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Ambiguity of Siegert transformations for isospin-forbidden electric dipole transitions
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An infinity of extensions of the Siegert transformation exist in the Coulomb gauge. All resulting transition
multipoles of the electric field are identical at the long-wavelength approximation but differ beyond. In the
particular case of isospin forbidden electric dipole transitions, they introduce an ambiguity about the form of the
transition operator. Various expressions of the electric dipole operator are presented and compared, without and
with Siegert transformation. Their influence on calculations of radiative capture reactions of isospin-zero nuclei
is discussed.
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I. INTRODUCTION

Two expressions for the electric multipoles of the vector
potential of the electromagnetic field have been derived in
the Coulomb gauge. The oldest one appears in textbooks
[1,2] and is sometimes called after Partovi [3]. A more recent
expression implicitly used by Friar and Fallieros [4,5] was
explicitly derived in Ref. [6]. Although apparently different,
these expressions are strictly equivalent as they correspond to
the same gauge.

The electric multipoles of the electromagnetic field de-
rived from these expressions are thus also equivalent. As
they have a different structure, they have different gradi-
ent parts. Hence, when applying the Siegert transformation
[7,8], different multipole operators are obtained. As expected,
differences occur only beyond the long-wavelength approx-
imation (LWA). They have thus little importance in most
allowed electric transitions.

In N = Z nuclei or in capture reactions between such
nuclei, however, these differences do have an importance.
Indeed, in isospin-zero systems, the electric dipole transitions
are approximately forbidden by an isospin selection rule.
These transitions remain possible thanks to various mech-
anisms: (i) through the beyond-LWA scalar part of the E1
operator, (ii) from or to small isospin T = 1 components in
the wave functions, and (iii) through the spin part of the E1
operator. The corresponding amplitudes add coherently. Their
relative order of magnitude cannot be guessed from simple
arguments. They may all be small but for different reasons:
(i) because operators beyond the LWA contain higher powers
of the photon wave number, (ii) because of the smallness of
T = 1 components in N = Z systems, and (iii) because of
unfavorable spin structures of the initial and final states.

In complement to Ref. [6], the aim of this paper is to clarify
and extend equivalent expressions of the electric multipoles
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before the Siegert transformation and study their differences
after this transformation. I start with a simple direct proof of
the equivalence between both forms of the vector potential
multipoles discussed in Ref. [6]. In fact, since two such ex-
pressions exist, an infinity of ways of performing the Siegert
transformation are possible. The various expressions differ in
the scalar part of the transition operators. A relation is estab-
lished between scalar parts before and after transformation at
the next order beyond the LWA.

In Sec. II, a simple direct proof of the equivalence between
the Partovi and Friar-Fallieros expressions is given. Different
forms of the electric field multipoles are presented in Sec. III
without and with Siegert transformation. The case of the elec-
tric dipole operator is discussed in Sec. IV with emphasis on
the N = Z case. Properties of the magnetic dipole operator
are briefly summarized in Sec. V. A discussion concludes in
Sec. VI.

II. EQUIVALENCE OF EXPRESSIONS OF ELECTRIC
MULTIPOLES OF THE VECTOR POTENTIAL

The multipoles of the vector potential are solutions of the
Helmholz equation. They are eigenfunctions of L2 and Lz with
respective eigenvalues λ(λ + 1) and μ. Here, and in the rest
of this paper, the momentum operator is p = −i∇, and the
orbital momentum L = r × p and spin S operators are dimen-
sionless. The discussion below in this section concerns the
vector potential expressed in the Coulomb gauge. Multipoles
of the vector potential are defined with various normaliza-
tions and phases in the literature [1,2,9]. Those below follow
Ref. [2].

The traditional expression for the λμ electric multipoles
of the vector potential in the Coulomb gauge ∇ · AE

λμ = 0,
sometimes called the Partovi expression, is given by [2]

AE
λμ = k−1[λ(λ + 1)]−1/2∇ × Lφλμ

= i

k[λ(λ + 1)]1/2

{
∇

[
∂

∂r

(
rφλμ

)] + k2rφλμ

}
, (1)
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where

φλμ(kr) = jλ(kr)Yλμ(�) (2)

and k is the photon wave number. The spherical Bessel func-
tion jλ(x) satisfies an equation conveniently written for later
use as

(x jλ)′′ + x jλ = λ(λ + 1)x−1 jλ, (3)

where primes denote derivatives with respect to the argument.
Another expression is derived in Ref. [6] as

AE
λμ = i

k
[λ(λ + 1)]1/2∇[Yλμ(�)Gλ(kr)]

− k

[λ(λ + 1)]1/2
r × LYλμ(�)Hλ(kr), (4)

where

Gλ(x) =
∫ x

0

jλ(u)

u
du, Hλ(x) = 1

x2

∫ x

0
u jλ(u)du. (5)

With Eq. (3), these functions satisfy the relation

λ(λ + 1)Gλ − x2Hλ = (x jλ)′. (6)

Expression (4) is implicit in the multipole operators of the
electric field derived by Friar and Fallieros [4] with slightly
different notations, but not explicitly given in their paper.

Let me stress that these two apparently different operators
are strictly identical. They are two writings of the same opera-
tor defined within the same Coulomb gauge. In the following,
I sometimes use the argument P or FF to distinguish the
writing used but this does not mean that the operators are
different. A direct derivation of the second expression is given
in Ref. [6]. Here, I give a simple proof of their equivalence.

Let me denote the angular part of the gradient operator as

∇� = −i(er × L) = r∇ − r
∂

∂r
, (7)

where er is the radial unit vector. Denoting kr as x, the Partovi
expression can be written with Eq. (3) as

−i
√

λ(λ + 1) AE
λμ(P)

= Yλμer[(x jλ)′′ + x jλ] + (∇�Yλμ)x−1(x jλ)′

= Yλμerλ(λ + 1)x−1 jλ + (∇�Yλμ)x−1(x jλ)′. (8)

Similarly, starting from the Friar-Fallieros expression and
rewriting Eq. (7) as

r × L = r(r · p) − r2 p = ir∇�, (9)

one obtains with Eq. (6)

− i
√

λ(λ + 1) AE
λμ(FF)

= Yλμerλ(λ + 1)G′
λ + (∇�Yλμ)x−1[λ(λ + 1)Gλ − x2Hλ]

= Yλμerλ(λ + 1)x−1 jλ + (∇�Yλμ)x−1(x jλ)′, (10)

establishing the equivalence.
Hence, the most general form of the Coulomb gauge elec-

tric multipoles reads

AE
λμ(α) = (1 − α)AE

λμ(P) + αAE
λμ(FF), (11)

where AE
λμ(P) and AE

λμ(FF) are given by Eqs. (1) and (4),
respectively, and coefficient α is arbitrary.

The magnetic multipoles are given by [1,2,9]

AM
λμ = [λ(λ + 1)]−1/2Lφλμ. (12)

They are related to the electric multipoles by [2]

∇ × AE (M )
λμ = kAM(E )

λμ . (13)

In the Coulomb gauge, all multipoles commute with the mo-
mentum operator,

p · AE (M )
λμ = AE (M )

λμ · p. (14)

III. ELECTRIC TRANSITION OPERATORS

The electric transition operators are defined as [2,10]

MEλ
μ = 1

c

√
λ

λ + 1

(2λ + 1)!!

kλ

∫
J · AE

λμdr, (15)

where

J(r) = Jc(r) + Jm(r) (16)

is the sum of the convection current density Jc(r) and the
magnetization current density Jm(r). For pointlike nucleons,
these current densities read

Jc(r) = eh̄

mp

A∑
j=1

gl j
1

2
[p jδ(r j − r) + δ(r j − r)p j] (17)

and

Jm(r) = ∇ × μm(r) (18)

with the density of intrinsic magnetic moment

μm(r) = μN

A∑
j=1

gs jδ(r j − r)S j . (19)

In these expressions, mp is the proton mass, μN = eh̄/2mp is
the nuclear magneton, and r j , p j , and S j are the coordinate,
momentum, and spin operators of nucleon j. In terms of third
component t j3 of the isospin of nucleon j, the coefficients
read gl j = 1

2 − t j3 and gs j = gp( 1
2 − t j3) + gn( 1

2 + t j3) as a
function of the proton gp and neutron gn gyromagnetic factors.

The adjoints of these operators are given by

MEλ†
μ = (−1)μ+1MEλ

−μ. (20)

Since two equivalent expressions exist for the multipoles
of the vector potential, two equivalent expressions also exist
for the transition operator. Only the writing of the convection
part differs. Indeed, the integral involving the magnetization
current simplifies as∫

Jm · AE (M )
λμ dr = k

∫
μm · AM(E )

λμ dr. (21)

For electric transitions, it only depends on the magnetic multi-
poles AM

λμ. With the commutation relation (14), the convection
part reads∫

Jc · AE (M )
λμ dr = − ieh̄

mp

A∑
j=1

gl jA
E (M )
λμ (r j ) · ∇ j . (22)
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Equation (1) corresponds to [11]

MEλ
μ = eh̄

mpc

(2λ + 1)!!

(λ + 1)kλ

A∑
j=1

{
gl j

k

[(
k2r + ∇ ∂

∂r
r

)
φλμ

]
j

·∇ j + 1

2
kgs j[Lφλμ] j · S j

}
. (23)

Equation (4) corresponds to [4,6]

MEλ
μ = eh̄

mpc

(2λ + 1)!!

(λ + 1)kλ

A∑
j=1

{
gl j

k
[λ(λ + 1)∇Yλμ(�)Gλ(kr)

+ ik2r × LYλμ(�)Hλ(kr)] j · ∇ j

+ 1

2
kgs j[Lφλμ] j · S j

}
. (24)

Using one or the other equivalent expression is just a question
of convenience.

A part of the nuclear current can be eliminated from elec-
tric transition operators with the Siegert transformation [7].
Operators derived with a Siegert transformation will be de-
noted by a tilde. They are related to the original operators
through the matrix elements

〈 f |MEλ
μ |i〉 = 〈 f |M̃Eλ

μ |i〉, (25)

where |i〉 and | f 〉 are the initial and final states of the transition
between energies Ei and E f . Both expressions (1) and (4) of
the multipoles of the vector potential and all expressions (11)
have the structure

AE
λμ(r) = ∇ fλμ(r) + A′E

λμ(r). (26)

The convection integral can be transformed with relation∫
Jc(r) · ∇ fλμ(r)dr = i

h̄

∫
fλμ(r)[H, ρ(r)]dr, (27)

where H is the Hamiltonian of the nuclear system and ρ(r) is
the charge density for pointlike nucleons,

ρ(r) = e
A∑

j=1

gl jδ(r j − r). (28)

Hence the convection integral in the right-hand side of
Eq. (25) becomes

∫
Jc · AE

λμdr = − i(Ei − E f )

h̄

∫
fλμ(r)ρ(r)dr

+
∫

Jc · A′E
λμdr. (29)

This means that, by using the Siegert theorem, the equivalent
expressions (23) and (24) lead to different results since fλμ

and A′E
λμ differ.

With

ε = sgn(Ei − E f ), (30)

the Siegert form of the transition operator derived from Eq. (1)
is [11,12]

M̃Eλ
μ (P) = (2λ + 1)!!

(λ + 1)kλ

A∑
j=1

{
εegl j

(
φλμ + r

∂φλμ

∂r

)
j

+ eh̄k

2mpc

[
gl j

(
3φλμ + r

∂φλμ

∂r
+ 2φλμr

∂

∂r

)
j

+ gs j (Lφλμ) j · S j

]}
. (31)

As A′Eλ
μ does not commute with the momentum, the full sym-

metrized expression (17) of the convection current has been
used.

Similarly, with

∇2
� = −L2, (32)

one obtains, from Eq. (4) [4,6],

M̃Eλ
μ (FF) = (2λ + 1)!!

(λ + 1)kλ

A∑
j=1

{
εegl jλ(λ + 1)Gλ(kr j )Yλμ(� j )

+ eh̄k

2mpc

(
gl jHλ(kr j )[λ(λ + 1)Yλμ(� j ) + 2(LYλμ) j · L j] + gs j (Lφλμ) j · S j

)}
. (33)

More generally, with Eq. (11), one has

M̃Eλ
μ (α) = (1 − α)M̃Eλ

μ (P) + αM̃Eλ
μ (FF). (34)

All these operators are different but their long-wavelength
approximations are identical. Differences occur at higher or-
ders in k. The existence of this ambiguity is usually of minor
importance except for ‘forbidden’ E1 transitions between
isospin zero states.

Notice that these operators do not verify the adjoint prop-
erty (23). The transformed part contains the ε sign which is

necessary to compute transposed matrix elements. In Ref. [6],
equations (23) and (24) implicitly assume Ei > E f .

IV. ELECTRIC DIPOLE OPERATOR

For discussing the electric dipole operator, one must use
Galilean invariant expressions of the coordinates [13,14],

r′
j = r j − R, (35)

p′
j = p j − A−1 p, (36)
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where R and P are the coordinate and momentum of the
center of mass. The corresponding orbital momentum is
L′

j = r′
j × p′

j .
The E1 operators are given at leading order by

ME1
μ = ME1,S

μ + ME1,IV
μ + ME1,SV

μ . (37)

The successive terms are scalar (S), isovector (IV), and spin-
vector (SV) parts of the operator. The scalar term vanishes
at the LWA. The dominant term is then usually the isovector
term but it also vanishes in matrix elements of N = Z systems
if pure T = 0 wave functions are used. This term contributes
because of small T = 1 components in the wave functions. In
N = Z systems, the three types of terms shown in Eq. (37)
may compete and their relative importance is poorly known
(see Sec. VI). The spin-dependent last term common to all
expressions of the E1 operator also contains an isovector com-
ponent which should contribute weakly and is not considered
here.

Let me first discuss the LWA part of the isovector term.
Since nonzero isospin components are small in N = Z sys-
tems, higher order terms can safely be neglected. When the
Siegert transform is not performed, the isovector term is given
from either Eq. (23) or (24) by

ME1,IV
μ = ieh̄

mpck

A∑
j=1

(
1

2
− t j3

)
(∇rY1μ) j · p′

j

= − ieh̄

mpck

√
3

4π

A∑
j=1

t j3 p′
jμ,

where p′
jμ are the tensor components corresponding to vector

operator p′. After the Siegert transform, it takes the well-
known form

M̃E1,IV
μ (P, FF ) = −e

A∑
j=1

t j3r′
jY1μ(�′

j ). (38)

The isoscalar spin-vector term reads

ME1,SV
μ = M̃E1,SV

μ = eh̄k

8mpc
(gp + gn)

A∑
j=1

r′
j (LY1μ)′j · S j .

(39)

This part is identical in all expressions of the E1 operator.
Let V be a vector operator and V 1

μ with μ = −1, 0,+1 be the
associated tensor of rank 1. A useful relation is

(LY1μ) · V =
√

2 [Y 1 ⊗ V 1]1
μ = i

√
3

4π
(er × V )1

μ. (40)

In particular, for the orbital momentum, this relation becomes,
with Eqs. (7) and (9),

(LY1μ) · L = −
√

3

4π
∇�μ = −i

(
Y1μr · p −

√
3

4π
r pμ

)
, (41)

where ∇�μ is the tensor operator associated to the vector
operator defined by Eq. (7).

Now let us consider the scalar part. Without Siegert trans-
form, it reads from either Eq. (23) or (24),

ME1,S
μ = ieh̄k

20mpc

A∑
j=1

[
r′

jY1μ(�′
j )r

′
j · p′

j − 2

√
3

4π
r′2

j p′
jμ

]
.

(42)

With Siegert transform, one obtains, from Eq. (31) or (33) (see
Eqs. (29) and (33) in Ref. [6]),

M̃E1,S
μ (P) = −εe

k2

10

A∑
j=1

r′3
j Y1μ(�′

j )

+ ieh̄k

4mpc

A∑
j=1

r′
jY1μ(�′

j )r
′
j · p′

j (43)

and

M̃E1,S
μ (FF) = −εe

k2

60

A∑
j=1

r′3
j Y1μ(�′

j )

+ eh̄k

12mpc

A∑
j=1

r′
j (LY1μ)′j · L′

j . (44)

The latter expression can be rewritten with Eq. (41) as

M̃E1,S
μ (FF)

= −εe
k2

60

A∑
j=1

r′3
j Y1μ(�′

j ) + ieh̄k

12mpc

A∑
j=1

[
r′

jY1μ(�′
j )r

′
j · p′

j

−
√

3

4π
r′2

j p′
jμ

]
. (45)

These expressions are linked with a simple relation

M̃E1,S
μ (FF) = 5

6ME1,S
μ + 1

6M̃E1,S
μ (P). (46)

Operator (42) is thus equivalent to a member of the scalar part
of the family (34) of transformed operators with α = 6/5,

ME1,S
μ = − 1

5M̃E1,S
μ (P) + 6

5M̃E1,S
μ (FF). (47)

An infinity of other expressions are obtained with Eq. (34).
The combination in the right-hand side of Eq. (47) is the only
one in this family to verify property (20) of the adjoint.

V. MAGNETIC DIPOLE OPERATOR

For completeness, let me briefly recall the expressions for
magnetic transition operators. The vector potential is given by
Eq. (12). With the definition [2,10]

MMλ
μ = − i

c

√
λ

λ + 1

(2λ + 1)!!

kλ

∫
J · AM

λμdr, (48)
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the magnetic operators can be written with Eqs. (22), (12),
(21), and (1) as [1,6]

MMλ
μ = 2μN

c

(2λ + 1)!!

(λ + 1)kλ

A∑
j=1

{
gl j[∇φλμ] j · L j

+ 1

2
gs j

[(
k2r + ∇ ∂

∂r
r

)
φλμ

]
j

· S j

}
. (49)

An equivalent expression can be obtained with the Friar-
Fallieros form (4) of the electric multipole in the magnetiza-
tion term (21).

At the LWA, the magnetic dipole operator is given in
translation-invariant form by

MM1
μ = μN

c

√
3

4π

A∑
j=1

(gl jL
′
jμ + gs jS jμ). (50)

The initial and final states of a transition are eigenstates of
the total angular momentum of the system. Because of their
orthogonality, an equivalent operator in the sense of Eq. (25)
is

M̃M1
μ = μN

c

√
3

4π

{
1

2
(gp + gn − 1)Sμ

−
A∑

j=1

t j3[L′
jμ + (gp − gn)S jμ]

}
, (51)

where S is the total spin operator of the nucleons.

VI. DISCUSSION

In summary, let me again emphasize that the two ap-
parently different expressions (23) and (24) of the electric
transition operators in the Coulomb gauge are identical. When
used in numerical calculations, they must give the same results
up to rounding errors. On the contrary, after the Siegert trans-
formation (29), these operators lead to different expressions
and their use should give different results. The differences
occur only beyond the long-wavelength approximation and do
not much concern the majority of electromagnetic transitions
in nuclei or reactions. On the contrary, they might affect
the physics of reactions involving T = 0 nuclei where dipole
transitions are strongly hindered and are in competition with
other multipoles.

A consequence unnoticed in Ref. [6] is that a continu-
ous infinity of transformed electric multipoles exists which

introduces an additional ambiguity when the usually dominant
long-wavelength term vanishes. This problem is significant
for dipole operators when N = Z . Determining the most real-
istic form of the Siegert transformed E1 multipole in this case
or even whether the transformation is useful remains an open
question requiring numerical studies on physical examples.

Among the infinite family of transformed dipole operators,
one of them has the same leading scalar and spin parts as
the non transformed operator [see Eq. (47)]. It has the same
adjoint property (20) as the unique non-transformed operator
and allows a comparison of the isovector parts of these opera-
tors.

In reactions between T = 0 nuclei, the leading part of the
E1 operator contains three components with different physical
natures: scalar, isovector, and spin vector. Without explicit
numerical calculations, it is difficult to estimate the relative or-
ders of magnitude of these parts because some results depend
on small isospin and spin mixings. The total E1 transition
strength and thus the relative importance of E1 with respect
to E2 and M1 remain uncertain.

Partial information is available in the literature for the
α + deuteron radiative capture reaction, but is not conclusive.
In the nonmicroscopic three-body model of Ref. [15], the
isovector term is important at low energies but the isospin
component of the wave function might be overestimated by
the technique of elimination of forbidden states [16]. The
scalar part computed with the Friar-Fallieros form (44) is
very small. The isovector part is found negligible in the
ab initio calculation of Ref. [17] but the scalar component is
not considered. In the microscopic cluster model of Ref. [18],
the E1 spin term is found dominant with respect to the
beyond-LWA E1 scalar term but isospin mixing cannot be
considered in this simple one-center model of the deuteron.
A full evaluation of the different terms remains to be done in
this α + d case. Knowing the accuracy of the E1 treatment for
this reaction is important for future computational studies of
other capture reactions between N = Z nuclei. In particular,
the E1 component of the α + 12C radiative capture reaction
which is crucial for astrophysics remains insufficiently known
in spite of many decades of experimental and theoretical
efforts. The α + d reaction is the simplest testing ground to
fix uncertainties on the treatment of isospin-forbidden dipole
transitions.
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