coefficient for the distribution of POI angles. This quantity is an analog to v_{n} but generally relies on different approximation methods than v_{n} due to properties of the probe in question:

$$
\begin{equation*}
\frac{d N^{\prime}}{d \psi} \propto 1+2 \sum_{n=1}^{\infty} v_{n}^{\prime} \cos \left[n\left(\psi-\Psi_{n}^{\prime}\right)\right] \tag{3}
\end{equation*}
$$

where the multiplicity of POI is labeled by N^{\prime} for a single event, and each POI is denoted with angle ψ_{i} with respect to their theoretical event plane Ψ_{n}^{\prime}, about which the angles $n \psi_{i}$ are symmetric.

Using a Fourier expansion, we rewrite the explicit definition of both v_{n} and $v_{n}^{\prime}[5,6]$:

$$
\begin{align*}
& v_{n} \equiv\left\langle e^{i n\left(\phi-\Psi_{n}\right)}\right\rangle=\left\langle\cos \left[n\left(\phi-\Psi_{n}\right)\right]\right\rangle, \tag{4}\\
& v_{n}^{\prime} \equiv\left\langle e^{i n\left(\psi-\Psi_{n}^{\prime}\right)}\right\rangle=\left\langle\cos \left[n\left(\psi-\Psi_{n}^{\prime}\right)\right]\right\rangle, \tag{5}
\end{align*}
$$

where angle brackets \rangle indicate an average taken over all particle angles within a single event. Flow harmonic vectors that contain information about v_{n}, and the n th-order event plane and can be defined as

$$
\begin{align*}
V_{n} & \equiv v_{n} e^{i n \Psi_{n}} \tag{6}\\
V_{n}^{\prime} & \equiv v_{n}^{\prime} e^{i n \Psi_{n}^{\prime}} \tag{7}
\end{align*}
$$

within a single event. The definition of these vectors allows for a more concise way to express the evaluation of v_{n} and v_{n}^{\prime}
to different powers using multiparticle angular correlations, as detailed in the next section.

A. Correlators

Multiparticle correlations can determine v_{n} and v_{n}^{\prime} to different powers, a more accurate and computationally effective process than approximating the event plane, and measuring v_{n} and v_{n}^{\prime} as they are defined in Eqs. (4) and (5) [75,76]. To measure correlations, we rely on the assumption that reference particles and POI are distributed symmetrically around Ψ_{n} and Ψ_{n}^{\prime}, respectively, which is accurate in the limits of $N, N^{\prime} \gg 1$. If this assumption holds for the reference particles, it has been shown that we can correlate n-tuples of particle angles to approximate powers of v_{n} for different harmonics [8,77,78]. The correlation among reference particles can be written as a product of v_{n} coefficients with an exponential dependence on event planes, or as a product of unconjugated and conjugated complex flow vectors V_{n}, V_{n}^{*} :

$$
\begin{align*}
\langle k & +m\rangle_{n_{1}, \ldots, n_{k} \mid n_{k+1}, \ldots, n_{m+k}} \\
& \equiv\left\langle e^{i\left(n_{1} \phi_{1}+\ldots+n_{k} \phi_{k}-n_{k+1} \phi_{k+1}-\ldots-n_{m+k} \phi_{m+k}\right)}\right\rangle \tag{8}\\
& =v_{n_{1}} \cdots v_{n_{m}} e^{i\left(n_{1} \Psi_{n_{1}}+\ldots+n_{k} \Psi_{n_{k}}-n_{k+1} \Psi_{n_{k+1}}-\ldots-n_{k+m} \Psi_{n_{k+m}}\right)} \tag{9}\\
& =V_{n_{1}} \cdots V_{n_{k}} V_{n_{k+1}}^{*} \cdots V_{n_{m}}^{*}, \tag{10}
\end{align*}
$$

for an arbitrary number $k+m$ of correlated particles. Each reference particle is labeled with angle ϕ_{p}, numbered one through N, and the average on the right-hand side (RHS) is taken over all $k+m$ tuples of particles. The indices n_{1}, \ldots, n_{k} indicate that the particles are "positively correlated;" their azimuthal angles have a positive sign in the exponential in the above equation. The indices n_{k+1}, \ldots, n_{k+m} that follow the vertical bar | indicate "negatively correlated" harmonics, which are subtracted in the above equation's exponential. We require the sum of the positively and negatively correlated harmonics to be zero: for any $\langle k+m\rangle$ we must have

$$
\begin{equation*}
\sum_{i=1}^{k} n_{i}=\sum_{j=1}^{m} n_{k+j} \tag{11}
\end{equation*}
$$

otherwise the resulting quantity is isotropic and will average to zero due to symmetry of particles around each event plane.

To measure v_{n}^{\prime}, and correlations between v_{n}^{\prime} and v_{n} within an event, we apply the same assumption about event plane symmetry for POIs, and incorporate their angles into correlations in the same way as in Eq. (8), generalizing to correlators that use $k^{\prime}+m^{\prime}$ POIs and $k+m$ reference particles:

$$
\begin{align*}
\left\langle k^{\prime}\right. & \left.+m^{\prime}+k+m\right\rangle_{n_{1}, \ldots, n_{k}, n_{k+1}^{\prime}, \ldots n_{k+k^{\prime}}^{\prime} \mid n_{k+k^{\prime}+1}, \ldots, n_{k+k^{\prime}+m}, n_{k+k^{\prime}+m+1}^{\prime} \ldots n_{k+k^{\prime}+m+m^{\prime}}^{\prime}}^{k+k^{\prime}+m+m^{\prime}} \\
& \equiv\left\langle\exp i\left[\sum_{\alpha=1}^{k} n_{\alpha} \phi_{\alpha}+\sum_{\beta=k+1}^{k+k^{\prime}} n_{\beta}^{\prime} \psi_{\beta}-\sum_{\gamma=k+k^{\prime}+1}^{k+k^{\prime}+m} n_{\gamma} \phi_{\gamma}-\sum_{\delta=k+k^{\prime}+m+1} n_{\delta}^{\prime} \psi_{\delta}\right]\right\rangle \tag{12}
\end{align*}
$$

where we have in particular k^{\prime} positively correlated POI harmonics, m^{\prime} negatively correlated POI harmonics, k positively correlated reference particle harmonics, and m negatively correlated reference particle harmonics. Each reference particle index
iterates through all N reference particles in the event with angle ϕ_{p}, and likewise each of the N^{\prime} POI angles ψ_{p} is iterated through by POI indices.

Plugging Eqs. (2) and (3) into Eq. (12), we can convert the correlator with $k^{\prime}+m^{\prime}$ arbitrary POI angles and $k+m$ reference particle angles into an approximation for v_{n} and v_{n}^{\prime} at arbitrary power and harmonic number:

$$
\begin{align*}
\left\langle k^{\prime}\right. & \left.+m^{\prime}+k+m\right\rangle_{n_{1}, \ldots, n_{k}, n_{k+1}^{\prime}, \ldots n_{k+k^{\prime}}^{\prime}} n_{k+k^{\prime}+1}, \ldots, n_{k+k^{\prime}+m}, n_{k+k^{\prime}+m+1}^{\prime} \ldots n_{k+k^{\prime}+m+m^{\prime}}^{\prime} \\
& \left.=\prod_{\alpha=1}^{k} v_{n_{\alpha}} e^{i n_{\alpha} \Psi_{\alpha}} \prod_{\beta=k}^{k+k^{\prime}}\left(v_{n_{\beta}}^{\prime}\right) e^{i n_{\beta}^{\prime} \Psi_{\beta}^{\prime}} \prod_{\gamma=k+k^{\prime}+1}^{k+k^{\prime}+m} v_{n_{\gamma}} e^{-i n_{\gamma} \Psi_{\gamma}} \prod_{\delta=k+k^{\prime}+m+1}^{k+k^{\prime}+m+m^{\prime}} \prod_{n_{\delta}}^{\prime}\right) e^{-i n_{\delta}^{\prime} \Psi_{\delta}^{\prime}} \\
& =V_{n_{1}} \cdots V_{n_{k}} V_{n_{k+1}}^{\prime} \cdots V_{n_{k+k^{\prime}}^{\prime}}^{\prime} V_{n_{k}+k^{\prime}+1}^{*} \cdots V_{n_{k}+k^{\prime}+m}^{*} V_{n_{k+k^{\prime}+m+1}^{\prime *}}^{*} \cdots V_{n_{k+k^{\prime}+m^{\prime}+m}^{*}}^{*} \tag{13}
\end{align*}
$$

Similar to the condition in Eq. (11), we require that the sum of harmonics produces an anisotropic quantity:

$$
\begin{equation*}
\sum_{i=1}^{k} n_{i}+\sum_{j=k+1}^{k+k^{\prime}} n_{j}^{\prime}=\sum_{g=k+k^{\prime}+1}^{k+k^{\prime}+m} n_{g}+\sum_{h=k+k^{\prime}+m+1}^{k+k^{\prime}+m+m^{\prime}} n_{h}^{\prime} \tag{14}
\end{equation*}
$$

for Eq. (13) to be used. Otherwise, Eq. (13) will yield values consistent with zero due to the symmetry planes.

Evaluating $\left\langle k^{\prime}+m^{\prime}+k+m\right\rangle$ will generally produce some dependence on the angle between the event planes for v_{n} and v_{n}^{\prime} at each of the different harmonics n_{i}, defined by the event plane angle in the exponential. When considering any two flow vectors V_{n} and V_{m}^{*}, for either POI or reference particles, we can understand that this angle dependence is simply the dot product of the various vectors. An example of a multiharmonic correlation between v_{3}^{\prime} and the product of v_{2} and v_{4} is demonstrated below:

$$
\begin{align*}
\left\langle 2^{\prime}+2\right\rangle_{2,4 \mid 3^{\prime}, 3^{\prime}} & =v_{2} v_{4}\left(v_{3}^{\prime}\right)^{2} \cos \left(2 \Psi_{2}+4 \Psi_{4}-6 \Psi_{3}^{\prime}\right) \\
& =\left\langle e^{i\left(2 \phi_{1}+4 \phi_{2}-3 \psi_{3}-3 \psi_{4}\right)}\right\rangle \\
& =V_{2} V_{4}\left(V_{3}^{\prime *}\right)^{2} \tag{15}
\end{align*}
$$

where the harmonics $n_{1} \ldots n_{4}$ obey the condition in Eq. (14). Also, we remind the reader that the subscripts in $\phi_{1} \ldots \phi_{4}$ indicate the indices for the particles being correlated, not the harmonics.

To evaluate Eq. (8) using experimental data, an average is taken over all $k+m$ tuples with unique particle angles at each index—indicated by a primed summation $\sum^{\prime}[8,78]$:

$$
\begin{align*}
\langle k+m\rangle= & \frac{(N-m-k)!}{N!} \sum_{1, \ldots k+m}^{\prime} \\
& \times e^{i\left(n_{1} \phi_{1}+\ldots+n_{k} \phi_{k}-n_{k+1} \phi_{k+1}-\ldots-n_{k+m} \phi_{k+m}\right)} \tag{16}
\end{align*}
$$

where the normalization factor $(N-k-m)!/ N!$ is the reciprocal of the number of $k+m$ tuples of unique particles in an event with N total particles. Likewise, in keeping with the evaluation of correlators using one POI index in Ref. [78], we can construct the same summations with arbitrary dependence on particles of interest, using N reference particles and N^{\prime} POI by writing Eq. (12) as a primed summation:

$$
\begin{align*}
& \left\langle k^{\prime}+m^{\prime}+k+m\right\rangle \\
& \quad=\frac{(N-k-m)!}{N!} \frac{\left(N^{\prime}-k^{\prime}-m^{\prime}\right)!}{N^{\prime}!} \sum^{\prime} \exp i\left[\sum_{\alpha=1}^{k} n_{\alpha} \phi_{\alpha}+\sum_{\beta=k+1}^{k+k^{\prime}} n_{\beta}^{\prime} \psi_{\beta}-\sum_{\gamma=k+k^{\prime}+1}^{k+k^{\prime}+m} n_{\gamma} \phi_{\gamma}-\sum_{\delta=k+k^{\prime}+m+1}^{k+k^{\prime}+m+m^{\prime}} n_{\delta}^{\prime} \psi_{\delta}\right] \tag{17}
\end{align*}
$$

where in this case we assume that there are no POI that are also considered reference particles, which we expect to be a reasonable definition in most analyses. For a more general treatment with non-negligible overlap between reference particles and POI, see Appendix A.

Calculating a $\left(k^{\prime}+m^{\prime}+k+m\right)$-particle correlation by iterating over $k^{\prime}+m^{\prime}+k+m$ tuples can be computationally challenging for higher-order correlations. However, in Refs. [7,8] a much faster method to calculate these correlators using polynomials of the event Q_{n} vector is introduced, which makes the calculations of these correlators much easier, but more complex to write analytically. Traditionally, a Q_{n} vector is defined by averaging all of the particle angles within an event:

$$
\begin{equation*}
\mathrm{Q}_{n}=\sum_{p=0}^{N} e^{i n \phi_{p}}, \tag{18}
\end{equation*}
$$

where each reference particle has angle ϕ_{p} with respect to the event plane Ψ_{n}. In Appendix B we introduce an algorithm to recursively write a correlation of the form $\left\langle k^{\prime}+m^{\prime}+k+\right.$ $m\rangle$ using Q_{n} vectors, analogous to the method described in Ref. [8], but incorporating arbitrary POI dependence.

While mathematically the correlators defined in this section evaluate products of v_{n} as described in Eq. (13), their values can be biased by sensitivity to nonflow fluctuations that contribute to v_{n} in the form of correlations due to small subsets of particles produced in heavy ion collision such as jets or resonance decays. These highly correlated particles fluctuate event-by-event and do not necessarily reflect the collectivity induced by initial-state geometry in the QGP. Additionally, because single event measurements fluctuate due to finite statistics, and the varying initial geometry of the QGP, it is more common to measure event by event averages of v_{n}
and associated quantities. In the next section, we express the event-by-event averages of the correlations developed above, as the raw moments of a multivariate distribution over events, describe the stochastic variables that comprise the multivariate distribution, and relate them to existing observables.

B. Raw moments

Due to quantum-mechanical fluctuations of the nucleons (or quarks and gluons) within the nucleus, as well as impactparameter fluctuations, there are fluctuating v_{n} values on an event-by-event basis for a fixed centrality class [28,74,79-83]. The distribution of v_{n} values for reference particles in a fixed centrality class has already been measured experimentally [11]. The use of various underlying probability distributions to fit experimentally determined distributions for v_{n} have been studied [79], and used to parametrize these experimental measurements, as well as simulation data, such as Gaussian [84], Bessel Gaussian [68,75], elliptic Gaussian, and elliptic power distributions [85,86]. As of yet, no attempts have been made to experimentally measure the underlying distribution for v_{n}^{\prime}. Since a distribution and its fluctuations can be constrained by its moments or cumulants, we focus on methods to obtain moments and cumulants of v_{n}^{\prime} to attempt to extract the underlying distribution.

To better understand these distributions and their event-byevent fluctuations, we first consider the raw moments of v_{n}. Raw moments provide significant insight into various properties of the distribution's symmetry and tail behavior, and, more importantly, can always be used to express more conventional measures of fluctuations like central moments, or cumulants, which we will define later in the paper.

The most natural way to define the raw moments in terms of the quantities already defined in the previous section would be to simply take event-by-event averages of $\left\langle k^{\prime}+m^{\prime}+k+m\right\rangle$. Since $\left\langle k^{\prime}+m^{\prime}+k+m\right\rangle$ measures a product of $V_{n_{1}} \cdots V_{n_{m+k}}^{\prime}$, we understand the stochastic variables measured in these moments will also be a product of some collection of r vectors: $V_{n_{i_{1}}} \cdots V_{n_{i}}^{\prime}$. The exact determination of each stochastic variable represented in such a raw moment is addressed in depth in the next section. Given an arbitrary collection of stochastic variables X_{1}, \ldots, X_{n}, the raw moment μ of order v_{i} in each stochastic variable X_{i} is defined as

$$
\begin{equation*}
\mu_{\nu_{1}, \ldots, v_{m}}\left(X_{1} \ldots X_{m}\right) \equiv\left\langle\prod_{i=0}^{n} X_{i}^{v_{i}}\right\rangle \tag{19}
\end{equation*}
$$

where an average over all events is shown.
Earlier, we have defined multiparticle correlations, which specifically correlate $k+m$ reference particle angles at varying harmonics, and $k^{\prime}+m^{\prime}$ POI at varying harmonics in Eq. (13) [8]. The expectation value of the correlator from Eq. (13)-a raw moment-is then obtained by averaging over an ensemble of events with index i, and weighting W_{i}, which is often uniform, based on total p_{T}, or total number of particles produced. This is indicated by the double brackets $\langle\rangle\rangle$:

$$
\begin{equation*}
\left\langle\left\langle k^{\prime}+m^{\prime}+k+m\right\rangle\right\rangle=\frac{\sum_{i} W_{i}\left\langle k^{\prime}+m^{\prime}+k+m\right\rangle_{i}}{\sum_{i} W_{i}} \tag{20}
\end{equation*}
$$

and on the RHS, we also consider the single bracket \rangle to be a weighted average taken over events:

$$
\begin{align*}
& \left\langle\left\langle k^{\prime}+m^{\prime}+k+m\right\rangle\right\rangle_{n_{1}, \ldots, n_{k}, n_{k+1}^{\prime}, \ldots n_{k+k^{\prime}}^{\prime} \mid n_{k+k^{\prime}+1}, \ldots, n_{k+k^{\prime}+m}, n_{k+k^{\prime}+m+1}^{\prime} \ldots n_{k+k^{\prime}+m+m^{\prime}}^{\prime}} \\
& =\left\langle\prod_{\alpha=1}^{k} v_{n_{\alpha}} e^{i n_{\alpha} \Psi_{\alpha}} \prod_{\beta=k}^{k+k^{\prime}}\left(v_{n_{\beta}}^{\prime}\right) e^{i n_{\beta}^{\prime} \Psi_{\beta}^{\prime}} \prod_{\gamma=k+k^{\prime}+1}^{k+k^{\prime}+m} v_{n_{\gamma}} e^{i n_{\gamma} \Psi_{\gamma}} \prod_{\delta=k+k^{\prime}+m+1}^{k+k^{\prime}+m+m^{\prime}}\left(v_{n_{\delta}}^{\prime}\right) e^{i n_{\delta}^{\prime} \Psi_{\delta}^{\prime}}\right\rangle, \tag{21}
\end{align*}
$$

where we have shown the full subindex of the correlator in Eq. (21) but suppressed it in Eq. (20) for simplicity's sake.

As a special case of this method, we note that correlators for exclusively reference particles, and correlators using one POI angle index have been defined explicitly in Refs. [6,7], using angle ψ_{p} for POI angles. The one POI differential correlator approximates the joint moment of order $2 k-2$ in v_{n} and first order in $V_{n}^{\prime} V_{n}^{*}$. These correlators are used extensively in differential flow analyses with generating function cumulants to estimate values of $v_{n}^{\prime}[9,14,87]$:

$$
\begin{align*}
\left\langle 1^{\prime}+2 k-1\right\rangle & =\left\langle e^{i n\left(\psi_{1}+\phi_{1} . . \phi_{k-1}-\phi_{k}-\ldots-\phi_{2 k-1}\right)}\right\rangle \\
& =\frac{(N-2 k+1)!}{N^{\prime}(N!)} \sum^{\prime} e^{i n\left(\psi_{1}+\phi_{1} . . \phi_{k-1}-\phi_{k}-\ldots-\phi_{2 k-1}\right)} \tag{22}
\end{align*}
$$

where in the above equation we assume there is no overlap between POI and reference particles. After averaging this
correlator over an ensemble of events,

$$
\begin{equation*}
\mu_{k-1,1}\left(v_{n}^{2}, V_{n}^{\prime} V_{n}\right)=\left\langle\left\langle 1^{\prime}+2 k-1\right\rangle\right\rangle, \tag{23}
\end{equation*}
$$

we can write it as a raw moment of the variabes v_{n}^{2}, and $V_{n}^{\prime} V_{n}$.
As another example, we create a raw moment from the example in Eq. (15) by averaging the correlator $\left\langle 2^{\prime}+2\right\rangle_{2,4 \mid 3^{\prime}, 3^{\prime}}$:

$$
\begin{align*}
\left\langle\left\langle 2^{\prime}+2\right\rangle\right\rangle_{2,4 \mid 3^{\prime}, 3^{\prime}} & =\left\langle\left(v_{2} e^{i 2 \Psi_{2}}\right)\left(v_{4} e^{i 4 \Psi_{4}}\right)\left(v_{3}^{\prime} e^{-i 3 \Psi_{3}^{\prime}}\right)^{2}\right\rangle \\
& =\left\langle v_{2} v_{4}\left(v_{3}^{\prime}\right)^{2} \cos \left(2 \Psi_{2}+4 \Psi_{4}-6 \Psi_{3}^{\prime}\right)\right\rangle \tag{24}
\end{align*}
$$

where we find that the condition in Eq. (14) is satisfied just as before. This raw moment identifies one of the contributions of V_{2}, V_{4}, and V_{3}^{\prime} to a multivariate distribution. We address how to determine the variables in the multivariate distribution and address how to determine what correlations the above types of raw moments actually measured in the next section.

C. Stochastic variables and normalization

Raw moments of a distribution often scale with the mean value of their distributions, $\left\langle v_{n}^{m}\right\rangle \sim\left\langle v_{n}\right\rangle^{m}$, making their comparisons difficult. For example, if stochastic variables X and Y are distributed normally with $\mu_{2}(X)=\mu_{2}(Y)=5$, but $\mu_{1}(X)=0.05$ and $\mu_{1}(Y)=3$, the magnitude of their "fluctuations" relative to their mean are very different, despite both distributions having the same second raw moment. We define a normalized moment for a collection of stochastic variables X_{1}, \ldots, X_{n}, denoted $N \mu_{\nu_{1}, \ldots, \nu_{n}}\left(X_{1}, \ldots, X_{n}\right)$:

$$
\begin{equation*}
N \mu_{\nu_{1}, \ldots, \nu_{n}}\left(X_{1}, \ldots, X_{n}\right)=\frac{\mu_{\nu_{1}, \ldots, v_{n}}\left(X_{1}, \ldots, X_{n}\right)}{\prod_{i}^{n} \mu_{1}\left(X_{i}\right)^{v_{i}}}, \tag{25}
\end{equation*}
$$

where the scaling of $\mu_{\nu_{1}, \ldots, \nu_{n}}\left(X_{1}, \ldots, X_{n}\right)$ that comes from $\left\langle X_{i}\right\rangle^{v_{i}}$ for each i is canceled by explicitly dividing by $\left\langle X_{i}\right\rangle^{\nu_{i}}$. If each stochastic variable X_{1}, \ldots, X_{n} is statistically independent of the others, then normalizing the raw moment will give unity; $N \mu_{\nu_{1}, \ldots, v_{n}}\left(X_{1}, \ldots, X_{n}\right)=1$, and normalized moments that differ significantly from one indicate correlation or anticorrelation between the variables X_{1}, \ldots, X_{n}.

Normalizing in this way is consistent with the existing normalization technique for symmetric cumulants (SCs), which use the stochastic variables $X_{1}=v_{n}^{2}$, and $X_{2}=v_{m}^{2}$ to correlate the Fourier coefficients of two harmonics [$8,88,89$]:

$$
\begin{align*}
S C\left(v_{n}^{2}, v_{m}^{2}\right) & =\left\langle v_{n}^{2} v_{m}^{2}\right\rangle-\left\langle v_{n}^{2}\right\rangle\left\langle v_{m}^{2}\right\rangle \tag{26}\\
\operatorname{NSC}\left(v_{n}^{2}, v_{m}^{2}\right) & =\frac{\left\langle v_{n}^{2} v_{m}^{2}\right\rangle-\left\langle v_{n}^{2}\right\rangle\left\langle v_{m}^{2}\right\rangle}{\left\langle v_{n}^{2}\right\rangle\left\langle v_{m}^{2}\right\rangle} \tag{27}
\end{align*}
$$

It is clear that $S C$ is normalized by dividing $S C$ by each stochastic variable that it takes as an argument. It becomes intuitive to normalize raw moments of other stochastic variables the same way. We can now write $\operatorname{NSC}\left(v_{n}^{2}, v_{m}^{2}\right)$ as a sum of a normalized raw moment and 1:

$$
\begin{equation*}
N S C\left(v_{n}^{2}, v_{m}^{2}\right)=\frac{\left\langle v_{n}^{2} v_{m}^{2}\right\rangle}{\left\langle v_{n}^{2}\right\rangle\left\langle v_{m}^{2}\right\rangle}-1=N \mu_{1,1}\left(v_{n}^{2}, v_{m}^{2}\right)-1 \tag{28}
\end{equation*}
$$

where, when considering quantities like $\left\langle v_{n}^{2}, v_{m}^{2}\right\rangle=\langle\langle 2+$ $2\rangle\rangle_{m, n \mid m, n}$, it is clear that $X_{1}=v_{n}^{2}$ and $X_{2}=v_{m}^{2}$ allows for consistency with the normalization for $S C$, as further discussed in Ref. [73]. However, for quantities like the correlator defined in Eq. (15), it is less clear how to select the correct stochastic variables. Additionally, for a correlator such as $\left\langle\left\langle 2^{\prime}+1\right\rangle\right\rangle_{2^{\prime}, 2^{\prime} \mid 4}$ with odd numbers of particles, it is not well defined how to select the variables of interest in a manner consistent with Eqs. (26)-(28).

As shown in Eq. (21), a raw moment of the form $\left\langle\left\langle k^{\prime}+\right.\right.$ $\left.\left.m^{\prime}+k+m\right\rangle\right\rangle$ evaluates the event-by-event averages of products of flow vectors $V_{n}=v_{n} e^{i n \Psi_{n}}$ and $V_{n}^{\prime}=e^{i n \Psi_{n}^{\prime}}$. It is tempting to use these flow vectors as stochastic variables, but they cannot work within the normalization scheme, because $\mu_{1}\left(V_{n}\right)$ and $\mu_{1}\left(V_{n}^{\prime}\right)$ are isotropic quantities and will average to zero, leaving the normalized raw moment in Eq. (25) undefined.

Instead, we use "nontrivial" stochastic variables that are selected by factoring out subsets of vectors for which the harmonics of vectors in the subset add to zero. If $\left\langle k^{\prime}+m^{\prime}+\right.$
$k+m\rangle$ evaluates to a product of flow vectors,

$$
\begin{align*}
& \left\langle k^{\prime}+m^{\prime}+k+m\right\rangle \\
& \quad=V_{n_{1}} \ldots V_{n_{k}} V_{n_{k+1}}^{\prime} \ldots V_{n_{k+k^{\prime}}^{\prime}}^{\prime} V_{n_{k+k^{\prime}+1}^{*}}^{*} V_{n_{k+k^{\prime}+m}^{*}}^{*} V_{n_{k+k^{\prime}+m+1}^{\prime *}}^{*} V_{k+k^{\prime}+m+m^{\prime}}^{\prime *}, \tag{29}
\end{align*}
$$

we consider any disjoint subset of those vectors that produce a nonisotropic quantity to be a viable stochastic variable for our formalism. These groups can be represented by different correlators with fewer indices, $X_{i}=\left\langle k_{i}^{\prime}+m_{i}^{\prime}+k_{i}+m_{i}\right\rangle$, and since they are disjoint, the product of each stochastic variable yields: $X_{1} \cdot \ldots \cdot X_{n}=\left\langle k^{\prime}+m^{\prime}+k+m\right\rangle$. To validate that the correlators $\left\langle\left\langle k^{\prime}+m^{\prime}+k+m\right\rangle\right\rangle$ are actually expectation values of the raw variables $X_{i}=\left\langle k_{i}^{\prime}+m_{i}^{\prime}+k_{i}+m_{i}\right\rangle$, we relate $\left\langle\left\langle k^{\prime}+m^{\prime}+k+m\right\rangle\right\rangle, X_{i}$, and $\mu_{\nu_{1}, \ldots, v_{n}}\left(X_{1}, \ldots X_{n}\right)$ in the equations

$$
\begin{gather*}
\left\langle\left\langle k^{\prime}+m^{\prime}+k+m\right\rangle\right\rangle=\left\langle\prod_{i}\left\langle k_{i}^{\prime}+m_{i}^{\prime}+k_{i}+m_{i}\right\rangle\right\rangle, \tag{30}\\
X_{i} \equiv\left\langle k_{i}^{\prime}+m_{i}^{\prime}+k_{i}+m_{i}\right\rangle, \tag{31}\\
\mu_{\nu_{1}, \ldots, v_{n}}\left(X_{1}, \ldots X_{n}\right)=\left\langle\prod_{i} X_{i}^{v_{i}}\right\rangle=\left\langle\left\langle k^{\prime}+m^{\prime}+k+m\right\rangle\right\rangle, \tag{32}
\end{gather*}
$$

where subscripts with each harmonic, n_{1}, n_{2}, \ldots, are dropped for clarity. Clearly, v_{n}^{2} and v_{m}^{2} both remain consistent with this definition, since $\langle 2\rangle_{n \mid n}=v_{n}^{2}$ and $\langle 2\rangle_{m \mid m}=v_{m}^{2}$ are both isotropic quantities.

When only considering nontrivial stochastic variables, there exist many $\left\langle\left\langle k^{\prime}+m^{\prime}+k+m\right\rangle\right\rangle$ that cannot be further normalized if no smaller group of indices within $\left\langle\left\langle k^{\prime}+m^{\prime}+\right.\right.$ $k+m\rangle\rangle$ can be isolated that will add to zero. Most notably, $\langle\langle 2\rangle\rangle_{n \mid n}$ cannot be normalized further; it functions well as a stochastic variable, but it does not contain any "smaller" nontrivial stochastic variables. Additionally, there exist correlators with more than one way to normalize, or select stochastic variables. The actual selection of stochastic variables is arbitrary, and can be changed for each individual analysis. For example, we can find two possible selections of stochastic variables for $\left\langle\left\langle 2^{\prime}+3\right\rangle\right\rangle_{2^{\prime}, 2,1 \mid 3^{\prime}, 2}$, although the raw moment will return the same value for each, the meaning of $\left\langle\left\langle 2^{\prime}+3\right\rangle\right\rangle$ will change based on normalization:

$$
\begin{align*}
& \frac{\left\langle\left\langle 2^{\prime}+3\right\rangle\right\rangle_{1,2^{\prime}, 2 \mid 2,3^{\prime}}}{\left\langle\left\langle 1^{\prime}+1\right\rangle\right\rangle_{2^{\prime} \mid 2}\left\langle\left\langle 1^{\prime}+2\right\rangle\right\rangle_{1,2 \mid 3^{\prime}}}=N \mu_{1,1}\left(\left(V_{2}^{\prime} V_{2}^{*}\right),\left(V_{3}^{\prime *} V_{2} V_{1}\right)\right), \tag{33}\\
& \frac{\left\langle\left\langle 2^{\prime}+3\right\rangle\right\rangle_{1,2^{\prime}, 2 \mid 2,3^{\prime}}}{\langle\langle 2\rangle\rangle_{2 \mid 2}\left\langle\left\langle 2^{\prime}+1\right\rangle\right\rangle_{1,2^{\prime} \mid 3^{\prime}}}=N \mu_{1,1}\left(v_{2}^{2},\left(V_{3}^{\prime *} V_{2}^{\prime} V_{1}\right)\right), \tag{34}
\end{align*}
$$

where we see that the raw moment is valid according to Eq. (14), and likewise $2=2,2+1=3$ ensuring that the stochastic variables are nontrivial. In the top equation, stochastic variables are selected to examine the correlation between $V_{2}^{\prime} V_{2}^{*}$ and $V_{3}^{\prime *} V_{2} V_{1}$, which has greater sensitivity to the difference between Ψ_{2} and Ψ_{2}^{\prime} than the quantities in the bottom equation: v_{2}^{2}, and $V_{3}^{\prime} V_{2}^{\prime} V_{1}$. A more intentional choice of stochastic variables and harmonics can prove useful for explicitly isolating correlation and decorrelation between
event planes. This can be seen clearly when considering fourparticle correlators that share the same harmonic:

$$
\begin{gather*}
\left\langle\left\langle 2^{\prime}+2\right\rangle\right\rangle_{2^{\prime}, 2 \mid 2^{\prime}, 2}=\mu_{1,1}\left(v_{2}^{\prime 2}, v_{2}^{2}\right), \tag{35}\\
\left\langle\left\langle 2^{\prime}+2\right\rangle\right\rangle_{2^{\prime}, 2^{\prime} \mid 2,2}=\mu_{2}\left[v_{2}^{\prime} v_{2} \cos 4\left(\Psi_{2}^{\prime}-\Psi_{2}\right)\right], \tag{36}
\end{gather*}
$$

where, in the first case, the stochastic variables must be $v_{2}{ }^{2}$ and ${v_{2}^{\prime}}_{2}^{2}$ because in order to satisfy Eq. (14) the POI and reference harmonics $\left(n^{\prime}, n\right)$ add to zero separately: $2^{\prime}+\left(-2^{\prime}\right)=$ $0=2+(-2)$. Likewise, in the second case, the stochastic variable must be $v_{2}^{\prime} v_{2} \cos 2\left(\Psi_{2}^{\prime}-\Psi_{2}\right)$ because the only groups of harmonics that add to zero are $2^{\prime}+(-2)=0$, which is included twice. It is clear from the above equation that changing the position of 2 and 2^{\prime} relative to the bar allows us either to create a moment sensitive to the covariance in the magnitudes of V_{2} and V_{2}^{\prime}, or to create a moment sensitive to the variance of the dot product of these vectors., $V_{2}^{\prime} V_{2}^{*}$, a quantity that is strongly sensitive to $\Psi_{2}^{\prime}-\Psi_{2}$, the difference in angle between the differential event plane, and the reference particle event plane. ${ }^{1}$ Choices of this nature have been instrumental in isolating dependence on the angular fluctuations between event-plane angles for reference particles and POI [44,46,73,90,91] or to exclude event-plane dependence and analyze exclusively the magnitude fluctuations between POIs and reference v_{n} and v_{n}^{\prime} coefficients [68].

D. Relation to existing observables

Common observables measured in heavy ion collisions are two-particle correlations used to estimate v_{n} and v_{n}^{\prime}. These can be easily recovered within the framework of POI correlators and raw moments defined in this section. The two-particle correlation to measure v_{n} is defined in Ref. [6] as

$$
\begin{equation*}
\left(v_{n}\{2\}\right)^{2}=\langle\langle 2\rangle\rangle_{n \mid n}=\left\langle v_{n}^{2}\right\rangle, \tag{37}
\end{equation*}
$$

where $\{2\}$ indicates a two-particle estimate for v_{n}. Likewise, a two-particle estimate for v_{n}^{\prime} can be defined using a similar two-particle correlation, but one reference particle index with a POI index:

$$
\begin{gather*}
v_{n}^{\prime}\{2\}=\frac{\left\langle\left\langle 1^{\prime}+1\right\rangle\right\rangle_{n^{\prime} \mid n}}{\sqrt{\langle\langle 2\rangle\rangle_{n \mid n}}}=\frac{\left\langle V_{n}^{\prime} V_{n}^{*}\right\rangle}{\sqrt{\left\langle v_{n}^{2}\right\rangle}} \approx\left\langle v_{n}^{\prime}\right\rangle, \tag{38}\\
v_{n}^{\prime}\{2\} v_{n}\{2\}=\left\langle\left\langle 1^{\prime}+1\right\rangle\right\rangle_{n^{\prime} \mid n}=\left\langle V_{n}^{\prime} V_{n}^{*}\right\rangle, \tag{39}
\end{gather*}
$$

where the approximation in Eq. (38) is valid in the limit that $\Psi_{n}^{\prime}=\Psi_{n}$. More complicated v_{n}^{\prime} and v_{n} cumulants require sums of more specific correlations and will be used to motivate more general cumulants in Sec. III B.

[^1]
III. DIFFERENTIAL MOMENTS AND CUMULANTS

A. Fluctuations

An important reason for studying fluctuations in v_{n} and related observables in heavy ion collisions is to measure event-by-event fluctuations in the initial geometry of the collision [75] and in the shape of the resulting QGP. Measuring the fluctuations of v_{n}^{\prime} for various probes, and relating them to fluctuations in v_{n} will provide information about the sensitivity of these probes to the path length they travel through the QGP-and how fluctuations in their path length produce fluctuations in their own abundance, angular distribution, and energy.

If there were no statistical limitations, one could simply analyze the similarities in the probability distributions $p\left(v_{n}\right)$ and $p\left(v_{n}^{\prime}\right)$. For the azimuthal anisotropy of reference particles, the distribution $p\left(v_{n}\right)$ has been studied and compared with existing parametrizations for initial-state anisotropy [79]. In general, we expect the event-by-event distribution for differential azimuthal anisotropies, $p\left(v_{n}^{\prime}\right)$ to be different from the event-by-event distribution of reference Fourier coefficients $p\left(v_{n}\right)$: we expect both the means and relative fluctuations to be different between $p\left(v_{n}\right)$ and $p\left(v_{n}^{\prime}\right)$. While there may not be sufficient particles of interest to approximate an event-by-event distribution for $p\left(v_{n}^{\prime}\right)$, measuring raw moments constrain the distribution $p\left(v_{n}^{\prime}\right)$ and can also measure angle and magnitude correlations between v_{n}^{\prime} and v_{n} [68]. Both of these correlations can be used to understand the path-length dependence of energy loss.

While the raw moments as described above can help approximate correlations and constrain distributions, they can be combined into functions with more interpretive value. A measurement of the raw moment $\mu_{\nu_{1}, \ldots, \nu_{n}}\left(X_{1}, \ldots, X_{n}\right)$ still retains some dependence on smaller moments $\mu_{\tilde{v_{1}}, \ldots, \tilde{v}_{n}}\left(X_{1}, \ldots, X_{n}\right)$, where $\tilde{v}_{i} \leqslant v_{i}$. To isolate the genuine contribution of order ν_{i} for each stochastic variables X_{i} to a joint distribution $F\left(X_{1}, \ldots, X_{n}\right)$, we use functions of the raw moments to construct cumulants according to the generating functions used in Refs. [6,72], and the cumulant formalism introduced in Ref. [73]. Additionally, we introduce central moments that can be used to discern correlations between the "spread" or distance from the mean between different stochastic variables.

B. Generating function cumulants

In Refs. [5,6], a set of cumulants for estimating v_{n} and its fluctuations are defined using a unique generating function. Aside from the prevalence of these cumulants in literature, and well understood measurements $[16,66,90]$, a benefit of using these "generating function cumulants" is that they estimate the mean and fluctuations for various powers of v_{n}, and v_{n}^{\prime}, while suppressing sensitivity to nonflow contributions. These cumulants are derived from a generating function following the formalism outlined by Kubo in Ref. [92], although they do not meet some of the convenient properties for cumulants specified in Ref. [92] (specifically the properties of statistical independence, reduction, semi-invariance, and homogeneity [8,73]). However, cumulants derived from these generating functions have been used effectively for the estimation of
v_{n}, v_{n}^{\prime}, and their fluctuations in experimental and theoretical contexts [66,75,78]. Moreover, in Ref. [73], the authors recommend the continued study of generating function cumulants, under the understanding that these quantities are not true statistical cumulants according to the formalism introduced in Ref. [92]. The evaluation of generating functions using a higher number of POI angles as defined in this section can allow for an easy comparison with existing results for reference particles. Finally, the generating function cumulants defined here are the primary quantities which we discuss that can be interchanged to approximate v_{n}^{\prime} directly, or approximate correlations between v_{n}^{\prime} and v_{n}.

The cumulants of any distribution are defined as coefficients in the Taylor expansion of the multivariate moment generating function around $z=0$, for some complex variable z. For azimuthal angles in heavy ion collisions, the generating function below [93] was used as a moment-generating function to obtain cumulants:

$$
\begin{equation*}
G_{n}(z)=\left\langle\prod_{j=1}^{M}\left(1+z^{*} e^{i n \phi_{j}}+z e^{-i n \phi_{j}}\right)\right\rangle \tag{40}
\end{equation*}
$$

where ϕ_{j} corresponds to the j th reference particle angle of M reference particles produced in an event. Taking the event-byevent average $\left\langle G_{n}(z)\right\rangle$:

$$
\begin{align*}
\left\langle G_{n}(z)\right\rangle= & \sum_{k=0}^{M / 2} \frac{|z|^{2 k}}{M^{2 k}}\binom{M}{k}\binom{M-k}{k} \\
& \times\left\langle\left\langle e^{i n\left(\phi_{1}+\cdots+\phi_{k}-\phi_{k+1}-\cdots-\phi_{2 k}\right)}\right\rangle\right\rangle \tag{41}
\end{align*}
$$

generates every possible combination of correlations between reference particle angles of a given order when expanded.

The cumulant-generating function $\mathcal{C}_{n}(z)$ and differential cumulant-generating function $\mathcal{D}_{p / n}(z)$ are defined in reference to $G_{n}(z)[5,6] . \mathcal{C}_{n}(z)$ is used to estimate univariate generating function cumulants for v_{n} at different powers:

$$
\begin{equation*}
C_{n}(z)=\ln \left(\left\langle G_{n}(z)\right\rangle\right), \tag{42}
\end{equation*}
$$

where, for fixed multiplicity M in the limit of $M \gg$ 1, we see that the above yields approximately $\mathcal{C}_{n}(z) \equiv$ $M\left[\left\langle\left\langle G_{n}(z)\right\rangle\right\rangle^{1 / M}-1\right]$, as described in Refs. [6,85]. The cumulant-generating function approximating the natural log of the moment-generating function is a result fundamental to the definition of multivariate cumulants. In the differential regime, $\mathcal{D}_{p / n}(z)$ is used to estimate v_{p}^{\prime} for particles of interest:

$$
\begin{equation*}
\mathcal{D}_{p / n}(z) \equiv \frac{\left\langle e^{i p \psi} G_{n}(z)\right\rangle}{\left\langle G_{n}(z)\right\rangle} \tag{43}
\end{equation*}
$$

where we see that $\mathcal{D}_{p / n}(z)$ represents the event-by-event correlation between POI angles and $G_{n}(z)$. To calculate the cumulants, the generating functions can be decomposed into a power series of correlators and powers of z and z^{*}, as shown below:

$$
\begin{equation*}
\left.\mathcal{C}_{n}(z)=\sum_{k, m} \frac{z^{* k} z^{m}}{k!m!}\langle\langle k+m\rangle\rangle_{\underbrace{n, \ldots, n}_{k}} \right\rvert\, \underbrace{n, \ldots, n}_{m} . \tag{44}
\end{equation*}
$$

Likewise, differential cumulants can be expressed as a power series in z and z^{*}, with slightly different angular
correlations:

$$
\begin{equation*}
\left.\mathcal{D}_{p / n}(z)=\sum_{k, m} \frac{z^{* k} z^{m}}{k!m!}\left\langle\left\langle 1^{\prime}+k+m\right\rangle\right\rangle_{p^{\prime},} \underbrace{n, \ldots, n}_{k} \right\rvert\, \underbrace{n, \ldots, n}_{m}, \tag{45}
\end{equation*}
$$

where the averaged quantities $\langle\rangle\rangle$ are simply raw moments defined in Eq. (21). Correlators where $k \neq m$ are isotropic and average to zero for $\mathcal{C}_{n}(z)$, so we only consider the case when $m=k$. Matching orders in $|z|^{2}$ between Eqs. (42) and (44) give the expression for the cumulant $c_{n}\{2 k\}$ in terms of the correlators defined in the previous section. For example, we can see easily from Eq. (44) that the correlator of first order in $|z|^{2}$ is simply

$$
\begin{equation*}
c_{n}\{2\}=\left\langle\left\langle e^{i n\left(\phi_{1}-\phi_{2}\right)}\right\rangle\right\rangle=\left\langle v_{n}^{2}\right\rangle, \tag{46}
\end{equation*}
$$

which is the two-particle correlation from Eq. (37). The representations of generating function cumulants for up to 14 particles ($k=m=7$) can be found in Ref. [72]. Likewise, differential correlators where $m-k \neq p$ also average to zero. Again, by matching orders of $|z|^{2}$ between Eqs. (43) and (45) it is possible to construct the "differential cumulants" $d_{n}\{m+k+1\}$.

Here, we propose cumulant generating functions for differential cumulants with two, and arbitrary POI dependence, respectively. These generating functions produce cumulants with a dependence on angle tuples with a set number of POI angles and an arbitrary number of reference particle angles. The two POI differential cumulant $\mathcal{F}_{p / n}(z)$ is defined similarly to $\mathcal{D}_{p / n}(z)$ but correlates $G_{n}(z)$ with a pair of POI angles,

$$
\begin{equation*}
\mathcal{F}_{p / n}(z)=\frac{\left\langle e^{i p\left(\psi_{1}-\psi_{2}\right)} G_{n}(z)\right\rangle}{\left\langle G_{n}(z)\right\rangle} \tag{47}
\end{equation*}
$$

where ψ_{1}, ψ_{2} are POI angles with index 1 and 2 , similar to ϕ_{1}, ϕ_{2} from Eq. (41). For generating function cumulants that correlate arbitrary numbers of POI and reference angles both positively k^{\prime} and negatively m^{\prime}, we can define a more general differential cumulant generating function:

$$
\begin{equation*}
\mathcal{H}_{p / n}^{k^{\prime}, m^{\prime}}(z)=\frac{\left\langle e^{i p\left(\psi_{1}+\ldots+\psi_{k}^{\prime}-\psi_{k^{\prime}+1}-\ldots-\psi_{k^{\prime}+m^{\prime}}\right)} G_{n}(z)\right\rangle}{\left\langle G_{n}(z)\right\rangle} \tag{48}
\end{equation*}
$$

where k^{\prime} and m^{\prime} continue to indicate the number of separate positive and negative indices for POI angles. Note that $\mathcal{F}_{p / n}(z)$ is just a special case of $\mathcal{H}_{p / n}^{1,1}(z)$. These multidifferential cumulants can once again be expanded in terms of joint differential moments, just as was seen for $\mathcal{D}_{n}(z)$ and $\mathcal{C}_{n}(z)$:

$$
\begin{equation*}
\mathcal{F}_{p / n}(z) \equiv \sum_{k, m} \frac{z^{* k} z^{m}}{k!m!}\left\langle\left\langle 2^{\prime}+k+m\right\rangle\right\rangle_{p^{\prime}}, \underbrace{n, \ldots, n}_{k} \mid p^{\prime}, \underbrace{n, \ldots, n}_{m}, \tag{49}
\end{equation*}
$$

and

$$
\begin{align*}
\mathcal{H}_{p / n}^{k^{\prime}, m^{\prime}}(z) \equiv & \sum_{k, m} \frac{z^{* k} z^{m}}{k!m!}\left\langle\left\langle k^{\prime}+m^{\prime}+k\right.\right. \\
& +m\rangle\rangle \underbrace{p^{\prime}, \ldots, p^{\prime}}_{k^{\prime}}, \underbrace{n, \ldots, n}_{k} \mid \underbrace{p^{\prime}, \ldots, p^{\prime}}_{m^{\prime}}, \underbrace{n, \ldots, n}_{m}, \tag{50}
\end{align*}
$$

where we can see each raw moment used in the definitions of $\mathcal{F}_{p / n}(z)$ correlates pairs of POI angles, and the raw moments defining $\mathcal{H}_{p / n}^{k^{\prime}, m^{\prime}}(z)$ rely on $k^{\prime}+m^{\prime}$ POI angles. By matching orders in $\left|z^{2}\right|$, just as was done for $\mathcal{C}_{n}(z)$ and $\mathcal{D}_{p / n}(z)$, we can obtain an expression for the cumulants $f_{p / n}\left\{k^{\prime}+m^{\prime}+k+m\right\}$ and $h_{p / n}^{k^{\prime}, m^{\prime}}\left\{k^{\prime}+m^{\prime}+k+m\right\}$ generated by $\mathcal{F}_{n}(z)$ and $\mathcal{H}_{p / n}^{k^{\prime}, m^{\prime}}(z)$, using correlators. Again, for $\mathcal{F}_{n}(z)$ we require that $k=m$. For $\mathcal{H}_{n}^{k^{\prime}, m^{\prime}}(z)$ we require that $k-m=m^{\prime}-k^{\prime}$ to ensure that the quantity is not isotropic, because in general we will not have the same number of positively and negatively correlated POI angles. The first few orders are shown below for $\mathcal{F}_{n / n}(z)$:

$$
\begin{equation*}
f_{n}\{2\}=\left\langle\left\langle 2^{\prime}\right\rangle\right\rangle_{n^{\prime} \mid n^{\prime}}, \tag{51}
\end{equation*}
$$

where the two-particle generating function cumulant is simply a two-particle correlation using only POI. The higher orders are more complicated:

$$
\begin{equation*}
f_{n}\{4\}=\left\langle\left\langle 2^{\prime}+2\right\rangle\right\rangle_{n, n^{\prime} \mid n, n^{\prime}}-\left\langle\left\langle 1^{\prime}+1^{\prime}\right\rangle\right\rangle_{n^{\prime} \mid n^{\prime}}\langle\langle 1+1\rangle\rangle_{n \mid n} \tag{52}
\end{equation*}
$$

and

$$
\begin{align*}
f_{n}\{6\}= & \left\langle\left\langle 2^{\prime}+4\right\rangle\right\rangle_{n^{\prime}, n, n, n, n, n^{\prime}}-4\left\langle\left\langle 2^{\prime}+2\right\rangle\right\rangle_{n^{\prime}, n \mid n, n^{\prime}}\langle\langle 1+1\rangle\rangle_{n \mid n} \\
& +4\left\langle\left\langle 1^{\prime}+1^{\prime}\right\rangle\right\rangle_{n^{\prime} \mid n^{\prime}}\langle\langle 1+1\rangle\rangle_{n \mid n}^{2} \\
& -\left\langle\left\langle 1^{\prime}+1^{\prime}\right\rangle\right\rangle_{n^{\prime} \mid n^{\prime}}\langle\langle 2+2\rangle\rangle_{n, n \mid n, n} \tag{53}
\end{align*}
$$

We can see that, in each equation, each term depends on a correlator with two POI angles. Also note that for each term, the number of particles correlated in each correlator sum to the order: for $f_{n}\{6\}$, each term has either a six particle correlator, a product of a two-particle correlator and four-particle correlator, or a product of three two-particle correlators. This is consistent with existing cumulants for reference flow and differential flow using up to one POI [6]. Given k^{\prime} and m^{\prime} positive and negative separate indices for POI angles, we can evaluate $\mathcal{H}_{p / n}^{k^{\prime}, m^{\prime}}(z)$ in much the same way, by matching terms in the power series expansion of Eqs. (48) and (50).

The coefficients found when evaluating $f_{n}\left\{k^{\prime}+m^{\prime}+k+\right.$ $m\}$ at different orders in Eq. (51) correspond exactly to coefficients in the multivariate harmonic cumulants in Ref. [72], which use generating function cumulants to correlate v_{n} and v_{m}. An area for further study would be to construct generating function cumulants to measure arbitrary powers of v_{n} and v_{n}^{\prime} in different harmonics, using the full generality of the correlators defined in Eq. (21).

Now that the evaluation of generating function cumulants $f_{p / n}\left\{k^{\prime}+m^{\prime}+k+m\right\}$ or $h_{p / n}^{k^{\prime}, m^{\prime}}\left\{k^{\prime}+m^{\prime}+k+m\right\}$ at each order in terms of raw moments is clear, we show how $f_{p / n}\left\{k^{\prime}+\right.$ $\left.m^{\prime}+k+m\right\}$ and $h_{p / n}^{k^{\prime}, m^{\prime}}\left\{k^{\prime}+m^{\prime}+k+m\right\}$ relate to v_{n} and v_{n}^{\prime}, and their fluctuations. Using the method in Refs. [6,94], we calculate the contribution from v_{n} and v_{p}^{\prime} to the values of the $f_{n}\left\{k^{\prime}+m^{\prime}+k+m\right\}$ cumulants. First, we define notation, in which $\left.\langle x\rangle\right|_{\Phi_{n}}$ indicates the average of x in all events with reaction plane angle Φ_{n}. While the plane cannot be measured, we simply used it as a placeholder, varying between zero and 2π :

$$
\begin{equation*}
\left.\langle x\rangle \equiv \frac{1}{2 \pi} \int_{0}^{2 \pi / n}\langle x\rangle\right|_{\Phi_{n}} d \Phi_{n} \tag{54}
\end{equation*}
$$

indicating the average value of quantity x at angle Φ_{n} before integrating around the entire transverse plane [24]. We now use this convention to express v_{n} and $v_{p / n}^{\prime}$ in the equation below: ${ }^{2}$

$$
\begin{align*}
\left.\left\langle e^{i n \phi}\right\rangle\right|_{\Phi_{n}} & =\left.\left\langle e^{i n\left(\phi-\Phi_{n}\right)}\right\rangle\right|_{\Phi_{n}} e^{i n \Phi_{n}}=v_{n} e^{i n \Phi_{n}}, \tag{55}\\
\left.\left\langle e^{i p \psi}\right\rangle\right|_{\Phi_{n}} & =\left.\left\langle e^{i p\left(\psi-\Phi_{n}\right)}\right\rangle\right|_{\Phi_{n}} e^{i n \Phi_{n}}=v_{n}^{\prime} e^{i n \Phi_{n}} \tag{56}
\end{align*}
$$

where we consider integrating around the event plane to be approximately equivalent to an average taken over all particle angles. Using this notation, we examine $\left\langle e^{i p\left(\psi_{1}-\psi_{2}\right)} G_{n}(z)\right\rangle$, and $\left\langle G_{n}(z)\right\rangle$ to evaluate $\mathcal{F}_{p / n}(z)$ with the same method as [94], by decomposing \rangle into an integral:

$$
\begin{align*}
\mathcal{F}_{p / n}(z) & =\frac{\left\langle e^{i p\left(\psi_{1}-\psi_{2}\right)} G_{n}(z)\right\rangle}{\left\langle G_{n}(z)\right\rangle} \\
& =\frac{\left.\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle e^{i p\left(\psi_{1}-\psi_{2}\right)} G_{n}(z)\right\rangle\right|_{\Phi_{n}} d \Phi_{n}}{\left\langle G_{n}(z)\right\rangle} \tag{57}
\end{align*}
$$

We now use Eq. (54) to substitute in $\pm e^{i p \Psi_{n}}$, which immediately cancels, allowing us to remove $\left|v_{p / n}^{\prime}\right|^{2}$ from the numerator. This shows that the power series expansion in z^{2} of $\mathcal{F}_{p / n}$ approximates $\left|v_{p / n}^{\prime}\right|^{2}$:

$$
\begin{gather*}
\frac{\left.\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle e^{i p\left(\psi_{1}-\psi_{2}\right)} G_{n}(z)\right\rangle\right|_{\Phi_{n}} d \Phi_{n}}{\left\langle G_{n}(z)\right\rangle} \\
=\frac{\left.\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle e^{i p\left(\psi_{1}-\Phi_{n}+\Phi_{n}-\psi_{2}\right)} G_{n}(z)\right\rangle\right|_{\Phi_{n}} d \Phi_{n}}{\left\langle G_{n}(z)\right\rangle}, \tag{58}\\
\mathcal{F}_{p / n}(z)=\frac{\left.\frac{v_{p / n}^{\prime} v_{p / n}^{*}}{2 \pi} \int_{0}^{2 \pi}\left\langle G_{n}(z)\right\rangle\right|_{\Phi_{n}^{\prime}} d \Phi_{n}^{\prime}}{\left\langle G_{n}(z)\right\rangle} \\
=\frac{\left|v_{p / n}^{\prime}\right|^{2}\left\langle G_{n}(z)\right\rangle}{\left\langle G_{n}(z)\right\rangle}=v_{p / n}^{\prime}{ }^{2}, \tag{59}
\end{gather*}
$$

where the above displays consistency with cumulant estimates from $\mathcal{H}_{p / n}^{k^{\prime}, m^{\prime}}(z)$, which will give values of $\left|v_{p / n}^{\prime}\right|^{k^{\prime}+m^{\prime}}\left|v_{n}\right|^{k+m}$, with varying accuracy depending on the values of $k^{\prime}, m^{\prime}, k$, m and the multiplicity of particles in the events being used. An explicit calculation of the contribution is performed in Appendix C.

Now that we have established $\mathcal{F}(z)=\left|v_{p / n}^{\prime}\right|^{2}$, we can see it has no z dependence, indicating that, aside from $f\{2\}$ (the zeroth order z contribution), the higher-order cumulants $f\left\{2^{\prime}+2 k\right\}$ do not scale with $v_{n}^{\prime 2}$, and instead measure corrections to $\mathcal{F}_{p / n}$ that come from the correlations between $v_{n}^{\prime 2}$ and v_{n}^{2}. This is not surprising, when considering that $f_{p / n}\{4\}$ is a SC. While $f_{p / n}\left\{2^{\prime}+2 k\right\}$ does not scale with $v_{n}^{\prime 2}$ beyond $f\{2\}$, different scaling behavior can be selected with different values

[^2]for $k^{\prime}, m^{\prime}, k$, and m for $\mathcal{H}_{k, m}^{k^{\prime}, m^{\prime}}$, which is further explained in Appendix C.

C. Symmetric and asymmetric cumulants

Symmetric and asymmetric cumulants (ASCs) are statistical quantities used to correlate different even powers of v_{n} and v_{m}, the azimuthal anisotropies of reference particles at different orders $[8,73]$. These quantities obey a number of fundamental properties as defined in Refs. [73,92], and, thus, meet the rigorous mathematical definition of a cumulant for the variables v_{n}^{2} and v_{m}^{2}. The simplest quantity of this form, the SC, is already described in Eq. (26).

Cumulants of a set of stochastic variables X_{1}, \ldots, X_{n} isolate the "genuine" correlation between the variables, subtracting correlations between each subset of the stochastic variables, as well as the product of the variables. SC is widely used to measure the correlation between v_{n}^{2} and v_{m}^{2}, and ASC extends the framework of SC to measure the correlations between larger sets of Fourier harmonics $v_{n_{1}}^{2} \ldots v_{n_{l}}^{2}$, or higher orders of dependence, measuring, for example, the correlations between $\left(v_{n}^{2}\right)^{3}$ and v_{m}^{2}.

We generalize the framework of ASC and SC to define cumulants for a selection of arbitrary variables X_{1}, \ldots, X_{n} as in Sec. II C, which each may contain arbitrarily many POI. We show these cumulants are consistent with the existing ASC and SC and demonstrate how they can be used to interpret correlations and fluctuations in v_{n}^{\prime}.

A multivariate cumulant can be expressed as a set of derivatives of the cumulant generating function of a multivariate distribution with probability density $P\left(X_{1}, \ldots, X_{n}\right)$:

$$
\begin{align*}
& C\left(\xi_{1}, \ldots, \xi_{n}\right) \\
& \quad=\ln \left(\int e^{\left(\xi_{1} X_{1}+\ldots+\xi_{n} X_{n}\right)} P\left(X_{1}, \ldots, X_{n}\right) d x_{1} \ldots d x_{n}\right) \tag{60}
\end{align*}
$$

where $C\left(\xi_{1}, \ldots, \xi_{n}\right)$ is the generating function of a multivariate distribution, with dummy variables ξ_{1}, \ldots, ξ_{n}, and stochastic variables X_{1}, \ldots, X_{n}. Taylor expanding the cumulant generating function around $\xi_{1}=\ldots=\xi_{n}=0$ yields the cumulants

$$
\begin{equation*}
\kappa_{\nu_{1}, \ldots, \nu_{m}}=\left.\frac{\partial^{v_{1}}}{\partial \xi_{1}^{v_{1}}} \cdots \frac{\partial^{v_{m}}}{\partial \xi_{m}^{v_{m}}} \ln \left\langle\exp \left(\sum_{j} \xi_{j} X_{j}\right)\right\rangle\right|_{\xi_{1}=\xi_{2}=\cdots=\xi_{m}=0} \tag{61}
\end{equation*}
$$

where the integral in Eq. (60) is replaced with an expectation value.

Moreover, it is shown in Ref. [92] that cumulants can be written as a function of raw moments as follows:

$$
\begin{align*}
& \kappa_{1, \ldots, 1}\left(X_{1}, \ldots, X_{m}\right) \\
& \quad=\sum_{l=1}^{P_{m}}(|l|-1)!(-1)^{|l|-1} \sum_{B \in P_{m},|B|=l}\left\langle\prod_{i \in B} X_{i}\right\rangle, \tag{62}
\end{align*}
$$

where P_{m} is the set of all partitions ${ }^{3}$ of a subset of integers $\{1, \ldots, m\}$. While it is hard to grasp intuitively

[^3]from the above equation, the cumulant $k_{\nu_{1}, \ldots, \nu_{n}}\left(X_{1}, \ldots, X_{n}\right)$ represents the subtraction of every "smaller" correlation between subsets of variables $X_{i_{1}}, \ldots X_{i_{\bar{n}}}$ from the raw moment $\mu_{\nu_{1}, \ldots, \nu_{n}}\left(X_{1}, \ldots, X_{n}\right)$.

Using Eq. (62), the first few cumulants can be calculated easily, although it becomes significantly more difficult at higher orders. We start with $\{1,2\}$:

$$
\begin{gather*}
P_{2}=\{\underbrace{\{\{1\},\{2\}\}}_{B_{1}}, \underbrace{\{1,2\}}_{B_{2}}\}, \tag{63}\\
\kappa_{1,1}(X, Y)=\langle X Y\rangle-\langle X\rangle\langle Y\rangle, \tag{64}
\end{gather*}
$$

and then form $\{1,2,3\}$:

$$
\begin{gather*}
P_{3}=\{\underbrace{\{\{1\},\{2\},\{3\}\}}_{B_{1}}, \underbrace{\{1,2\}\{3\}}_{B_{2}}, \underbrace{\{1,3\}\{2\}}_{B_{3}}, \underbrace{\{2,3\}}_{B_{4}}\{1\}, \underbrace{\{1,2,3\}}_{B_{5}}\}, \tag{65}\\
\kappa_{1,1,1}(X, Y, Z)= \\
 \tag{66}\\
-\langle X Y Z\rangle-\langle X Y\rangle\langle Z\rangle-\langle X Z\rangle\langle Y\rangle \\
-\langle Z Y\rangle\langle X\rangle+2\langle X\rangle\langle Y\rangle\langle Z\rangle,
\end{gather*}
$$

where $\kappa_{1,1}$ is an example of a SC and $\kappa_{1,1,1}$ is an example of a ASC. In these equations we first compute the possible partitions that can be created with the sets $\{1,2\}$ and $\{1,2,3\}$. Then we evaluate the summation in Eq. (62). The above relations can quickly be used to create cumulants of higher orders for specific variables because cumulants demonstrate reduction, allowing the variables in Eq. (62) to be interchanged and duplicated, e.g.,

$$
\begin{equation*}
\kappa_{1 \ldots 1}(\underbrace{X, \ldots, X}_{j}, \underbrace{Y, \ldots, Y}_{k})=\kappa_{j, k}(X, Y), \tag{67}
\end{equation*}
$$

as was shown in Refs. [73,92].
While Eq. (62) expresses how to define a cumulant with first-order dependence on n unique variables, we can see from this equation that if they are set equal $X_{1}=X_{2}=\ldots=X_{n}$, we will obtain an nth order cumulant in X_{n}. This is demonstrated for the cumulant $k_{2}(X)$:

$$
\begin{equation*}
\kappa_{1,1}(X, X)=\kappa_{2}(X)=\left\langle X^{2}\right\rangle-\langle X\rangle^{2} \tag{68}
\end{equation*}
$$

which can be compared with the result in Eq. (63). The coefficients obtained from the method for evaluating cumulants detailed in Eqs. (62)-(68) replicate the coefficients in the
$\{1, \ldots, m\}$ but which does not use the same element twice. Then index i is one "block" of the partition $B \in P_{m}$, a subset of $\{1, \ldots, m\}$. For example, given the set $\{1,2,3,4\}$, we have $\{\{2,3\},\{1\},\{4\}\}$ and $\{\{1,3,4\},\{2\}\}$ are partitions, but $\{\{2\},\{2,3,4\}\}$ is not a partition because 1 is not included in any subset, and 2 is used twice. For the partition $\{\{1,3,4\},\{2\}\}$, the blocks $i \in B$ a partition are simply the elements: $\{2\}$ and $\{1,3,4\}$. The expression $\left|P_{m}\right|$ refers to the cardinality of P_{m}; the total number of partitions for the set $\{1, \ldots, m\}$, while $|B|$ indicates the number of blocks in each partition $B \in P_{m}$. The summation $\sum B \in P_{m},|B|=l$ means that the summation is over all blocks in the partition which have l elements.
asymmetric cumulants defined in Ref. [73]. We can simply replace X, Y, Z with the same stochastic variables we could include in raw moments as defined in Sec. II C. It has been shown [92] that multivariate cumulants like those defined here can always be written as a function of raw multivariate moments. Furthermore, we can see that $\kappa_{\nu_{1}, \ldots, v_{m}}$ can be written as a function of raw moments of the same stochastic variables $\mu_{\nu_{1}, \ldots, v_{m}}$. To demonstrate how each cumulant can be written as a sum of raw moments, we present some lower order bivariate cumulants of v_{n}^{2} and $v_{n}^{\prime 2}$, and a trivariate cumulant in Eqs. (69)-(71), and Eq. (72), respectively:

$$
\begin{align*}
& \kappa_{1,1}\left(v_{n}^{2}, v_{n}^{\prime 2}\right)=\left\langle v_{n}^{2} v_{n}^{\prime 2}\right\rangle-\left\langle v_{n}^{2}\right\rangle\left\langle v_{n}^{\prime 2}\right\rangle, \tag{69}\\
& \kappa_{2,1}\left(v_{n}^{2}, v_{n}^{2}\right)=\left\langle v_{n}^{4} v_{n}^{\prime 2}\right\rangle-\left\langle v_{n}^{4}\right\rangle\left\langle v_{n}^{\prime 2}\right\rangle \\
& -2\left\langle v_{n}^{2} v_{n}^{\prime 2}\right\rangle\left\langle v_{n}^{2}\right\rangle+2\left\langle v_{n}^{2}\right\rangle^{2}\left\langle v_{n}^{\prime 2}\right\rangle, \tag{70}\\
& \kappa_{3,1}\left(v_{n}^{2}, v_{n}^{\prime 2}\right)=\left\langle v_{n}^{6} v_{n}^{2}\right\rangle-\left\langle v_{n}^{6}\right\rangle\left\langle v_{n}^{\prime 2}\right\rangle-3\left\langle v_{n}^{2} v_{n}^{\prime 2}\right\rangle\left\langle v_{n}^{4}\right\rangle \\
& -3\left\langle v_{n}^{4} v_{n}^{\prime 2}\right\rangle\left\langle v_{n}^{2}\right\rangle+6\left\langle v_{n}^{4}\right\rangle\left\langle v_{n}^{2}\right\rangle\left\langle v_{n}^{\prime 2}\right\rangle \\
& +6\left\langle v_{n}^{2} v_{n}^{\prime 2}\right\rangle\left\langle v_{n}^{2}\right\rangle^{2}-6\left\langle v_{n}^{2}\right\rangle^{3}\left\langle v_{n}^{\prime 2}\right\rangle, \tag{71}\\
& \kappa_{1,1,1}\left(v_{n}^{2}, v_{n}^{\prime 2}, v_{m}^{2}\right)=\left\langle v_{n}^{2} v_{m}^{2} v_{n}^{\prime 2}\right\rangle-\left\langle v_{n}^{2} v_{m}^{2}\right\rangle\left\langle v_{n}^{\prime 2}\right\rangle-\left\langle v_{m}^{2} v_{n}^{\prime 2}\right\rangle\left\langle v_{n}^{2}\right\rangle \\
& -\left\langle v_{n}^{2} v_{n}^{\prime 2}\right\rangle\left\langle v_{m}^{2}\right\rangle+2\left\langle v_{n}^{2}\right\rangle\left\langle v_{m}^{2}\right\rangle\left\langle v_{n}^{\prime 2}\right\rangle, \tag{72}
\end{align*}
$$

where, using Eq. (21), we can rewrite each average as expressed above $\left\langle v_{n}^{2 a}\left(v_{n}^{\prime}\right)^{2 b} v_{m}^{2 c}\right\rangle=\left\langle\left\langle 2 a^{\prime}+2 b+2 c\right\rangle\right\rangle_{n^{\prime}, n, m \mid n^{\prime}, n, m}$. Unsurprisingly, the bivariate asymmetric cumulant of first order in v_{n}^{2} and $v_{n}^{\prime 2}, \kappa_{1,1}\left(v_{n}^{2}, v_{n}^{\prime 2}\right)$, forms a symmetric cumulant, which has been well studied in Ref. [8].

Since cumulants can be written as sums of products of raw moments, they can also be be normalized according to the scheme introduced in Sec. II C:

$$
\begin{equation*}
N \kappa_{\nu_{1}, \ldots, \nu_{n}}\left(X_{1} \ldots X_{n}\right)=\frac{\kappa_{\nu_{1}, \ldots, v_{n}}\left(X_{1} \ldots X_{n}\right)}{\prod_{i}\left\langle X_{i}\right\rangle_{i}^{\nu}} \tag{73}
\end{equation*}
$$

and as a result, normalized cumulants $N \kappa_{\nu_{1}, \ldots, \nu_{m}}$ can be written a sum of normalized moments $N \mu_{\nu_{1}, \ldots, v_{m}}$. We show the normalization of $\kappa_{2,1}\left(v_{n}^{2}, v_{n}^{\prime 2}\right)$ using the stochastic variables $\left\langle v_{n}^{2}\right\rangle$ and $\left\langle v_{n}^{\prime 2}\right\rangle$, canceling redundant terms in each fraction:

$$
\begin{align*}
N \kappa_{2,1}\left(v_{n}^{2}, v_{n}^{\prime 2}\right)= & \frac{\left\langle v_{n}^{4} v_{n}^{\prime 2}\right\rangle}{\left\langle v_{n}^{2}\right\rangle^{2}\left\langle v_{n}^{\prime 2}\right\rangle}-\frac{\left\langle v_{n}^{4}\right\rangle}{\left\langle v_{n}^{2}\right\rangle^{2}}-2 \frac{\left\langle v_{n}^{2} v_{n}^{\prime 2}\right\rangle}{\left\langle v_{n}^{2}\right\rangle\left\langle v_{n}^{\prime 2}\right\rangle}+2, \tag{74}\\
= & N \mu_{2,1}\left(v_{n}^{2}, v_{n}^{\prime 2}\right)-N \mu_{2}\left(v_{n}^{2}\right) \\
& -2 N \mu_{1,1}\left(v_{n}^{2}, v_{n}^{\prime 2}\right)+2 \tag{75}
\end{align*}
$$

where it can be seen that we obtain a function of normalized moments, up to a constant +2 .

D. Central moments

Like cumulants, central moments also define measures of fluctuation of the distributions of X_{i}. Central moments in general do not obey reduction, a property of cumulants, but they are more straightforward to interpret: they correlate the distance from the mean ("spread") in a set of stochastic variables with the spread in each other stochastic variable. Their
interpretation has been studied often, as kurtosis, variance, and skewness are all central moments which are often used to describe properties of probability distributions.

Given nontrivial stochastic variables X_{1}, \ldots, X_{n} as described in Sec. II C, requiring each X_{i} to be some correlator $\left\langle k^{\prime}+m^{\prime}+k+m\right\rangle$ for which the harmonics that are correlated and anticorrelated cancel, the central moments for $X_{1} \ldots X_{n}$, are defined as follows:

$$
\begin{equation*}
\tilde{\mu}_{v_{1} \ldots, v_{n}}\left(X_{1} \ldots X_{n}\right) \equiv\left\langle\prod_{i=1}^{n}\left(X_{i}-\left\langle X_{i}\right\rangle\right)^{v_{i}}\right\rangle \tag{76}
\end{equation*}
$$

In general, these central moments can be expanded to functions of raw moments by using the multinomial theorem and the fact that $\langle X+c\rangle=\langle X\rangle+\langle c\rangle$. Applying the procedure to Eq. (76) gives the following:

$$
\begin{align*}
\tilde{\mu}_{v_{1}, \ldots, v_{n}}= & \left\langle\left(X_{1}-\left\langle X_{1}\right\rangle\right)^{\nu_{1}} \cdots\left(X_{n}-\left\langle X_{n}\right\rangle\right)^{\nu_{n}}\right\rangle \tag{77}\\
= & \sum_{s=0}^{\nu}\left(\sum_{s_{1}+\ldots+s_{n}=s}\binom{s}{s_{1}, \ldots, s_{n}}\left\langle X_{1}\right\rangle^{s_{1}}\right. \\
& \left.\times \cdots\left\langle X_{n}\right\rangle^{s_{n}}\left\langle X_{1}^{v_{1}-s_{1}} \cdots X_{n}^{v_{n}-s_{n}}\right\rangle\right), \tag{78}
\end{align*}
$$

where we define $\sum_{i} v_{i}=v$. The summation $\sum_{s_{1}+\ldots+s_{n}=s}$ is taken over every combination of positive integers s_{1}, \ldots, s_{n} such that $s_{1}+\cdots+s_{n}=s$, and $s_{i} \leqslant v_{i}$ for all $1 \leqslant i \leqslant n$. The result in Eq. (78) is obtained by expanding $\prod_{i}\left(X_{i}-\left\langle X_{i}\right\rangle\right)^{v_{i}}$ using multinomial theorem, before averaging the resulting quantity. In Sec. II, we explicitly write $\tilde{\mu}$ for $v=2$, 3, and 4 , for arbitrary random variables X, Y, Z, W. Since Eq. (78) allows us to express $\tilde{\mu}$ as a function of raw moments $\mu\left(X_{i}\right)$. Following the same methods used for raw moments and cumulants, we seek to evaluate correlations by normalizing these central moments. Since each central moment can be written as a function of raw moments, we can use the normalization scheme from Eq. (25) and normalize a central moment by dividing by the average of each stochastic variable X_{i} that it describes, ${ }^{4}$

$$
\begin{equation*}
N \tilde{\mu}_{v_{1} \ldots, v_{n}}\left(X_{1} \ldots X_{n}\right)=\frac{\tilde{\mu}_{\nu_{1} \ldots, v_{n}}\left(X_{1} \ldots X_{n}\right)}{\prod_{i=1}^{n}\left\langle X_{i}\right\rangle^{v_{i}}} \tag{79}
\end{equation*}
$$

[^4]where the stochastic variables X_{i} and their associated dependencies v_{i} are the same as in the definition of central moments in Eq. (76).

As an example of central moments, we express the multivariate central moments of order two in $V_{n}^{\prime} V_{n}^{*}$, and order $r=0,1,2$ in v_{n}^{2} :

$$
\begin{align*}
\tilde{\mu}_{2, r}\left(V_{n}^{\prime} V_{n}^{*}, v_{n}^{2}\right) & =\left\langle\left(V_{n}^{\prime} V_{n}^{*}-\left\langle V_{n}^{\prime} V_{n}^{*}\right\rangle\right)^{2}\left(v_{n}^{2}-\left\langle v_{n}^{2}\right\rangle\right)^{r}\right\rangle, \tag{80}\\
\tilde{\mu}_{2}\left(V_{n}^{\prime} V_{n}^{*}\right)= & \left\langle\left(V_{n}^{\prime} V_{n}^{*}\right)\right\rangle-\left\langle V_{n}^{\prime} V_{n}^{*}\right\rangle^{2}, \\
\tilde{\mu}_{2,1}\left(V_{n}^{\prime} V_{n}^{*}, v_{n}^{2}\right)= & \left\langle\left(V_{n}^{\prime} V_{n}^{*}\right)^{2} v_{n}^{2}\right\rangle-\left\langle v_{n}^{2}\right\rangle\left\langle\left(V_{n}^{\prime} V_{n}^{*}\right)^{2}\right\rangle \\
& -2\left\langle V_{n}^{\prime} V_{n}^{*}\right\rangle\left\langle V_{n}^{\prime} V_{n}^{*} v_{n}^{2}\right\rangle+2\left\langle v_{n}^{2}\right\rangle\left\langle V_{n}^{\prime} V_{n}^{*}\right\rangle^{2}, \\
\tilde{\mu}_{2,2}\left(V_{n}^{\prime} V_{n}^{*}, v_{n}^{2}\right)= & \left\langle\left(V_{n}^{\prime} V_{n}^{*}\right)^{2} v_{n}^{4}\right\rangle-2\left\langle v_{n}^{2}\right\rangle\left\langle\left(V_{n}^{\prime} V_{n}^{*}\right)^{2} v_{n}^{2}\right\rangle \\
& -2\left\langle V_{n}^{\prime} V_{n}^{*}\right\rangle\left\langle\left(V_{n}^{\prime} V_{n}^{*}\right) v_{n}^{4}\right\rangle+\left\langle v_{n}^{2}\right\rangle^{2}\left\langle\left(V_{n}^{\prime} V_{n}^{*}\right)^{2}\right\rangle \\
& +4\left\langle V_{n}^{\prime} V_{n}^{*}\right\rangle\left\langle v_{n}^{2}\right\rangle\left\langle\left(V_{n}^{\prime} V_{n}^{*}\right) v_{n}^{2}\right\rangle+\left\langle V_{n}^{\prime} V_{n}^{*}\right\rangle^{2}\left\langle v_{n}^{4}\right\rangle \\
& -3\left\langle V_{n}^{\prime} V_{n}^{*}\right\rangle^{2}\left\langle v_{n}^{2}\right\rangle^{2}, \tag{81}
\end{align*}
$$

where the above quantities correspond to the variance of $V_{n}^{\prime} V_{n}^{*}$ in the $r=0$ case, the extent to which a deviation from the mean of v_{n}^{2} is generally accompanied by a "squared" deviation from the mean of $V_{n}^{\prime} V_{n}^{*}$, in the $r=1$ case. Finally, in the $r=2$ case, $\tilde{\mu}\left(V_{n}^{\prime} V_{n}^{*}, v_{n}^{2}\right)_{2,2}$ represents the extent to which a squared deviation from the mean of v_{n}^{2} is accompanied by a squared deviation from the mean in $V_{n}^{\prime} V_{n}^{*}$.

While a measurement of a cumulant provides useful information about the various correlations between each stochastic variable, a measurement of $\tilde{\mu}$ by definition expresses how strongly a departure from the mean $\left\langle X_{i}\right\rangle$ is correlated to departures from the mean for other stochastic variables. This can be seen in the example above with $\tilde{\mu}_{2,1}$ and is a more traditional measure of fluctuation. While cumulants satisfy more mathematical properties, central moments also by definition include some mathematical properties that we outline in Appendix D. Additionally, in the univariate case, central moments like skewness and variance have already been used to study fluctuations in the distribution of $v_{n}[29,63]$.

IV. FUNCTIONS OF THE MOMENTS (Γ, ζ)

A. Motivation for Γ, ζ

When studying fluctuations in differential azimuthal anisotropy coefficients v_{n}^{\prime}, it can be helpful to make a comparison to reference azimuthal anisotropy fluctuations in v_{n} to understand their relative magnitudes. Since each central moment, cumulant, and generating function cumulant defined in this paper can be represented as a sum of products of raw moments, the difference between any cumulants or central moments that require the same number of particles in their largest correlator can be rewritten as a function of differences between raw moments that require the same number of particles. Central moments, and cumulants with order $v \leqslant 3$ are unique in that they can always be expressed as a product of correlations and the averages of stochastic variables, as expressed in Eqs. (77) and (78). This means, when normalized, they can always be written exclusively as a sum of normalized moments and constants. The difference between any two
central moments that require the same number of particles can likewise be decomposed into the differences of normalized raw moments, and possibly constants.

One example of this result comes from the comparison of two normalized six-particle central moments, of which one relies on six reference particles, and the other relies on four reference particles and two POIs:

$$
\begin{equation*}
N \tilde{\mu}_{3}\left(v_{n}^{2}\right)=\frac{\left\langle v_{n}^{6}\right\rangle}{\left\langle v_{n}^{2}\right\rangle^{3}}-3 \frac{\left\langle v_{n}^{4}\right\rangle}{\left\langle v_{n}^{2}\right\rangle^{2}}-2 \tag{82}
\end{equation*}
$$

where the above equation is the normalized third central moment for v_{n}^{2}, and the below equation has dependence on $V_{n}^{\prime} V_{n}^{*}$:

$$
\begin{align*}
N \tilde{\mu}_{2,1}\left(V_{n}^{\prime} V_{n}^{*}, v_{n}^{2}\right)= & \frac{\left\langle v_{n}^{2}\left(V_{n}^{\prime} V_{n}^{*}\right)^{2}\right\rangle}{\left\langle v_{n}^{2}\right\rangle\left\langle V_{n}^{\prime} V_{n}^{*}\right\rangle^{2}}-2 \frac{\left\langle v_{n}^{2} V_{n}^{\prime} V_{n}^{*}\right\rangle}{\left\langle v_{n}^{2}\right\rangle\left\langle V_{n}^{\prime} V_{n}\right\rangle} \\
& -\frac{\left\langle\left(V_{n}^{\prime} V_{n}^{*}\right)^{2}\right\rangle}{\left\langle V_{n}^{\prime} V_{n}^{*}\right\rangle^{2}}-2 \tag{83}
\end{align*}
$$

Clearly, both of the above central moments correlate the n order harmonics of six particles within an event, but $N \tilde{\mu}_{2,1}\left(V_{n}^{\prime} V_{n}^{*}, v_{n}^{2}\right)$ correlates deviations in v_{n}^{2} with squared deviations in $V_{n}^{\prime} V_{n}^{*}$, whereas $N \tilde{\mu}_{3}\left(v_{n}^{2}\right)$ simply measures a quantity similar to the skewness of v_{n}^{2}. A direct subtraction of these quantities yields the following:

$$
\begin{align*}
N \tilde{\mu}_{3}\left(v_{n}^{2}\right)-N \tilde{\mu}_{2,1}\left(V_{n}^{\prime} V_{n}^{*}, v_{n}^{2}\right)= & \left(\frac{\left\langle v_{n}^{6}\right\rangle}{\left\langle v_{n}^{2}\right\rangle^{3}}-\frac{\left\langle v_{n}^{2}\left(V_{n}^{\prime} V_{n}^{*}\right)^{2}\right\rangle}{\left\langle v_{n}^{2}\right\rangle\left\langle V_{n}^{\prime} V_{n}^{*}\right\rangle^{2}}\right) \\
& -2\left(\frac{\left\langle v_{n}^{4}\right\rangle}{\left\langle v_{n}^{2}\right\rangle^{2}}-\frac{\left\langle v_{n}^{2}\left(V_{n}^{\prime} V_{n}^{*}\right)\right\rangle}{\left\langle v_{n}^{2}\right\rangle\left\langle V_{n}^{\prime} V_{n}^{*}\right\rangle}\right) \\
& -\left(\frac{\left\langle v_{n}^{4}\right\rangle}{\left\langle v_{n}^{2}\right\rangle^{2}}-\frac{\left\langle\left(V_{n}^{\prime} V_{n}^{*}\right)^{2}\right\rangle}{\left\langle V_{n}^{\prime} V_{n}^{*}\right\rangle^{2}}\right) \tag{84}
\end{align*}
$$

which we can then write as a difference in normalized raw moments:

$$
\begin{align*}
& N \tilde{\mu}_{3}\left(v_{n}^{2}\right)-N \tilde{\mu}_{2,1}\left(V_{n}^{\prime} V_{n}^{*}, v_{n}^{2}\right) \\
&= {\left[N \mu_{3}\left(v_{n}^{2}\right)-N \mu_{2,1}\left(V_{n}^{\prime} V_{n}^{*}, v_{n}^{2}\right)\right] } \\
&-2\left[N \mu_{2}\left(v_{n}^{2}\right)-N \mu_{1,1}\left(V_{n}^{\prime} V_{n}^{*}, v_{n}^{2}\right)\right] \\
&-\left[N \mu_{2}\left(v_{n}^{2}\right)-N \mu_{2}\left(V_{n}^{\prime} V_{n}^{*}\right)\right] \tag{85}
\end{align*}
$$

We find that the difference in the normalized raw moments can easily be grouped by the number of particles required for each raw moment. Parentheses in the above equation separate pairs of raw moments containing six, four, and two particles.

Given two raw moments $\mu_{\nu_{1}, \ldots, \nu_{n}}\left(X_{1}, \ldots, X_{n}\right)$ and $\mu_{\nu_{1}, \ldots, v_{n}}\left(Y_{1}, \ldots, Y_{n}\right)$ where X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{n} are two sets of nontrivial stochastic variables described in Sec. II C, with the same dependence (coefficient v_{i}) for each stochastic variable X_{i} or Y_{i}, and differing dependence on v_{n}^{\prime}, we can determine the correlations between X_{1}, \ldots, X_{n}, and the correlations between Y_{1}, \ldots, Y_{n}, as well as remove scaling with $X_{i}^{\nu_{i}}$ by simply normalizing the moments. To compare the
normalized raw moments of X_{1}, \ldots, X_{n} with Y_{1}, \ldots, Y_{n}, we introduce Γ and ζ :

$$
\begin{align*}
& \quad \Gamma_{\nu_{1} \ldots v_{n}}\left(X_{1}, \ldots X_{n} ; Y_{1}, \ldots Y_{n}\right) \\
& \quad \equiv N \mu_{\nu_{1} \ldots v_{n}}\left(X_{1} \ldots X_{n}\right)-N \mu_{\nu_{1} \ldots v_{n}}\left(Y_{1} \ldots Y_{n}\right) \tag{86}\\
& \zeta_{\nu_{1} \ldots v_{n}}\left(X_{1}, \ldots X_{n} ; Y_{1}, \ldots Y_{n}\right) \equiv \frac{N \mu_{\nu_{1} \ldots v_{n}}\left(X_{1} \ldots X_{n}\right)}{N \mu_{v_{1} \ldots v_{n}}\left(Y_{1} \ldots Y_{n}\right)} \tag{87}
\end{align*}
$$

where Γ is the difference between normalized moments with the same dependence on $\left(X_{1}, \ldots, X_{n}\right)$ and $\left(Y_{1}, \ldots, Y_{n}\right)$, and ζ is the ratio between normalized moments with the same dependence on $\left(X_{1}, \ldots, X_{n}\right)$ and $\left(Y_{1}, \ldots, Y_{n}\right)$. Since fluctuations in stochastic variables $X_{1}, \ldots X_{n}$ and Y_{1}, \ldots, Y_{n} are measured by the normalized central moments, evaluating differences in central moments can describe the relative magnitude of fluctuations in Y_{1}, \ldots, Y_{n} relative to X_{1}, \ldots, X_{n}. By decomposing the central moments using the methods above, we can determine how much of the difference in fluctuations between Y_{1}, \ldots, Y_{n} and X_{1}, \ldots, X_{n} comes from correlations involving a specific number of particles. In the example in Eqs. (82)-(85) we can compare how two-particle correlations, four-particle correlations, and six-particle correlations all contribute to the difference between fluctuations isolated by $N \tilde{\mu}_{2,1}\left(V_{n}^{\prime} V_{n}^{*}, v_{n}^{2}\right)$ and $N \tilde{\mu}_{3}\left(v_{n}^{2}\right)$.

B. Applications of Γ and ζ

Already, there have been cases where Γ and ζ quantities have been studied. In Ref. [63], the quantity $\Delta^{s h}$ was derived and is equivalent to $\Delta^{s h}=\Gamma_{1,1}\left(v_{n}^{2}, v_{n}^{2} ; V_{n}^{\prime} V_{n}^{*}, v_{n}^{2}\right)$ in our notation. It was used to evaluate decorrelation and between v_{n} and v_{n}^{\prime} in hydrodynamical models to describe jet energy loss. This quantity can be expressed as

$$
\begin{equation*}
\Gamma_{1,1}\left(v_{n}^{2}, v_{n}^{2} ; V_{n}^{\prime} V_{n}^{*}, v_{n}^{2}\right)=\frac{\left\langle v_{n}^{4}\right\rangle}{\left\langle v_{n}^{2}\right\rangle^{2}}-\frac{\left\langle v_{n}^{2} V_{n}^{\prime} V_{n}^{*}\right\rangle}{\left\langle v_{n}^{2}\right\rangle\left\langle V_{n}^{\prime} V_{n}^{*}\right\rangle}, \tag{88}
\end{equation*}
$$

where we can see that a positive value for $\Gamma_{2 ; 1,1}\left(v_{n}^{2} ; V_{n}^{\prime} V_{n}^{*}, v_{n}^{2}\right)$ obtained in this context indicates that the correlations in magnitude between v_{n}^{2} and $V_{n}^{\prime} V_{n}^{*}$ are not as great as the contribution of v_{n}^{4} to the distribution $P\left(v_{n}^{4}\right)$, or essentially that $V_{n}^{\prime} V_{n}^{*}$ displays suppressed fluctuations around its mean compared with v_{n}^{2}. In this instance, using Γ to obtain a difference between these quantities allowed the authors to establish an absolute scale to compare the fluctuations in v_{n}^{\prime} and v_{n} for POIs at different values of p_{T} and using hydrodynamical models with different parameters.

Additionally, ALICE [68] developed the correlation M_{n}^{f} that is equivalent to $\zeta_{1,1}\left(v_{n}^{2}, v_{n}^{2} ; v_{n}^{\prime 2}, v_{n}^{2}\right)$ in our notation. It was used to measure correlations between the magnitudes of $v_{n}\left(p_{T}\right)$ and v_{n}, and is expressed below. Writing out $\zeta_{1,1}\left(v_{n}^{2}, v_{n}^{2} ; v_{n}^{\prime 2}, v_{n}^{2}\right)$,

$$
\begin{equation*}
\zeta_{1,1}\left(v_{n}^{2}, v_{n}^{2} ; v_{n}^{\prime 2}, v_{n}^{2}\right)=\frac{\left\langle v_{n}^{2} v_{n}^{\prime 2}\right\rangle}{\left\langle v_{n}^{2}\right\rangle\left\langle v_{n}^{\prime 2}\right\rangle} \frac{\left\langle v_{n}^{2}\right\rangle^{2}}{\left\langle v_{n}^{4}\right\rangle} \tag{89}
\end{equation*}
$$

where $\zeta_{1,1}\left(v_{n}^{2}, v_{n}^{2} ; v_{n}^{\prime 2}, v_{n}^{2}\right)$ describes the magnitude of correlation between v_{n}^{2} and $v_{n}^{\prime 2}$ in reference to the magnitude of the correlation of v_{n}^{2} with itself, comparing the two quantities with
a ratio in this instance allowed for a cleaner comparison of a wide variety of behavior between theoretical models, as well as the value of the observable over large regions of centrality and p_{T}.

The authors of Ref. [68] also developed the correlation A_{n}^{f} that is equivalent to

$$
A_{n}^{f}=\frac{\left\langle\left\langle 2^{\prime}+2\right\rangle\right\rangle_{n^{\prime}, n^{\prime} \mid n, n}}{\left\langle\left\langle 2^{\prime}+2\right\rangle\right\rangle_{n^{\prime}, n \mid n^{\prime}, n}}
$$

in our notation. In a manner similar to that detailed in Eqs. (35) and (36), A_{n}^{f} allowed for them to monitor the extent to which the Ψ_{2}^{\prime} and Ψ_{2} symmetry planes differ for different p_{T} selections of POIs.

While the motivation for each of these correlations was not the same, they all fit into the formalism presented into this paper and its associated interpretive context. By understanding M_{n}^{f}, A_{n}^{f}, and $\Delta^{s h}$ as variations on the same quantity, we understand more from a comparison of their values. Likewise, we can understand each quantity as a difference between $N S C$, a normalized covariance, or alternately measuring the four-particle contribution to arbitrary differences in central moments between v_{n}^{2} and $V_{n}^{\prime} V_{n}^{*}$ and $v_{n}^{\prime 2}$, respectively.

In general, a measurement of Γ corresponds more closely to the difference between central moments, as detailed in Eq. (85), while ζ as a ratio may be more experimentally feasible, providing a more stark numerical difference, with smaller error between the magnitudes of the raw moments it compares. Additionally ζ is useful for understanding the relative magnitude of two raw moments, whereas Γ on its own is more useful for understanding the absolute difference in magnitude between two central moments. Regardless, both observables achieve the same purpose: a direct comparison between the relative fluctuations of X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{n} for a fixed number of particles.

V. DISCUSSION

Each of the observables we have discussed in this paper has its own unique benefits, which may help to answer a broad class of questions related to measuring fluctuations in v_{n}^{\prime}, correlations between powers of v_{n}^{\prime}, and other azimuthal anisotropy measurements with rare probes. The study of each rare probe or identified particle imposes different statistical constraints, and motivations such that it is not guaranteed that observables that successfully measure fluctuations in heavy flavor quark v_{n}^{\prime} are suitable for the study of p_{T}-dependent POIs. To help discern between their features, we summarize all the observables we developed here into Table I that discusses their potential uses as well as caveats due to available statistics.

First, $\left\langle k^{\prime}+m^{\prime}+k+m\right\rangle$, as detailed in Sec. II A can be used in a given event to evaluate the products of V_{n} and V_{n}^{\prime} to different powers, and at different harmonics, by using correlations of azimuthal angles between harmonics. These estimations for the products of V_{n} and V_{n}^{\prime} provide the basis for evaluating event-by-event fluctuations in V_{n} and V_{n}^{\prime}, so they are averaged over events to evaluate raw moments.

TABLE I. A summary of observable quantities defined in this paper, and their prospects for measuring fluctuations in v_{n}^{\prime} in heavy ion collisions.

Observables	Explanation
Correlators $\left\langle k^{\prime}+m^{\prime}+k+m\right\rangle$	These correlators evaluate multiharmonic products of event flow vectors with arbitrary dependence on POI angles. They can be calculated using Q_{n} vectors.
Raw Moments $\begin{aligned} & \mu_{v_{1}, \ldots, v_{n}}\left(X_{1}, \ldots, X_{n}\right) \\ & \left\langle\left\langle k^{\prime}+m^{\prime}+k+m\right\rangle\right\rangle \end{aligned}$	Raw moments evaluate the expectation value of a product of flow vectors $\left\langle V_{n_{1}} \cdots V_{n_{k}+m} V_{n_{k+m+1}}^{\prime} \cdots V_{n_{k^{\prime}+m^{\prime}+m+k}}^{\prime}\right\rangle$ by taking a weighted average over many events. Selection of stochastic variables X_{i} can be done by considering smaller groups of $V_{n_{1_{i}}} \cdots V_{n_{i_{i}}}^{\prime}$ for which $\sum_{j} n_{j_{i}}=0$. This selection of stochastic variables X_{i} allows for a normalization scheme.
Generating function cumulant $\begin{aligned} & f_{n}\left\{k^{\prime}+m^{\prime}+k+\right. \\ & m\}, h_{n}^{k^{\prime}, m^{\prime}}\left\{k^{\prime}+m^{\prime}+k+m\right\} \end{aligned}$	Generating function cumulants use $\left\langle\left\langle k^{\prime}+m^{\prime}+k+m\right\rangle\right\rangle$ to approximate $v_{n}^{\prime k^{\prime}+m^{\prime}}$ using generating functions. These observables are analogs of $c_{n}\{2 k\}$ and $d_{p / n}\{2 k\}$, with higher dependence on POIs.
Multivariate cumulants $\kappa_{v_{1}, \ldots, v_{n}}\left(X_{1}, \ldots, X_{n}\right)$	A cumulant of arbitrary order in each variable. Multivariate cumulants generalize the framework of multiharmonic cumulants introduced in Ref. [73] to a larger set of stochastic variables and POIs. These observables in general obey more statistical properties than generating function cumulants and represent the genuine contribution of a moment at each order to fluctuations by subtracting autocorrelations.
Multivariate central moment $\tilde{\mu}_{v_{1}, \ldots, v_{n}}\left(X_{1}, \ldots, X_{n}\right)$	Central moments explicitly describe the correlation between many different variables and are traditionally used to calculate the higher-order fluctuations in a distribution. They directly measure correlations of spread around the mean between stochastic variables.
Differences of normalized moments $\Gamma_{\nu_{1}, \ldots, v_{n}}\left(X_{1}, \ldots, X_{n} ; Y_{1}, \ldots Y_{n}\right)$	The differences between two normalized raw moments can be used to decompose the difference between two central moments of the same order, but in different variables X_{i} and Y_{i}. Using Γ, we can discern the contribution at each order to a difference between central moments.
Ratios of normalized moments $\zeta_{\nu_{1}, \ldots, v_{n}}\left(X_{1}, \ldots, X_{n} ; Y_{1}, \ldots Y_{n}\right)$	Taking the ratio of two normalized raw moments of different variables at the same order allows a better understanding of the relative correlations of each raw moment and its constituent stochastic variables. These quantities are analogous to Γ but may be easier to experimentally determine because they constitute a ratio.

The joint raw moments with dependence on $v_{n}^{\prime},\left\langle\left\langle k^{\prime}+m^{\prime}+\right.\right.$ $k+m\rangle\rangle$ are necessary to calculate any of the more complex observables described in this paper. In general, a measurement of these quantities, as shown in Sec. II B will provide enough information to additionally calculate and normalize any of the generating function cumulants, asymmetric cumulants, central moments, and by extension Γ and ζ. However, each one of the above observables requires values for different $\left\langle\left\langle k^{\prime}+m^{\prime}+k+m\right\rangle\right\rangle$ moments; a choice of a more complex observable will determine which joint raw moments must be measured.

Generating function cumulants, defined in Sec. III B are unique from the other observables introduced here in that they can both estimate v_{n}^{\prime} to different powers, or evaluate correlations between v_{n}^{\prime} and v_{n} using different orders of dependence on azimuthal angles from POIs. Naturally, these quantities are suitable for comparison to existing generating function cumulant measurements of reference v_{n} using the same number of reference particles $v_{n}\{2 k\}$ and differential cumulant estimates for v_{n} using only one particle of interest. Understanding how the contribution from the correlation of two or more POI azimuthal angles to a measurement of v_{n}^{\prime} differs from the contribution of one POI will provide unique and novel information about the azimuthal anisotropy of POIs.

Asymmetric cumulants do not directly estimate v_{n}^{\prime} or any differential Fourier harmonic. However, as shown in Sec. III C they can isolate the genuine correlations between v_{n}^{\prime} with v_{n}, and compare with experimental results, which have recently been studied in a multiharmonic context [95]. Additionally, since the cumulants $k_{v}(X), v>2$ of a Gaussian distribution
are always zero, asymmetric cumulants can be used to evaluate "deviations from Gaussianity" in univariate distributions, [14].

The central moments we have introduced in Sec. III D bear many similarities to the asymmetric cumulants and are identical at low order: $\kappa_{\nu_{1}, \ldots, \nu_{n}}\left(X_{1}, \ldots, X_{n}\right)=\tilde{\mu}_{\nu_{1}, \ldots, \nu_{n}}\left(X_{1}, \ldots, X_{n}\right)$, for $\sum_{i} \nu_{i} \leqslant 3$. Measuring a central moment is useful for comparisons with skewness measured in Refs. [29,96] or variance defined in Refs. [11,63,75]. Additionally, the measurement of a central moment provides knowledge about the correlations between v_{n} and v_{n}^{\prime}, and their dispersion around their means to different powers.

In Sec. IV, we showed the difference between the normalized raw moments of two collections of variables, $\Gamma_{v_{1}, \ldots, v_{n}}\left(X_{1}, \ldots, X_{n} ; Y_{1}, \ldots Y_{n}\right)$, is more useful for determining the relative contribution at each order from v_{n}^{\prime} to a large multivariate distribution of v_{n} and v_{n}^{\prime} at different powers and harmonics. Additionally, we have shown that the difference between any two normalized central moments, including the traditional symmetric cumulant can be written as a linear combination of Γ. This means Γ can determine the differences in correlations between stochastic variables including v_{n}^{\prime} and stochastic variables relying only on v_{n} as a way of comparing the fluctuations in v_{n}^{\prime} and v_{n}.

While ζ, also defined in Sec. IV, cannot decompose the differences between central moments or cumulants (since it is a ratio rather than a difference), ζ is perhaps more easily measurable experimentally because it is normalized to one, whereas Γ can be both negative and positive. Additionally, $\zeta_{\nu_{1}, \ldots, \nu_{n}}\left(X_{1}, \ldots, X_{n} ; Y_{1}, \ldots, Y_{n}\right)$ can identify the relative
magnitude of fluctuations in Y_{1}, \ldots, Y_{n} versus fluctuations in X_{1}, \ldots, X_{n}, whereas $\Gamma_{\nu_{1}, \ldots, v_{n}}\left(X_{1}, \ldots, X_{n} ; Y_{1}, \ldots, Y_{n}\right)$ can only describe their absolute differences.

We anticipate the use of these variables to explore differential phenomena like the event-by-event fluctuations in energy loss for jets traversing the QGP medium and other related questions. By evaluating ζ for sets of stochastic variables involving the azimuthal anisotropy of jets, we can compare the fluctuations of jet energy loss-probed by fluctuations and correlations between the suppression of v_{2}^{\prime} and v_{2}.

VI. CONCLUSION

In this paper we introduce a way to apply existing statistical correlations and observables of azimuthal anisotropies to the study of rare probes and identified particles in heavy ion collisions. To achieve this goal, we allowed for the inclusion of arbitrarily many unique particle of interest (POI) indices in differential correlators to provide an arbitrary dependence on differential azimuthal anisotropies. We lay out the methods to use these multi-POI differential correlators to construct raw and central moments of their underlying distribution(s), generating functions for cumulants, asymmetric cumulants, and ratios or differences of correlations. We also outline various methods for properly normalizing these new observables. Examples are also provided for certain harmonics and POI dependence to guide the reader on how to construct these new observables.

The purpose of these observables is to study rare probes such as jets and/or heavy mesons as well as identified particles like strange hadrons. These new observables will provide a method to constrain the fluctuations in the underlying distribution that is only now possible experimentally in the high-luminosity era of the LHC and sPHENIX [64,65,97,98]. In another work, we studied [99] the feasibility of extracting different type of underlying distributions with these new observables, depending on the type of distribution and the magnitude of the observable calculated. While future studies are warranted to determine the statistics required to obtain precise measurements of these observables, we anticipate that experimental measurements and theoretical calculations of these observables will prove useful in understanding properties of the QGP with identified particles.

ACKNOWLEDGMENTS

The authors thank Matt Luzum and Jean-Yves Ollitrault for fruitful and clarifying conversations that helped to construct the formalism presented here. A.H., A.M.S., and X.W. acknowledge support from National Science Foundation Award Number 2111046. J.N.-H. acknowledges the support from the

US-DOE Nuclear Science Grant No. DE-SC0020633 and DESC0023861 and within the framework of the Saturated Glue (SURGE) Topical Theory Collaboration.

APPENDIX A: NONTRIVIAL OVERLAP BETWEEN POIS AND REFERENCE PARTICLES

In the analysis of the azimuthal anisotropies of jets and high- p_{T} particles, the high- p_{T} POIs are rarely included in the set of reference particles. Likewise for the azimuthal anisotropies of charm and bottom mesons, the overlap between charm mesons and reference particles is suppressed simply due to the scarcity of these mesons. However, in general, there are some cases in which it is plausible that scenarios with overlap between POI and reference particles are of interest. In this instance, the actual computation of $\left\langle k^{\prime}+m+k+m\right\rangle$ becomes somewhat more complex. In this Appendix we discuss these cases.

Using a summation over all $m^{\prime}+k^{\prime}+m+k$ tuples consisting of $m+k$ reference particle angles, and $m^{\prime}+k^{\prime}$ POI angles, we can see that considering the existence of N_{q} overlapping POI and reference particles, we obtain a different weighting for the value of $\left\langle k^{\prime}+m^{\prime}+k+m\right\rangle$ than seen in Eq. (17). The summation for a correlator weighs each $m+k$ tuple of POIs and reference particle angles the same but only considers tuples in which each angle is distinct from the others to omit autocorrelations. To calculate the average, we simply complete the primed summation and divide by the number of $m+k$ tuples in which each angle is unique. Since there are N reference particles, N^{\prime} POIs, and N_{q} reference particles that are also considered to be POI, we can evaluate the following:
(1) For $k+m$ reference particle indices, the number of unique tuples is simply the number of ways to arrange N particles in $k+m$ slots: $N!/(N-m-k)$!.
(2) Having selected $k+m$ reference particles, we fill $k^{\prime}+m^{\prime}$ more slots with POI. If there is no overlap between reference particles and POI, we receive the same result as before; the number of tuples is now $N^{\prime}!/\left(N^{\prime}-k^{\prime}-m^{\prime}\right)$!. If there is N_{q} overlap between POIs and reference particles, then the number of choices is reduced: the computation in step (1) is the same, but now there are only $N^{\prime}-(k+m) N_{q}$ POI to "choose" from. Like always, they are placed into $k^{\prime}+m^{\prime}$ slots, and, thus, we have

$$
\frac{N^{\prime}!-(k+m) N_{q}}{\left(N^{\prime}-(k+m) N_{q}-k^{\prime}-m^{\prime}\right)!}
$$

choices.

Since the total number of unique n-tuples is multiplicative, we obtain the following equation to calculate the correlator assuming a uniform weighting for each particle:

$$
\begin{align*}
& \left\langle k^{\prime}+m^{\prime}+k+m\right\rangle_{n_{1}, \ldots, n_{k}, n_{k+1}^{\prime}, \ldots n_{k+k^{\prime}}^{\prime} \mid n_{k+k^{\prime}+1}, \ldots, n_{k+k^{\prime}+m}, n_{k+k^{\prime}+m+1}^{\prime} \ldots n_{k+k^{\prime}+m+m^{\prime}}^{\prime}}^{N!} \frac{(N-m-k)!}{\left[N^{\prime}-(m+k) N_{q}-k^{\prime}-m^{\prime}\right]!} \sum^{\prime}\left(\prod_{\alpha=1}^{k} e^{i n_{\alpha} \phi_{\alpha}} \prod_{\beta=k}^{k+k^{\prime}} e^{i n_{\beta}^{\prime} \psi_{\beta}} \prod_{\gamma=k+k^{\prime}+1}^{k+k^{\prime}+m} e^{-i n_{\gamma} \phi_{\gamma}} \prod_{\delta=k+k^{\prime}+m+1}^{k+k^{\prime}+m+m^{\prime}} e^{-i n_{\delta}^{\prime} \psi_{\delta}}\right)
\end{align*}
$$

where we obtain the average by dividing by the total number of $m^{\prime}+k^{\prime}+m+k$-tuples with unique particles. This result is corroborated by the computations done in Ref. [78] for $\left\langle 1^{\prime}+\right.$ $1\rangle_{n^{\prime} \mid n}$ and $\left\langle 1^{\prime}+3\right\rangle_{n^{\prime}, n \mid n, n}$.

APPENDIX B: EVALUATING $\left\langle\boldsymbol{k}^{\prime}+\boldsymbol{m}\right\rangle$ USING $\mathbf{Q}_{\boldsymbol{n}}$ VECTORS

When defining $\left\langle k^{\prime}+m^{\prime}+k+m\right\rangle$ using a Q_{n} vector method, we obtain a more complex recurrence relation but also can weight each event differently in the calculation. More importantly, we are able to use far less computation time than it would take to make and iterate through $k^{\prime}+m^{\prime}+k+m$ tuples of particle angles. The event $\mathrm{Q}_{n, t}$ vector is calculated by summing over all reference particle angles within the event:

$$
\begin{equation*}
\mathrm{Q}_{n, t}=\sum_{j=1}^{N} \omega_{j}^{t} e^{i n \phi_{j}} \tag{B1}
\end{equation*}
$$

with a weight ω_{j}^{t} for each event. Currently t is just a placeholder, but it gains significance when considering autocorrelations within an event and, in most instances, it is unity. A $p_{n, t}$ vector, the POI analog to a Q_{n} vector, can be defined as

$$
\begin{equation*}
\mathrm{p}_{n, t}=\sum_{k=1}^{N^{\prime}} \omega_{k}^{t} e^{i n \psi_{k}} \tag{B2}
\end{equation*}
$$

$$
\begin{align*}
& N\left\langle k^{\prime}+m^{\prime}+k+m\right\rangle \\
& \equiv \sum_{\substack{v_{1}, v_{2}, \ldots, v_{k^{\prime}+m^{\prime}+k+m}=1 \\
v_{1} \neq v_{2} \neq \ldots \neq v_{k^{\prime}+m^{\prime}+k+m}}}^{N, N^{\prime}}\left(\prod_{i=1}^{k} \omega_{v_{i}} e^{i n_{i} \phi_{v_{i}}} \prod_{j=k}^{m+k} \omega_{v_{j}} e^{-i n_{j} \phi_{v_{j}}} \prod_{h=m+k}^{k^{\prime}+m+k} \omega_{v_{h}} e^{i n_{h} \psi_{v_{h}}} \prod_{l=k^{\prime}+m+k}^{k^{\prime}+m^{\prime}+k+m} \omega_{v_{l}} e^{-i n_{l} \psi_{v_{l}}}\right) \tag{B5}\\
& D\left\langle k^{\prime}+m^{\prime}+k+m\right\rangle \equiv \sum_{\substack{v_{1}, v_{2}, \ldots, v_{k^{\prime}+m^{\prime}+k+m}=1 \\
v_{1} \neq v_{2} \neq \ldots \neq v_{k^{\prime}+m^{\prime}+k+m}}}^{N, N^{\prime}}\left(\prod_{i=1}^{k} \omega_{v_{i}} \prod_{j=k}^{m+k} \omega_{v_{j}} \prod_{h=m+k}^{k^{\prime}+m+k} \omega_{v_{h}} \prod_{l=k^{\prime}+m+k}^{k^{\prime}+m^{\prime}+k+m} \omega_{v_{l}}\right) \tag{B6}
\end{align*}
$$

where the summation in both equations is over all groups of $k^{\prime}+m^{\prime}+k+m$ particles (of which $k^{\prime}+m^{\prime}$ are POIs and $k+m$ are reference particles), each with unique index $v_{1}, \ldots, v_{k^{\prime}+m^{\prime}+k^{\prime}+m}$. For each of the $k^{\prime}+$ m^{\prime} indices for POI particles, the index is allowed to run from one to N^{\prime}, and for each of the $m+k$ indices for reference particles, the index is allowed to run from one to N.
(3) We can expand the previous equations and substitute in the various event Q_{n} vectors. We use the idea that the sum over each permutation of the product of weighted particle angles can be written as a product of the sums
over each particle angle:

$$
\begin{align*}
& \sum_{r_{1}, \ldots, r_{k^{\prime}+m^{\prime}+k+m}^{N, N^{\prime}}} \omega_{r_{1}} e^{i n \phi_{r_{1}}} \cdots \omega_{r_{k^{\prime}+m^{\prime}+k+m}} e^{i n \phi_{r_{k^{\prime}+m^{\prime}+k+m}}} \tag{B7}\\
= & \prod_{h=1}^{k^{\prime}+m^{\prime}}\left(\sum_{i=1}^{N^{\prime}} \omega_{i} e^{i n_{h} \psi_{i}}\right) \prod_{j=1}^{k+m}\left(\sum_{l=1}^{N} \omega_{l} e^{i n_{j} \phi_{l}}\right)
\end{align*}
$$

over each particle angle:
with the weighted sum over POI angles ψ. The overlap vector $q_{n, t}$ can similarly be defined as

$$
\begin{equation*}
\mathrm{q}_{n, t}=\sum_{l=1}^{N_{q}} \omega_{l}^{t} e^{i n \theta_{l}} \tag{B3}
\end{equation*}
$$

with the weighted sum over the angles θ labeled as both POIs and reference particles. Having defined the three different Q_{n} vectors we will be using, we follow a recursive procedure of the same nature as outlined in Ref. [8].
(1) We begin by writing the $\left\langle k^{\prime}+m^{\prime}+k+m\right\rangle$ correlator as a ratio of its numerator and denominator, where D is a normalization factor and N contains the actual correlations.

$$
\begin{equation*}
\left\langle k^{\prime}+m^{\prime}+k+m\right\rangle \equiv \frac{N\left\langle k^{\prime}+m^{\prime}+k+m\right\rangle}{D\left\langle k^{\prime}+m^{\prime}+k+m\right\rangle} . \tag{B4}
\end{equation*}
$$

(2) We obtain the value of $\left\langle k^{\prime}+m^{\prime}+k+m\right\rangle$ first by considering an average over all $k^{\prime}+m^{\prime}+k+m$ tuples of POIs and reference particle angles in which each index references a unique particle. Additionally, we add a weight to each event, in keeping with Ref. [8]:
where the summation contains all permutations of $r_{1}, \ldots, r_{k^{\prime}+m^{\prime}+k+m}$, so some terms must be subtracted, accounting for the cases in which $r_{j}=r_{k}$ for twoparticle indices. Then we substitute the Q_{n} vectors introduced in Eqs. (B1)-(B3):

$$
\begin{align*}
& \frac{N\left\langle k^{\prime}+m^{\prime}+k+m\right\rangle}{D\left\langle k^{\prime}+m^{\prime}+k+m\right\rangle} \\
& \quad=\frac{\prod_{i=1}^{k+m} \mathrm{Q}_{n_{i}, 1} \prod_{j=1}^{k^{\prime}+m^{\prime}} \mathrm{p}_{n_{j}, 1}}{\prod_{i=1}^{k+m} \mathrm{Q}_{0,1} \prod_{j=1}^{k^{\prime}+m^{\prime}} \mathrm{p}_{0,1}} \text { autocorrelations, } \tag{B8}
\end{align*}
$$

where the autocorrelations must be subtracted.
(4) To account for autocorrelations, we consider the cases in which two indices reference the same particle angle. To do this, we recursively iterate through all r "subcorrelators" with $k^{\prime}+m^{\prime}+k+m-1$ harmonics, from which $n_{k^{\prime}+m^{\prime}+k+m}$ is eliminated, and "added" onto the r th harmonic:
$\left\langle k^{\prime}+m^{\prime}+k+m-1\right\rangle_{n_{1}, \ldots,\left(n_{r}+n_{k^{\prime}+m^{\prime}+k+m}\right)+\cdots+n_{k^{\prime}+m^{\prime}+k+m-1}}$,
where this correlator considers the cases in which the angles from particles in the n_{r} and $n_{k^{\prime}+m^{\prime}+k+m}$ harmonic overlap. The recursive aspect to this algorithm means that we can apply the same procedure to calculate $\left\langle k^{\prime}+m^{\prime}+k+m-\right.$ $1\rangle_{n_{1}, \ldots,\left(n_{r}+n_{k^{\prime}+m^{\prime}+k+m}\right)+\cdots+n_{k^{\prime}+m^{\prime}+k+m-1}} \quad$ by calculating $\left\langle k^{\prime}+m^{\prime}+k+m-2\right\rangle$, all the way until there are no more coinciding harmonics to consider, in the same manner as described in Ref. [8].
Using this recursive process, we can represent $\left\langle k^{\prime}+m^{\prime}+\right.$ $k+m\rangle$ using Q_{n} vectors. However, in step 4, it is not trivial to determine which Q_{n} vector must be selected when representing the "overlapped" index $n_{r}=n_{k^{\prime}+m^{\prime}+k+m}$. In general, we consider four cases, regarding whether each harmonic is for POIs or for reference particles. Note that in this paper, we have generally written the reference harmonics n first, and the POI harmonics n^{\prime} second, but this ordering is arbitrary, and it is possible that any of these four cases might apply:
(a) n_{r} and $n_{k^{\prime}+m^{\prime}+k+m}$ correspond to reference particle harmonics. In this case $\mathrm{Q}_{n_{r}, 1}$ is replaced by $\mathrm{Q}_{n_{r}+n_{k^{\prime}+m^{\prime}+k+m}, 2}$ when evaluating $\left\langle k^{\prime}+m^{\prime}+k+m-\right.$ $1\rangle_{n_{1}, \ldots,\left(n_{r}+n_{k^{\prime}+m^{\prime}+k+m}\right)+\cdots+n_{k^{\prime}+m^{\prime}+k+m-1}}$.
(b) n_{r} corresponds to a reference particle azimuthal angle, and $n_{k^{\prime}+m^{\prime}+k+m}$ corresponds to a POI angle. In this case, we replace $\mathrm{Q}_{n_{r}, 1}$ with $\mathrm{q}_{n_{r}+n_{k^{\prime}+m^{\prime}+k+m}, 2}$.
(c) n_{r} corresponds to a POI azimuthal angle, and $n_{k^{\prime}+m^{\prime}+k+m}$ corresponds to a reference particle angle. As before, we replace $\mathrm{p}_{n_{r}, 1}$ with $\mathrm{q}_{n_{r}+n_{k^{\prime}+m^{\prime}+k+m}, 2}$.
(d) n_{r} and $n_{k^{\prime}+m^{\prime}+k+m}$ both correspond to POI angles. In this case, we replace $\mathrm{p}_{n_{r}, 1}$ with $\mathrm{p}_{n_{r}+n_{k^{\prime}+m^{\prime}+k+m}, 2}$.

We summarize the recurrence relation below, while noting that the evaluation of $\mathrm{N}\left\langle k^{\prime}+m^{\prime}+k+m-1\right\rangle$ requires the use of the rules for each scenario detailed above:

$$
\begin{align*}
& N\left\langle k^{\prime}+m^{\prime}+k+m\right\rangle_{n_{1}, \cdots n_{k}, n_{k+m+1}^{\prime}, \ldots, n_{k+m+k^{\prime}}^{\prime} \mid n_{k+1} \cdots n_{m}, n_{k+m+k^{\prime}+1} \cdots n_{k^{\prime}+m^{\prime}+k+m}} \\
& =\prod_{i=1}^{k+m} \mathrm{Q}_{n_{i}, 1} \prod_{j=1}^{k^{\prime}+m^{\prime}} \mathrm{p}_{n_{j}^{\prime}, 1}-\sum_{r=1}^{k^{\prime}+m^{\prime}+m+k-1} N\left\langle k^{\prime}+m^{\prime}+k+m-1\right\rangle_{n_{1}, \ldots,\left(n_{r}+n_{k^{\prime}+m^{\prime}+k+m}\right)+\cdots+n_{k^{\prime}+m^{\prime}+k+m-1}}, \tag{B10}
\end{align*}
$$

where we show that $N\left\langle k^{\prime}+m^{\prime}+k+m\right\rangle$ can be recursively evaluated by considering a product of $k+m+k^{\prime}+m$ for the Q_{n} vectors and then subtracting a sum of correlators with one fewer particle angle $N\left\langle k^{\prime}+m^{\prime}+k+m-1\right\rangle$, where for the r th subtracted correlator, the $k^{\prime}+m^{\prime}+k+m$ th subscript $n_{k^{\prime}+m^{\prime}+k+m}$ is added to the r th harmonic of the correlator. A very simple example is shown below, where the two-particle correlation between particles of interest and reference particles is written using Q_{n} vectors:

$$
\begin{equation*}
\left\langle 1^{\prime}+1\right\rangle_{n,-n^{\prime}}=\left\langle e^{i n\left(\phi_{1}-\psi_{2}\right)}\right\rangle=\frac{\mathrm{Q}_{n, 1} \mathrm{p}_{n, 1}-\mathrm{q}_{2 n, 2}}{\mathrm{Q}_{0,1} \mathrm{p}_{0,1}-\mathrm{q}_{0,2}} \tag{B11}
\end{equation*}
$$

where this result is consistent with the same definition given in Ref. [78]. There the weighting for each particle was uniform, and the denominator was rewritten in terms of N, N^{\prime}, and N_{q}.

APPENDIX C: CONTRIBUTION OF v_{n}, v_{n}^{\prime} TO MULTI-POI CUMULANTS

We calculate the contribution of v_{n} and v_{n}^{\prime} to the evaluation of $h_{n / p}^{k^{\prime}, m^{\prime}}\left\{k^{\prime}+m^{\prime}+k+m\right\}$. We start with the definition of the generating function:

$$
\begin{equation*}
\mathcal{H}_{n / p}^{k^{\prime}, m^{\prime}}(z)=\frac{\left\langle e^{i p\left(\psi_{1}+\ldots+\psi_{k^{\prime}}-\psi_{k^{\prime}+1}-\ldots-\psi_{k^{\prime}+m^{\prime}}\right)} G_{n}(z)\right\rangle}{\left\langle G_{n}(z)\right\rangle} \tag{C1}
\end{equation*}
$$

which was previously discussed in Eq. (48). Using the result from Refs. [6,94], we can determine the value of $\left\langle G_{n}(z)\right\rangle$ in terms of v_{n}, which approximates a Bessel function:

$$
\left\langle G_{n}(z)\right\rangle=\sum_{j=0,1,2, \ldots}^{M / 2} \frac{1}{M^{2 j}} \frac{M!}{(M-2 j)!(j!)^{2}} v_{n}^{2 j}|z|^{2 j} \approx I_{0}\left(2|z| v_{n}\right)
$$

We now calculate $\left\langle e^{i p\left(\psi_{1}+\ldots+\psi_{k^{\prime}}-\psi_{k^{\prime}+1}-\ldots-\psi_{k^{\prime}+m^{\prime}}\right)} G_{n}(z)\right\rangle$ using the same method we used to evaluate $\mathcal{F}_{p / n}(z)$, by expressing the average as an integral around a fixed angle:

$$
\begin{align*}
& \left\langle e^{i p\left(\psi_{1}+\ldots+\psi_{k^{\prime}}-\psi_{k^{\prime}+1}-\ldots-\psi_{k^{\prime}+m^{\prime}}\right)} G_{n}(z)\right\rangle \\
& \quad=\left.\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle e^{i p\left(\psi_{1}+\ldots+\psi_{k^{\prime}}-\psi_{k^{\prime}+1}-\ldots-\psi_{k^{\prime}+m^{\prime}}\right)} G_{n}(z)\right\rangle\right|_{\Phi_{n}} d \Phi_{n} . \tag{C3}
\end{align*}
$$

Then, for every $e^{i p \psi_{i}}$, we substitute in $v_{p}^{\prime} e^{i p \Phi_{n}}$, again following Ref. [6], because the event averaged ψ angles at Φ_{n} are not correlated with the event averaged ϕ angles at Φ_{n} :

$$
\begin{align*}
& \left\langle e^{i p\left(\psi_{1}+\ldots+\psi_{k^{\prime}}-\psi_{k^{\prime}+1}-\ldots-\psi_{k^{\prime}+m^{\prime}}\right)} G_{n}(z)\right\rangle \\
& \quad=\left.\frac{v_{p / n}^{\prime} k^{\prime}+m^{\prime}}{2 \pi} \int_{0}^{2 \pi} e^{i p\left(k^{\prime}-m^{\prime}\right) \Phi_{n}}\left\langle G_{n}(z)\right\rangle\right|_{\Phi_{n}} d \Phi_{n} \tag{C4}
\end{align*}
$$

We then solve the equation on the right, which only has nonzero solutions if $p\left(k^{\prime}-m^{\prime}\right)=q n$ for some integer q :

$$
\begin{align*}
& \left.\int_{0}^{2 \pi} e^{i p\left(k^{\prime}-m^{\prime}\right) \Phi_{n}}\left\langle G_{n}(z)\right\rangle\right|_{\Phi_{n}} d \Phi_{n} \\
& \quad=\sum_{l=0}^{[(M+q) / 2]} \frac{M!}{(M-q-2 l)!l!(2 l+q)!}\left(\frac{v_{n}}{M}\right)^{2 l+q} z^{* l} z^{l+q} \tag{C5}
\end{align*}
$$

TABLE II. We present the first few central moments, with different combinations of variables.

Central moments	1 stochastic variable (univariate)	2 stochastic variables	3 stochastic variables	4 stochastic variables

$$
\begin{array}{ll}
\hline v=\sum_{i} v_{i}=2 \quad & \left\langle X^{2}\right\rangle-\langle X\rangle^{2} \text { Variance: the } \\
& \text { fundamental measure of } \\
& \text { fluctuations. }
\end{array}
$$

$\left\langle X^{3}\right\rangle-3\left\langle X^{2}\right\rangle\langle X\rangle+2\langle X\rangle^{3}$ Skewness: a measure of a distribution's asymmetry.
$v=4$
$\left\langle X^{4}\right\rangle-4\left\langle X^{3}\right\rangle\langle X\rangle$ $+6\left\langle X^{2}\right\rangle\langle X\rangle^{2}-3\langle X\rangle^{4}$
Kurtosis: a measure of a distribution's tail "heaviness."
$\langle X Y\rangle-\langle X\rangle\langle Y\rangle$ Covariance: a measure of correlation between two variables, of which SC is a special case.
$\left\langle X^{2} Y\right\rangle-2\langle X Y\rangle\langle X\rangle$
$\quad-\left\langle X^{2}\right\rangle\langle Y\rangle+2\langle X\rangle^{2}\langle Y\rangle$
Coskewness: correlates linear deviations from the mean in Y with nonlinear (squared) deviations from the mean in X.
Cokurtosis in two variables can correlate a deviation from the mean in Y to a deviation from the mean cubed in X.

$$
\left\langle X^{3} Y\right\rangle-3\left\langle X^{2} Y\right\rangle\langle X\rangle
$$

$$
-\left\langle X^{3}\right\rangle\langle Y\rangle+3\langle X Y\rangle\langle X\rangle^{2}
$$

$$
+3\left\langle X^{2}\right\rangle\langle X\rangle\langle Y\rangle-3\langle X\rangle^{3}\langle Y\rangle
$$

Cokurtosis can also correlate a squared deviation from the mean in X to a squared deviation from the mean in Y.
$\left\langle X^{2} Y^{2}\right\rangle-2\left\langle X^{2} Y\right\rangle\langle Y\rangle$
$-2\left\langle X Y^{2}\right\rangle\langle X\rangle+\left\langle X^{2}\right\rangle\langle Y\rangle^{2}$
$+4\langle X Y\rangle\langle X\rangle\langle Y\rangle$ $+\left\langle Y^{2}\right\rangle\langle X\rangle^{2}-3\langle X\rangle^{2}\langle Y\rangle^{2}$

$$
\begin{aligned}
& \langle X Y Z\rangle-\langle X Y\rangle\langle Z\rangle \\
& \quad-\langle X Z\rangle\langle Y\rangle-\langle Y Z\rangle\langle X\rangle \\
& +2\langle X\rangle\langle Y\rangle\langle Z\rangle
\end{aligned}
$$

Coskewness: a correlation between deviations from the mean in $X Y$ and Z.

$$
\begin{array}{ll}
\left\langle X^{2} Y Z\right\rangle-\left\langle X^{2} Y\right\rangle\langle Z\rangle & \langle X Y Z W\rangle-\langle X Y Z\rangle\langle W\rangle \\
-\left\langle X^{2} Z\right\rangle\langle Y\rangle-2\langle X Y Z\rangle\langle X\rangle & -\langle X Y W\rangle\langle Z\rangle \\
+2\langle X Y\rangle\langle X\rangle\langle Z\rangle & -\langle X Z W\rangle\langle Y\rangle-\langle Y Z W\rangle\langle X\rangle \\
+2\langle X Z\rangle\langle X\rangle\langle Y\rangle & +\langle X Y\rangle\langle Z\rangle\langle W\rangle \\
+\left\langle X^{2}\right\rangle\langle Y\rangle\langle Z\rangle+\langle Y Z\rangle\langle X\rangle^{2} & +\langle X Z\rangle\langle Y\rangle\langle W\rangle \\
\text { cokurtosis: correlating a } & +\langle X W\rangle\langle Y\rangle\langle Z\rangle \\
\text { squared deviation from the } & +\langle Y Z\rangle\langle X\rangle\langle W\rangle \\
\text { mean in } X \text { to a deviation } & +\langle Y W\rangle\langle X\rangle\langle Z\rangle \\
\text { from the mean in } Y \text {, and a } & +\langle Z W\rangle\langle X\rangle\langle Y\rangle \\
\text { deviation from the mean } & -3\langle X\rangle\langle Y\rangle\langle Z\rangle\langle W\rangle \\
\text { in } Z . & \text { cokurtosis between 4 } \\
& \text { variables: the correlation } \\
& \text { between deviations from } \\
& \text { the mean in } X, Y, Z, \\
& \text { and } W .
\end{array}
$$

Using the result from Ref. [6], we obtain the full expression

$$
\begin{align*}
& \left\langle e^{\left.i p\left(\psi_{1}+\ldots+\psi_{k^{\prime}}-\psi_{k^{\prime}+1}-\ldots-\psi_{k^{\prime}+m^{\prime}}\right) G_{n}(z)\right\rangle} \begin{array}{l}
\quad=v_{p / n}^{\prime}{ }^{k^{\prime}+m^{\prime}} \sum_{l=0}^{\left[\left(M+\frac{p\left(k^{\prime}+m\right)}{n}\right) / 2\right]} \\
\quad \times \frac{M!}{\left(M-\frac{p\left(k^{\prime}+m\right)}{n}-2 l\right)!l!\left(2 l+\frac{p\left(k^{\prime}+m\right)}{n}\right)!} \\
\quad \times\left(\frac{v_{n}}{M}\right)^{2 l+\frac{p\left(k^{\prime}+m\right)}{n}} z^{* l} z^{l+\frac{p\left(k^{\prime}+m\right)}{n}} \\
\approx v_{p / n}^{\prime}{ }^{k^{\prime}+m} I_{\frac{p\left(k^{\prime}-m^{\prime}\right)}{n}}\left(2|z| v_{n}\right)\left(\frac{z}{|z|}\right)^{\frac{p\left(k^{\prime}-m^{\prime}\right)}{n}} .
\end{array} .\right.
\end{align*}
$$

Then, we obtain $\mathcal{H}_{p / n}^{k^{\prime}, m^{\prime}}(z)$:

$$
\begin{equation*}
\mathcal{H}_{p / n}^{k^{\prime}, m^{\prime}}(z) \approx \frac{I_{p\left(k^{\prime}-m^{\prime}\right)}}{n}\left(2|z| v_{n}\right)\left(\frac{z}{|z|}\right)^{\frac{p\left(k^{\prime}-m^{\prime}\right)}{n}\left(2|z| v_{n}\right)} v_{p / n}^{\prime} k^{k^{\prime}+m^{\prime}} \tag{C7}
\end{equation*}
$$

Note that this conclusion is consistent with $\mathcal{F}(z)$ as defined in Sec. III B, because letting $k^{\prime}=m^{\prime}=1$ returns $\mathcal{F}_{n / n}(z)={v_{n}^{\prime 2}}^{2}$. Now that we have an expression for $\mathcal{H}_{p / n}^{k^{\prime}, m^{\prime}}(z)$, we can also produce an expression $h_{p / n}\left\{k^{\prime}+m^{\prime}+k+m\right\}$, the power series
expansion coefficients for $\mathcal{H}_{p / n}^{k^{\prime}, m^{\prime}}(z)$, and express an estimate for $v_{n}^{\prime k^{\prime}+m}$.

APPENDIX D: SOME PROPERTIES OF CENTRAL MOMENTS

Since central moments are not typically used to evaluate fluctuations in v_{n}, we demonstrate here some mathematical properties of the central moments that are similar to those of cumulants.
(a) Central moments display reduction: if a stochastic variable X_{i} is duplicated j times, the resulting quantity is still a central moment, now of order j in X :

$$
\begin{align*}
& \tilde{\mu}_{\nu_{1} \ldots, v_{n}}(\underbrace{X_{1}, \ldots, X_{1}}_{j}, \ldots, X_{n}) \\
& \quad=\left\langle\prod_{i=1}^{j}\left(X_{1}-\left\langle X_{1}\right\rangle\right)^{v_{i}} \prod_{i=j+1}^{n}\left(X_{i}-\left\langle X_{i}\right\rangle\right)^{v_{i}}\right\rangle \\
& \quad=\left\langle\left(X_{1}-\left\langle X_{1}\right\rangle\right)^{\sum_{i=1}^{j} v_{i}} \prod_{i=j+1}^{n}\left(X_{i}-\left\langle X_{i}\right\rangle\right)^{v_{i}}\right\rangle \\
& \quad=\tilde{\mu}_{\left(v_{1}+\ldots+v_{j}\right) \ldots, v_{n}}\left(X_{1}, \ldots, X_{n}\right) \tag{D1}
\end{align*}
$$

(b) Central moments display translation invariance: shifting the stochastic variable by some constant factor does not alter the value of $\tilde{\mu}$. We use the fact that $\left\langle X_{i}+c\right\rangle=\left\langle X_{i}\right\rangle+c:$

$$
\begin{align*}
& \tilde{\mu}_{\nu_{1}, \ldots, v_{g} \ldots, v_{n}}\left(X_{1} . .\left(X_{g}+c\right) . . X_{n}\right) \\
&=\left\langle\left(\prod_{i=1, i \neq g}^{n}\left(X_{i}-\left\langle X_{i}\right\rangle\right)^{v_{i}}\right)\left(X_{g}+c-\left\langle X_{g}+c\right\rangle\right)^{v_{g}}\right\rangle \\
&=\left\langle\left(\prod_{i=1, i \neq g}^{n}\left(X_{i}-\left\langle X_{i}\right\rangle\right)^{v_{i}}\right)\left(X_{i}-\left\langle X_{g}\right\rangle\right)^{v_{g}}\right\rangle \\
&=\tilde{\mu}_{\nu_{1}, . ., v_{g} \ldots, v_{n}}\left(X_{1} . . X_{g} . . X_{n}\right) . \tag{D2}
\end{align*}
$$

(c) Central moments display homogeneity: they scale with their variables to their order. Using the fact that $\langle c X\rangle=c\langle X\rangle:$

$$
\begin{aligned}
& \tilde{\mu}_{v_{1}, . ., v_{g} . ., v_{n}}\left(X_{1} . .\left(c X_{g}\right) . . X_{n}\right) \\
& \quad=\left\langle\left(\prod_{i=1, i \neq g}^{n}\left(X_{i}-\left\langle X_{i}\right\rangle\right)^{v_{i}}\right)\left(c X_{g}-\left\langle c X_{g}\right\rangle\right)^{v_{g}}\right\rangle
\end{aligned}
$$

$$
\begin{align*}
& =\left\langle\left(\prod_{i=1, i \neq g}^{n}\left(X_{i}-\left\langle X_{i}\right\rangle\right)^{v_{i}}\right) c^{v_{g}}\left(X_{g}-\left\langle X_{g}\right\rangle\right)^{v_{g}}\right\rangle \\
& =c^{v_{g}} \tilde{\mu}_{\nu_{1}, \ldots, v_{g} . ., v_{n}}\left(X_{1} . . X_{g} . . X_{n}\right) \tag{D3}
\end{align*}
$$

Additionally, central moments of order $\sum_{i} \nu_{i} \leqslant 3$ are identical to multivariate cumulants of the same order in each stochastic variable, meaning they obey some useful properties of cumulants, specifically additivity, and multilinearity: $\kappa_{n, \ldots}(X+Y, \ldots)=\kappa_{n, \ldots}(X, \ldots)+\kappa_{n, j}(Y, \ldots)$.

APPENDIX E: EXPLICIT FORMS OF CENTRAL MOMENTS

In Table II, we introduce the first few central moments at orders $v=2,3$ and 4 , for up to four unique stochastic variables X, Y, Z, and W, as defined in Sec. IIC. Additionally, we briefly explain the various correlations and fluctuations measured by these central moments, and how they can be interpreted. The central moments with order $v=2$ and $v=3$ are also considered cumulants, as described in Sec. III C.
[1] W. Busza, K. Rajagopal, and W. van der Schee, Heavy ion collisions: The big picture, and the big questions, Annu. Rev. Nucl. Part. Sci. 68, 339 (2018).
[2] U. Heinz and R. Snellings, Collective flow and viscosity in relativistic heavy-ion collisions, Annu. Rev. Nucl. Part. Sci. 63, 123 (2013).
[3] M. Luzum and H. Petersen, Initial state fluctuations and final state correlations in relativistic heavy-ion collisions, J. Phys. G 41, 063102 (2014).
[4] R. D. de Souza, T. Koide, and T. Kodama, Hydrodynamic approaches in relativistic heavy ion reactions, Prog. Part. Nucl. Phys. 86, 35 (2016).
[5] N. Borghini, P. M. Dinh, and J.-Y. Ollitrault, A new method for measuring azimuthal distributions in nucleus-nucleus collisions, Phys. Rev. C 63, 054906 (2001).
[6] N. Borghini, P. M. Dinh, and J.-Y. Ollitrault, Flow analysis from multiparticle azimuthal correlations, Phys. Rev. C 64, 054901 (2001).
[7] A. Bilandzic, R. Snellings, and S. Voloshin, Flow analysis with cumulants: Direct calculations, Phys. Rev. C 83, 044913 (2011).
[8] A. Bilandzic, C. H. Christensen, K. Gulbrandsen, A. Hansen, and Y. Zhou, Generic framework for anisotropic flow analyses with multiparticle azimuthal correlations, Phys. Rev. C 89, 064904 (2014).
[9] G. Aad et al., Measurement of flow harmonics with multiparticle cumulants in $\mathrm{Pb}+\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}}=2.76 \mathrm{TeV}$ with the ATLAS detector, Eur. Phys. J. C 74, 3157 (2014).
[10] B. B. Abelev et al., Multiparticle azimuthal correlations in $p-\mathrm{Pb}$ and $\mathrm{Pb}-\mathrm{Pb}$ collisions at the CERN Large Hadron Collider, Phys. Rev. C 90, 054901 (2014).
[11] S. Chatrchyan et al., Multiplicity and transverse momentum dependence of two- and four-particle correlations in $p \mathrm{~Pb}$ and PbPb collisions, Phys. Lett. B 724, 213 (2013).
[12] L. Adamczyk et al., Azimuthal anisotropy in $U+U$ and $A u+$ Au collisions at RHIC, Phys. Rev. Lett. 115, 222301 (2015).
[13] M. Aaboud et al., Measurement of long-range multiparticle azimuthal correlations with the subevent cumulant method in $p p$ and $p+\mathrm{Pb}$ collisions with the ATLAS detector at the CERN Large Hadron Collider, Phys. Rev. C 97, 024904 (2018).
[14] A. M. Sirunyan et al., Non-Gaussian elliptic-flow fluctuations in PbPb collisions at $\sqrt{[b] s_{\mathrm{NN}}}=5.02 \mathrm{TeV}$, Phys. Lett. B 789, 643 (2019).
[15] S. Acharya et al., Investigations of anisotropic flow using multiparticle azimuthal correlations in $p p, p-\mathrm{Pb}, \mathrm{Xe}-\mathrm{Xe}$, and $\mathrm{Pb}-\mathrm{Pb}$ collisions at the LHC, Phys. Rev. Lett. 123, 142301 (2019).
[16] M. Aaboud et al., Fluctuations of anisotropic flow in $\mathrm{Pb}+$ Pb collisions at $\sqrt{\mathrm{s}_{\mathrm{NN}}}=5.02 \mathrm{TeV}$ with the ATLAS detector, J. High Energy Phys. 01 (2020) 051.
[17] J. E. Bernhard, J. S. Moreland, and S. A. Bass, Bayesian estimation of the specific shear and bulk viscosity of quark-gluon plasma, Nat. Phys. 15, 1113 (2019).
[18] D. Everett et al., Multisystem Bayesian constraints on the transport coefficients of qcd matter, Phys. Rev. C 103, 054904 (2021).
[19] G. Nijs, W. van der Schee, U. Gürsoy, and R. Snellings, Transverse momentum differential global analysis of heavy-ion collisions, Phys. Rev. Lett. 126, 202301 (2021).
[20] J. E. Parkkila, A. Onnerstad, and D. J. Kim, Bayesian estimation of the specific shear and bulk viscosity of the quark-gluon plasma with additional flow harmonic observables, Phys. Rev. C 104, 054904 (2021).
[21] M. R. Heffernan, C. Gale, S. Jeon, and J.-F. Paquet, Bayesian quantification of strongly-interacting matter with color glass condensate initial conditions, arXiv:2302.09478.
[22] P. Alba, V. Mantovani Sarti, J. Noronha, J. Noronha-Hostler, P. Parotto, I. Portillo Vazquez, and C. Ratti, Effect of the QCD equation of state and strange hadronic resonances on multiparticle correlations in heavy ion collisions, Phys. Rev. C 98, 034909 (2018).
[23] B. Schenke, C. Shen, and P. Tribedy, Running the gamut of high energy nuclear collisions, Phys. Rev. C 102, 044905 (2020).
[24] K. Aamodt et al., Higher harmonic anisotropic flow measurements of charged particles in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{N N}}=2.76$ TeV, Phys. Rev. Lett. 107, 032301 (2011).
[25] S. Chatrchyan et al., Measurement of the elliptic anisotropy of charged particles produced in PbPb collisions at $\sqrt{s}_{N N}=2.76$ TeV, Phys. Rev. C 87, 014902 (2013).
[26] M. Aaboud et al., Measurement of multi-particle azimuthal correlations in $p p, p+\mathrm{Pb}$ and low-multiplicity $\mathrm{Pb}+\mathrm{Pb}$ collisions with the ATLAS detector, Eur. Phys. J. C 77, 428 (2017).
[27] M. Abdallah et al., Collision-system and beam-energy dependence of anisotropic flow fluctuations, Phys. Rev. Lett. 129, 252301 (2022).
[28] T. Renk and H. Niemi, Constraints from v_{2} fluctuations for the initial-state geometry of heavy-ion collisions, Phys. Rev. C 89, 064907 (2014).
[29] G. Giacalone, J. Noronha-Hostler, and J.-Y. Ollitrault, Relative flow fluctuations as a probe of initial state fluctuations, Phys. Rev. C 95, 054910 (2017).
[30] P. Carzon, S. Rao, M. Luzum, M. Sievert, and J. NoronhaHostler, Possible octupole deformation of ${ }^{208} \mathrm{~Pb}$ and the ultracentral v_{2} to v_{3} puzzle, Phys. Rev. C 102, 054905 (2020).
[31] C. Shen and B. Schenke, Dynamical initial state model for relativistic heavy-ion collisions, Phys. Rev. C 97, 024907 (2018).
[32] M. Martinez, M. D. Sievert, D. E. Wertepny, and J. NoronhaHostler, Initial state fluctuations of QCD conserved charges in heavy-ion collisions, arXiv:1911.10272.
[33] P. Carzon, M. Martinez, M. D. Sievert, D. E. Wertepny, and J. Noronha-Hostler, Monte Carlo event generator for initial conditions of conserved charges in nuclear geometry, Phys. Rev. C 105, 034908 (2022).
[34] L. Cunqueiro and A. M. Sickles, Studying the QGP with jets at the LHC and RHIC, Prog. Part. Nucl. Phys. 124, 103940 (2022).
[35] K. M. Burke et al., Extracting the jet transport coefficient from jet quenching in high-energy heavy-ion collisions, Phys. Rev. C 90, 014909 (2014).
[36] Y. He, L.-G. Pang, and X.-N. Wang, Bayesian extraction of jet energy loss distributions in heavy-ion collisions, Phys. Rev. Lett. 122, 252302 (2019).
[37] W. Ke and X.-N. Wang, QGP modification to single inclusive jets in a calibrated transport model, J. High Energy Phys. 05 (2021) 041.
[38] A. Kumar et al., Inclusive jet and hadron suppression in a multistage approach, Phys. Rev. C 107, 034911 (2023).
[39] X.-N. Wang, Jet quenching and azimuthal anisotropy of large $p(T)$ spectra in noncentral high-energy heavy ion collisions, Phys. Rev. C 63, 054902 (2001).
[40] M. Gyulassy, I. Vitev, and X. N. Wang, High $p(T)$ azimuthal asymmetry in noncentral $A+A$ at RHIC, Phys. Rev. Lett. 86, 2537 (2001).
[41] G. Aad et al., Measurement of the azimuthal angle dependence of inclusive jet yields in $\mathrm{Pb}+\mathrm{Pb}$ collisions at $\sqrt{s_{N N}}=2.76 \mathrm{TeV}$ with the ATLAS detector, Phys. Rev. Lett. 111, 152301 (2013).
[42] J. Adam et al., Azimuthal anisotropy of charged jet production in $\sqrt{s_{\mathrm{NN}}}=2.76 \mathrm{TeV} \mathrm{Pb}-\mathrm{Pb}$ collisions, Phys. Lett. B 753, 511 (2016).
[43] G. Aad et al., Measurements of azimuthal anisotropies of jet production in $\mathrm{Pb}+\mathrm{Pb}$ collisions at $\sqrt{s_{N N}}=5.02 \mathrm{TeV}$ with the ATLAS detector, Phys. Rev. C 105, 064903 (2022).
[44] U. Heinz, Z. Qiu, and C. Shen, Fluctuating flow angles and anisotropic flow measurements, Phys. Rev. C 87, 034913 (2013).
[45] J. Qian, U. W. Heinz, and J. Liu, Mode-coupling effects in anisotropic flow in heavy-ion collisions, Phys. Rev. C 93, 064901 (2016).
[46] J. Qian, U. Heinz, R. He, and L. Huo, Differential flow correlations in relativistic heavy-ion collisions, Phys. Rev. C 95, 054908 (2017).
[47] S. Wicks, W. Horowitz, M. Djordjevic, and M. Gyulassy, Elastic, inelastic, and path length fluctuations in jet tomography, Nucl. Phys. A 784, 426 (2007).
[48] A. Andronic et al., Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions, Eur. Phys. J. C 76, 107 (2016).
[49] X. Dong, Y.-J. Lee, and R. Rapp, Open heavy-flavor production in heavy-ion collisions, Annu. Rev. Nucl. Part. Sci. 69, 417 (2019).
[50] G. D. Moore and D. Teaney, How much do heavy quarks thermalize in a heavy ion collision?, Phys. Rev. C 71, 064904 (2005).
[51] S. Cao, G.-Y. Qin, and S. A. Bass, Heavy-quark dynamics and hadronization in ultrarelativistic heavy-ion collisions: Collisional versus radiative energy loss, Phys. Rev. C 88, 044907 (2013).
[52] S. Cao, G.-Y. Qin, and S. A. Bass, Energy loss, hadronization and hadronic interactions of heavy flavors in relativistic heavyion collisions, Phys. Rev. C 92, 024907 (2015).
[53] R. Katz, C. A. G. Prado, J. Noronha-Hostler, J. Noronha, and A. A. P. Suaide, Sensitivity study with a D and B mesons modular simulation code of heavy flavor RAA and azimuthal anisotropies based on beam energy, initial conditions, hadronization, and suppression mechanisms, Phys. Rev. C 102, 024906 (2020).
[54] M. Nahrgang, J. Aichelin, P. B. Gossiaux, and K. Werner, Azimuthal correlations of heavy quarks in $\mathrm{Pb}+\mathrm{Pb}$ collisions at $\sqrt{s}=2.76 \mathrm{TeV}$ at the CERN Large Hadron Collider, Phys. Rev. C 90, 024907 (2014).
[55] Y. Sun, S. Plumari, and V. Greco, Study of collective anisotropies v_{2} and v_{3} and their fluctuations in $p A$ collisions at LHC within a relativistic transport approach, Eur. Phys. J. C 80, 16 (2020).
[56] C. A. G. Prado, J. Noronha-Hostler, R. Katz, A. A. P. Suaide, J. Noronha, M. G. Munhoz, and M. R. Cosentino, Event-by-event correlations between soft hadrons and D^{0} mesons in 5.02 TeV PbPb collisions at the CERN Large Hadron Collider, Phys. Rev. C 96, 064903 (2017).
[57] S. Plumari, G. Coci, V. Minissale, S. K. Das, Y. Sun, and V. Greco, Heavy - light flavor correlations of anisotropic flows at LHC energies within event-by-event transport approach, Phys. Lett. B 805, 135460 (2020).
[58] G. Aad et al., Measurement of azimuthal anisotropy of muons from charm and bottom hadrons in $p p$ collisions at $\sqrt{s}=$ 13 TeV with the ATLAS detector, Phys. Rev. Lett. 124, 082301 (2020).
[59] G. Aad et al., Centrality and rapidity dependence of inclusive jet production in $\sqrt{s_{\mathrm{NN}}}=5.02 \mathrm{TeV}$ proton-lead collisions with the ATLAS detector, Phys. Lett. B 748, 392 (2015).
[60] J. Adam et al., Measurement of charged jet production cross sections and nuclear modification in $\mathrm{p}-\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}}=$ 5.02 TeV , Phys. Lett. B 749, 68 (2015).
[61] A. M. Sirunyan et al., Measurements of the charm jet cross section and nuclear modification factor in $p \mathrm{~Pb}$ collisions at $\sqrt{s_{N N}}=5.02 \mathrm{TeV}$, Phys. Lett. B 772, 306 (2017).
[62] S. Acharya et al., Measurement of inclusive charged-particle b-jet production in $p p$ and $p-\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}}=5.02 \mathrm{TeV}$, J. High Energy Phys. 01 (2022) 178.
[63] J. Noronha-Hostler, B. Betz, M. Gyulassy, M. Luzum, J. Noronha, J. Noronha-Hostler, I. Portillo, and C. Ratti, Cumulants and nonlinear response of high p_{T} harmonic flow at $\sqrt{s_{N N}}=5.02 \mathrm{TeV}$, Phys. Rev. C 95, 044901 (2017).
[64] Z. Citron et al., Report from Working Group 5: Future physics opportunities for high-density QCD at the LHC with heavy-ion and proton beams, CERN Yellow Rep. Monogr. 7, 1159 (2019).
[65] sPHENIX Collaboration, sPHENIX Beam Use Proposal (2022), URL: https://indico.bnl.gov/event/15148/attachments/ 40846/68568/sPHENIX_Beam_Use_Proposal_2022.pdf.
[66] A. M. Sirunyan et al., Azimuthal anisotropy of charged particles with transverse momentum up to $100 \mathrm{GeV} / \mathrm{c}$ in PbPb collisions at $\sqrt{s}_{N N}=5.02 \mathrm{TeV}$, Phys. Lett. B 776, 195 (2018).
[67] A. Tumasyan et al., Probing charm quark dynamics via multiparticle correlations in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}}=5.02 \mathrm{TeV}$, Phys. Rev. Lett. 129, 022001 (2022).
[68] S. Acharya et al., Observation of flow angle and flow magnitude fluctuations in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{N N}}=5.0 \mathrm{TeV}$ at the CERN Large Hadron Collider, Phys. Rev. C 107, L051901 (2023).
[69] S. Acharya et al. (ALICE Collaboration), Anisotropic flow and flow fluctuations of identified hadrons in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}}=5.02 \mathrm{TeV}$, J. High Energy Phys. 05 (2023) 243.
[70] G. Aad et al., Measurement of the correlation between flow harmonics of different order in lead-lead collisions at $\sqrt{s_{N N}}=$ 2.76 TeV with the ATLAS detector, Phys. Rev. C 92, 034903 (2015).
[71] S. Acharya et al., Event-shape engineering for the D-meson elliptic flow in mid-central $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV, J. High Energy Phys. 02 (2019) 150.
[72] Z. Moravcova, K. Gulbrandsen, and Y. Zhou, Generic algorithm for multiparticle cumulants of azimuthal correlations in high energy nucleus collisions, Phys. Rev. C 103, 024913 (2021).
[73] A. Bilandzic, M. Lesch, C. Mordasini, and S. F. Taghavi, Multivariate cumulants in flow analyses: The next generation, Phys. Rev. C 105, 024912 (2022).
[74] B. Alver and G. Roland, Collision geometry fluctuations and triangular flow in heavy-ion collisions, Phys. Rev. C 81, 054905 (2010); Collision geometry fluctuations and triangular flow in heavy-ion collisions, 82, 039903(E) (2010).
[75] S. A. Voloshin, A. M. Poskanzer, and R. Snellings, Collective phenomena in non-central nuclear collisions, Landolt-Bornstein 23, 293 (2010).
[76] A. M. Poskanzer and S. A. Voloshin, Methods for analyzing anisotropic flow in relativistic nuclear collisions, Phys. Rev. C 58, 1671 (1998).
[77] R. S. Bhalerao, M. Luzum, and J.-Y. Ollitrault, Determining initial-state fluctuations from flow measurements in heavy-ion collisions, Phys. Rev. C 84, 034910 (2011).
[78] S. A. Voloshin, Testing the chiral magnetic effect with central U + U collisions, Phys. Rev. Lett. 105, 172301 (2010).
[79] G. Aad et al., Measurement of the distributions of event-byevent flow harmonics in lead-lead collisions at $\sqrt{s_{N N}}=2.76$

TeV with the ATLAS detector at the LHC, J. High Energy Phys. 11 (2013)183.
[80] C. Shen, Z. Qiu, and U. Heinz, Shape and flow fluctuations in ultracentral $\mathrm{Pb}+\mathrm{Pb}$ collisions at the energies available at the CERN Large Hadron Collider, Phys. Rev. C 92, 014901 (2015).
[81] J. Takahashi, B. M. Tavares, W. L. Qian, R. Andrade, F. Grassi, Y. Hama, T. Kodama, and N. Xu, Topology studies of hydrodynamics using two particle correlation analysis, Phys. Rev. Lett. 103, 242301 (2009).
[82] B. H. Alver, C. Gombeaud, M. Luzum, and J.-Y. Ollitrault, Triangular flow in hydrodynamics and transport theory, Phys. Rev. C 82, 034913 (2010).
[83] H. Petersen, G.-Y. Qin, S. A. Bass, and B. Muller, Triangular flow in event-by-event ideal hydrodynamics in $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{s_{\mathrm{NN}}}=200 A \mathrm{GeV}$, Phys. Rev. C 82, 041901(R) (2010).
[84] L. Yi, F. Wang, and A. Tang, Possibility to disentangle anisotropic flow, flow fluctuation, and nonflow assuming Gaussian fluctuations, J. Phys. G 40, 035111 (2013).
[85] L. Yan and J.-Y. Ollitrault, Universal fluctuation-driven eccentricities in proton-proton, proton-nucleus, and nucleus-nucleus collisions, Phys. Rev. Lett. 112, 082301 (2014).
[86] L. Yan, J.-Y. Ollitrault, and A. M. Poskanzer, Eccentricity distributions in nucleus-nucleus collisions, Phys. Rev. C 90, 024903 (2014).
[87] S. Chatrchyan et al., Measurement of higher-order harmonic azimuthal anisotropy in PbPb collisions at $\sqrt{s_{N N}}=2.76 \mathrm{TeV}$, Phys. Rev. C 89, 044906 (2014).
[88] Md. Nasim, Systematic study of symmetric cumulants at $\sqrt{s_{N N}}=200 \mathrm{GeV}$ in $\mathrm{Au}+\mathrm{Au}$ collision using transport approach, Phys. Rev. C 95, 034905 (2017).
[89] C. Mordasini, A. Bilandzic, D. Karakoç, and S. F. Taghavi, Higher order symmetric cumulants, Phys. Rev. C 102, 024907 (2020).
[90] A. M. Sirunyan et al., Pseudorapidity and transverse momentum dependence of flow harmonics in $p \mathrm{~Pb}$ and PbPb collisions, Phys. Rev. C 98, 044902 (2018).
[91] M. Aaboud et al., Measurement of longitudinal flow decorrelations in $\mathrm{Pb}+\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}}=2.76$ and 5.02 TeV with the ATLAS detector, Eur. Phys. J. C 78, 142 (2018).
[92] R. Kubo, Generalized cumulant expansion method, J. Phys. Soc. Jpn. 17, 1100 (1962).
[93] P. Di Francesco, M. Guilbaud, M. Luzum, and J.-Y. Ollitrault, Systematic procedure for analyzing cumulants at any order, Phys. Rev. C 95, 044911 (2017).
[94] A. Bilandzic, Ph.D. thesis, Utrecht University, 2012 (unpublished); http://cds.cern.ch/record/1432210.
[95] S. Acharya et al. (ALICE Collaboration), Higher-order correlations between different moments of two flow amplitudes in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}}=5.02 \mathrm{TeV}$, Phys. Rev. C 108, 055203 (2023).
[96] G. Giacalone, L. Yan, J. Noronha-Hostler, and J.-Y. Ollitrault, Skewness of elliptic flow fluctuations, Phys. Rev. C 95, 014913 (2017).
[97] P. Achenbach et al., The present and future of QCD, arXiv:2303.02579.
[98] M. Arslandok et al., Hot QCD white paper, arXiv:2303.17254.
[99] A. Holtermann, J. Noronha-Hostler, A. M. Sickles, and X. Wang, Measuring jet energy loss fluctuations in the quark-gluon plasma via multi-particle correlations (unpublished).

[^0]: *ath8@illinois.edu
 †jnorhos@illinois.edu
 *sickles@illinois.edu
 ${ }^{\S}$ Xw31@illinois.edu

[^1]: ${ }^{1}$ Exploiting this subtlety has given rise to the observable $A_{n}^{f}=$ $\left\langle v_{n}^{2} v_{n}^{\prime 2} \cos 2 n\left(\Psi_{n}^{\prime}-\Psi_{n}\right)\right\rangle /\left\langle v_{2}^{2} v_{2}^{\prime 2}\right\rangle$ in Ref. [68]. Generalizing this practice can be a useful alternative normalization scheme when trying to isolate decorrelations between reference and differential event planes.

[^2]: ${ }^{2}$ For this derivation, we use the assumption that $\Psi_{n} \approx \Psi_{p}^{\prime} \approx \Phi_{n}$: both event planes lie more or less on the reaction plane of the event. This assumption is reasonable for high multiplicity collisions and nontrivial v_{n} and v_{n}^{\prime} values, and one required in the derivation for one POI differential flow cumulants. When this assumption fails, and event planes decorrelate, we will only measure the real part of v_{n}^{\prime} projected onto Ψ_{n}

[^3]: ${ }^{3}$ A partition is a way to divide a set of m unique elements $\{1, \ldots, m\}$ into subsets whose union contains the entire set

[^4]: ${ }^{4}$ Note that, conventionally, central moments are normalized not by the product of their stochastic variables, but by the standard deviation of their stochastic variables:

 $$
 N \tilde{\mu}_{\nu_{1}, \ldots, v_{n}}\left(X_{1}, \ldots, X_{n}\right) \equiv \frac{\mu_{\nu_{1}, \ldots, v_{n}}\left(X_{1}, \ldots, X_{n}\right)}{\prod_{i=1}^{n}\left(\sqrt{\left\langle X_{i}^{2}\right\rangle-\left\langle X_{i}\right\rangle^{2}}\right)^{v_{i}}} .
 $$

 While this practice is well motivated statistically, we prefer to introduce normalization schemes that ensure that even $\tilde{\mu}_{1,1}\left(v_{n}^{2}, v_{m}^{2}\right)=$ $S C\left(v_{n}^{2}, v_{m}^{2}\right)$ can be normalized in a way that is consistent with existing normalizations for SC and related variables. Additionally, the possibility of measuring a raw moment including stochastic variable $X_{i}: \mu_{\ldots v_{i} \ldots}\left(\ldots X_{i} \ldots\right)$ does not guarantee the capacity to accurately measure its standard deviation, a quantity that generally has greater dependence on each stochastic variable $\left\langle X_{i}\right\rangle^{2}$.

