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Relativistic two-body currents for one-nucleon knockout in electron-nucleus scattering

T. Franco-Munoz ,1 J. García-Marcos ,1,2 R. González-Jiménez ,1 and J. M. Udías 1

1Grupo de Física Nuclear, Departamento de Estructura de la Materia, Física Térmica y Electrónica, Facultad de Ciencias Físicas,
Universidad Complutense de Madrid and IPARCOS, CEI Moncloa, Madrid 28040, Spain

2Department of Physics and Astronomy, Ghent University, B-9000 Gent, Belgium

(Received 5 July 2023; accepted 22 August 2023; published 22 December 2023)

We present a detailed study of the contribution from two-body currents to the one-nucleon knockout process
induced by electromagnetic interaction. The framework is a relativistic mean-field model in which bound and
scattering nucleons are consistently described as solutions of Dirac equation with potentials. We show results
obtained with the most general expression of the two-body operator, in which the intermediate nucleons are
described by relativistic mean-field bound states; then, we propose two approximations consisting in describing
the intermediate states as nucleons in a relativistic Fermi gas, preserving the complexity and consistency in
the initial and final states. These approximations simplify the calculations considerably, allowing us to provide
outcomes in a reasonable computational time. The results obtained under these approximations are validated
by comparing with those from the full model. Additionally, the theoretical predictions are compared with
experimental data of the longitudinal and transverse responses of carbon 12. The agreement with data is
outstanding for the longitudinal response, where the contribution from the two-body operator is negligible. In the
transverse sector, the two-body current increases the response from 30 to 15 %, depending on the approximations
and kinematics, in general, improving the agreement with data.
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I. INTRODUCTION

New generations of accelerator-based neutrino oscillation
experiments, DUNE [1] and T2HK [2], require an unprece-
dent level of accuracy to succeed in determining neutrino
properties as the CP-violating phase in the lepton sector
and the neutrino-mass hierarchy. However, a major source of
systematic uncertainty comes from the modeling of neutrino-
nucleus interaction. Therefore, an accurate description of
these reactions has become one of the top challenges for
theoretical nuclear physics [3].

Electron scattering is a powerful tool to obtain informa-
tion about the response of nuclei and, due to its connection
with neutrino-nucleus interaction, the interest on it has been
renewed [4–7]. In contrast with neutrino beams, where the
incident neutrino energy is not a priori known and only flux
distributions are available, electron scattering has the advan-
tage of nearly monochromatic beams with well-determined
energies. In this way, the comparison with electron exper-
imental data provides a benchmark for the validation of
theoretical nuclear models. Hence, before applying any model
in neutrino oscillation analyses, it is mandatory to first vali-
date it against electron data. However, such a test is necessary
but not sufficient to ensure the validity of a model, since only
the vector part of the weak response can be tested through the
electromagnetic response.

In the energy regime of accelerator-based neutrino oscilla-
tion experiments, the neutrino-nucleus interaction is driven by
several reaction mechanisms: Elastic scattering, discrete and
collective nuclear excitations, quasielastic (QE) scattering,

multinucleon knockout processes, pion production, and deep-
inelastic scattering. Our focus is placed on the quasielastic
region, where the incoming neutrino scatters off a nucleon,
bound by the nuclear potential. QE scattering is the main
interaction mechanism for neutrinos with energies around
1 GeV, being key to the understanding of neutrino interactions
with nuclei and, consequently, its properties. In this work, we
explore the impact of pions on the particle-hole (1p-1h) exci-
tations, considering the interaction between nucleons through
one pion exchange as two-body meson-exchange currents
(MEC). It includes the contribution from the �-resonance
mechanisms (Fig. 2) and the contributions deduced from the
chiral perturbation theory Lagrangian of the pion-nucleon sys-
tem [8] [Fig. 1, chiral perturbation theory (ChPT) background
or, simply, background terms in what follows]. We construct a
two-body current containing all Feynman diagrams with one
exchanged pion between two nucleons through the mentioned
mechanisms that results in a 1p-1h excitation.

Here, we present a fully relativistic and quantum me-
chanical model for the simultaneous computation of the
1p-1h longitudinal and transverse electromagnetic nuclear re-
sponses. We consider an independent particle shell model
approach where the initial particle state is described by a rela-
tivistic mean-field (RMF) model, meanwhile the final state is
computed as a solution of the Dirac equation in the continuous
with the energy-dependent relativistic mean-field (ED-RMF)
potential. The key contribution of this work is the intro-
duction of two-body meson-exchange currents. Particle-hole
excitations through two-body currents present an intermediate
bound-nucleon state which, in the most general approach, is
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FIG. 1. Background contributions: Seagull or contact [CT, (a)
and (b)] and pion-in-flight [PF, (c)]. N ′ denotes the intermediate
bound-nucleon state.

described as a bound particle by the RMF potential. However,
the computational effort that require these calculations mo-
tivated us to introduce two approximations: The description
of the intermediate state as free Dirac spinors in a relativis-
tic Fermi gas (RFG) and its extension including modified
mass and energy that account for the relativistic interaction
of nucleons. Our results for the 12C inclusive electromagnetic
response functions including two-body currents show an in-
crease of the transverse response, improving the agreement
with data, meanwhile in the longitudinal one the effect is
hardly visible.

Our results agree with recent calculations based on the
nonrelativistic ab initio model of [9], with an increase of the
transverse response over the whole energy transfer spectrum
and little effect in the longitudinal sector. This is also obtained
with the relativistic models of Refs. [10–12], in which the
two-body currents were studied within a relativistic Fermi gas
approach.

The paper is organized as follows. In Sec. II we present our
general formalism for the treatment of the nuclear structure.
Then, in Sec. III we introduce the two-body contributions in
the general case and, later, with the two possible approxima-
tions. Results for the inclusive electromagnetic responses of
12C are shown and analyzed in Sec. IV. Finally, in Sec. V we
draw our conclusions.

II. NUCLEAR MODEL

We consider that only one boson is exchanged between
the leptons and hadron system. The impulse approximation
(IA), in which one considers that the boson couples only
the knocked out nucleon, gives the main contribution to the
QE response, through the one-body current. In this work, we
go beyond IA and include two-body currents within a fully
relativistic framework.

In our model, the inclusive hadronic responses are given
by the integration over the variables of the unobserved final
nucleon and the summation over all initial nucleons:

RL,T =
∫ 2π

0
dφN

∫ 1

−1
d cos θN

K

(2π )3

∑
κ

Rκ
L,T . (1)

κ represents the occupied nuclear shells (for neutrons and
protons), θN and φN are the angles of the final nucleon, and
K is a function containing kinematical factors

K = MB pN MN

MA frec
, frec = 1 + ωpN − qEN cos θN

MA pN
. (2)

MA and MB are the masses of the target and residual system.
The functions Rκ

L,T are the exclusive hadronic responses for
each particular shell. They are linear combinations of different
components of the hadronic tensor Hμν

κ :

Rκ
L =

(
q2

Q2

)2(
H00

κ − ω

q

(
H03

κ + H30
κ

) + ω2

q2
H33

κ

)
,

Rκ
T = H11

κ + H22
κ , (3)

defined in a coordinate system with the z axis in the direc-
tion of the transferred momentum q = (0, 0, q). The hadronic
tensor is given by

Hμν
κ =

∑
mj ,s

[
Jμ
κ,mj ,s

]∗
Jν
κ,mj ,s. (4)

The hadronic current, Jμ
κ,mj ,s, includes all the processes

that lead to a final 1p-1h state. It is computed between an
initial A-body nuclear ground state and a final scattering state
with a scattered nucleon and an A − 1-body residual nucleus.
We simplify the nuclear part by considering a shell model
approach, introducing an independent particle description of
the system in which each nucleon is subjected to a central
potential created by the others. Then, the initial and final
nuclear states can be expressed in terms of single-particle
wave functions orthogonal to each other. The final state is
given by the product of a wave function for the A − 1 residual
nucleus and a distorted wave describing the ejected nucleon.
In addition, factorizing the center of mass, the initial nuclear
state is given by the product of an independent particle wave
function coupled to the rest of the initial nucleus and the
wave function for these remaining A − 1 nucleons. Taking
into account all these considerations, the hadronic current can
be expressed in terms of the initial and final single-particle
states, we finally get

Jμ
κ,mj ,s =

∫
dp	

s
(p′

N , pN )
μ	
mj
κ (p), (5)

where p is the momentum of the bound nucleon and mj the
third-component of its total angular momentum j. pN is the
asymptotic momentum of the final nucleon, p′

N its momentum
inside the nucleus, and s its spin. The hadronic current oper-
ator 
μ includes all the processes that lead to a final 1p-1h
state.

The bound wave function 	
mj
κ is obtained using a RMF

model which is an extension of the original σ -ω model in-
cluding nonlinear couplings to the σ meson [13]. The starting
point of the model is the construction of a phenomenolog-
ical Lorentz covariant Lagrangian density that includes the
nucleon-nucleon interaction through meson exchange. The
parameters (couplings and mass of the σ meson) are adjusted
by fitting general properties of some finite nuclei. The bound
wave function is obtained in the Hartree approach as a solution
of the Dirac equation with spherically symmetric scalar and
vector potentials, giving a four-component spinor with good
total angular momentum quantum numbers κ and mj ,

	
mj
κ (p) = (−i)l

(
gκ (p)

Sκ fκ (p) σ·p
p

)
ϕ

mj
κ (
p). (6)
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The distorted wave function of the knocked out nucleon
	s is obtained as a solution of the Dirac equation in the
continuous with scalar and vector potentials. It is expressed
as a partial wave expansion

	
s
(p′

N, pN ) = 4π

√
EN + MN

2MN

∑
κ,mj ,m

i�e−iδ∗
κ

×
〈
�m

1

2
sN

∣∣∣∣ jm j

〉
Y m∗

� (p̂N )φmj
κ (p′

N), (7)

where φ
mj
κ (p′

N) are spinors as in Eq. (6) [14–16]. In this
work, the final nucleon wave function is described using the
ED-RMF potential. This is a real potential that, by construc-
tion, is identical to the potential felt by the bound nucleons
when there is no overlap between final and initial state, so
that orthogonality is preserved. For increasing final nucleon
momentum, when there is no overlap, the potential weakens,
similarly as the usual phenomenological energy-dependent
optical potentials (see details in [17–19]).

In the independent-particle shell model (IPSM), the nu-
cleus 12C consists of two nucleons in the 1s1/2 state and four
nucleons in the 1p3/2 state, and the missing energy distribution
(referring to the portion of transferred energy that converts
into internal energy of the residual nucleus) is the sum of
two Dirac deltas. However, this simplistic approximation does
not fully capture the actual missing energy distribution, which
has been experimentally measured in (e, e′ p) experiments for
carbon and other nuclei [20,21]. The experimental data reveal
that the energy response of each shell exhibits a finite width.
Additionally, it is observed that the experimental occupancy
of the shells is reduced compared to the predictions of the
IPSM. Correlations beyond the IPSM moves the nucleons
from the independent-particle levels to deeper missing energy
(Em) and missing momentum (pm) regions. To account for
these effects, we incorporate into our formalism a more re-
alistic missing energy profile inspired by the Rome spectral
function [22,23]. In particular, we decrease the occupation of
the 1s1/2 and 1p3/2 shells to 3.3 and 1.8, respectively. Addi-
tionally, we consider the high missing energy and momentum
region of the spectral function arising from short-range corre-
lations, modeling it with an s wave that is fitted to reproduce
the momentum distribution of the Rome spectral function (for
more details see [24,25]).

III. TWO-BODY CONTRIBUTIONS

Now, we extend the usual treatment of QE scattering,
based on a one-body current operator, and include one-pion
exchange effects by incorporating two-body meson-exchange
currents with a final particle-hole state. Then, the hadronic
current reads

Jμ
κ,mj ,s = Jμ

1b + Jμ

2b. (8)

The one-body part is given by the well-known expression

Jμ

1b =
∫

dp	
s
(p + q, pN )
μ

1b	
mj
κ (p), (9)

where the one-body current operator 

μ

1b is computed using
the CC2 prescription [14,15,26].

A. The general case: Intermediate RMF-nucleon approach

The two-body current is the sum of the contributions from
the dominant �-resonance mechanism (diagrams in Fig. 2)
and the background from the ChPT πN-Lagrangian1 (dia-
grams in Fig. 1). The particle-hole excitation occurs through a
two-body current when, in the two-particle–two-hole (2p-2h)
interaction, one of the outgoing nucleons remains bound to
the nucleus. In this way, the hadronic final state consists in
just one scattered nucleon and there appears an intermediate
bound-nucleon state, denoted as N ′ in the diagrams.

Within the second quantization formalism, the general ex-
pression for any two-body operator is

Ĵ = 1

2

∑
α1,α1′ ,α2,α2′

c†
α1′ c

†
α2′ cα2 cα1 J (α1, α1′ , α2, α2′ ), (10)

where, denoting F as the ground state of the target nucleus,

cα = aα if α > F, (11)

cα = b†
α if α < F (12)

with a†
α (aα) and b†

α (bα) the particle and hole creation (annihi-
lation) operators, respectively. Holes are described by bound
wave functions and particles by distorted wave functions. The
subindex α represents the quantum numbers that label the
single-particle states of the system, thus, they are different in
each case. For the holes, the quantum numbers are κ , mj and
the isospin and, for the particles, the momenta, the spin and
the isospin. For clearness, we omit the isospin subscripts.

We are interested in a particle-hole final state, in which a
nucleon of the target nucleus in state |α ≡ κ, mj〉 is knocked
out and detected in state |αN ≡ PN , sN 〉,

|αN ; α〉 = a†
αN

b†
α|F 〉. (13)

Then, the two-body hadronic current between the ground state
and a particle-hole excited state reads

〈αN ; α|Ĵ|F 〉 =
∑
α′<F

[J (α, αN , α′, α′) − J (α′, αN , α, α′)],

(14)

where antisymmetrization is implicitly included and the mi-
nus sign for fermionic loops is recovered in the resulting
expression. α′ denotes the quantum numbers of the interme-
diate bound-nucleon state and its summation runs over all
occupied levels in the ground state. In the general case, the
intermediate bound particles are described using the RMF
model, so α′ ≡ κ ′, m′

j , and we refer to it as the intermediate
RMF-nucleon approach. An important difference with respect
to the relativistic Fermi gas case used in other works [12]
is that the momentum is not a quantum number of RMF-
bound states. Then, there is no restriction to the momentum
of the intermediate nucleons to be the same. The terms

1The expressions of the vertices used in this work can be found in
Appendix A in [27].
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FIG. 2. � exchange [(a),(b),(c),(d)] and direct [(e),(f),(g),(h)] contributions. N ′ denotes the intermediate bound-nucleon state.

J (α, αN , α′, α′) and J (α′, αN , α, α′) represent the direct and
exchange contributions, respectively. In the exchange terms,
the 1p-1h excitation results when one of the outgoing nucleons
of the 2p-2h excitation fills in the hole left by the other, so
that it remains bound. In the direct terms, one of the final
nucleons remains in its initial bound state after the interaction.
For the background diagrams, the direct terms vanishes due
to the isospin dependence of the ChPT Lagrangian. Hence,
only the exchange terms contribute (Fig. 1). On the other
hand, the �-resonance part has contributions from both ex-
change and direct terms [respectively, diagrams (a)–(d) and
(e)–(h) in Fig. 2]. For the � case, every process can occur
through intermediate proton or neutron, so both contributions
have to be added. Finally, the two-body current reads

Jμ

2b =
∫

dp
∫

dpp

(2π )3/2

∫
dph

(2π )3/2

× 	
s
(p + ph + q − pp, pN )
μ

2b	
mj
κ (p) (15)

with pp and ph the momenta of the intermediate nucleons.
The two-body operator is the sum of the � resonance and
background diagrams: 


μ

2b = 

μ
ChPT + 


μ
�.

The hadronic current operators for the background terms
read



μ
ChPT,(A) = IFCT F 2

πNN

2 f 2

m2
π

/Kπγ 5 �N ′ (ph, pp)

K2
π − m2

π

γ μγ 5, (16)



μ
ChPT,(B) = −IFCT F 2

πNN

2 f 2

m2
π

γ μγ 5 �N ′ (ph, pp)

K2
π − m2

π

/Kπγ 5, (17)



μ
ChPT,(C) = IFPF FπNN

(
K2

π,1

)
FπNN

(
K2

π,2

)2 f 2

m2
π

× (Q + 2P − 2Pp)μ(
K2

π,1 − m2
π

)(
K2

π,2 − m2
π

) /Kπ,1γ
5

×�N ′ (ph, pp) /Kπ,2γ
5, (18)

where K (A)
π = K (C)

π,1 = P + Q − Pp and K (B)
π = K (C)

π,2 = Pp −
P. For the � contribution, the current operators are given by



μ
�,(a) = −IFπNN Fπ�N

f

mπ

/Kπγ 5 �N ′ (ph, pp)

K2
π − m2

π

×
α
�πN ′S�,αβ


βμ

γ�N ,

P�,a = P + Q, (19)



μ

�,(b) = −IFπNN Fπ�N
f

mπ


α
�πN S�,αβ


βμ

γ�N ′

× �N ′ (ph, pp)

K2
π − m2

π

/Kπγ 5,

P�,b = Q + Ph, (20)



μ
�,(c) = −IFπNN Fπ�N

f

mπ

/Kπγ 5 �N ′ (ph, pp)

K2
π − m2

π

× 
̄
αμ

γ�N ′S�,αβ

β

�πN ,

P�,c = Pp − Q, (21)



μ

�,(d ) = −IFπNN Fπ�N
f

mπ


̄
αμ
γ�N S�,αβ


β

�πN ′

× �N ′ (ph, pp)

K2
π − m2

π

/Kπγ 5,

P�,d = P′
N − Q, (22)



μ
�,(e) = IFπNN Fπ�N

f

mπ

�πN ′ (ph, pp, Kπ )

K2
π − m2

π


α
�πN S�,αβ


βμ

γ�N ,

P�,e = P + Q, (23)



μ

�,( f ) = IFπNN Fπ�N
f

mπ

��N ′ (ph, pp, P�, f )

K2
π − m2

π

/Kπγ 5,

P�, f = Q + Ph, (24)



μ
�,(g) = IFπNN Fπ�N

f

mπ

�πN ′ (ph, pp, Kπ )

K2
π − m2

π


̄
αμ
γ�N S�,αβ


β

�πN ,

P�,g = P′
N − Q, (25)



μ

�,(h) = IFπNN Fπ�N
f

mπ

�̄�N ′ (ph, pp, P�,h)

K2
π − m2

π

/Kπγ 5,

P�,h = Pp − Q, (26)

where K (a)
π = K (c)

π = P + Q − Pp, K (b)
π = K (d )

π = Pp − P,
K (e)

π = K (g)
π = P + Q − P′

N , K ( f )
π = K (h)

π = Q + Ph − Pp, and

̄

αμ
γ�N (Pμ, Qμ) = γ 0[
αμ

γ�N (Pμ,−Qμ)]†γ 0. I is the isospin
coefficient of each diagram, given in Table I, and to shorten
the expressions we have introduced the intermediate RMF
projectors,

�N ′ (p, p′) =
∑
κ ′,m′

j

	
m′

j

κ ′ (p)	
m′

j

κ ′ (p′), (27)
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TABLE I. Isospin coefficients I for the possible contributions
to meson exchange currents. N ′ denotes the intermediate bound-
nucleon state. CT and PF refer to the background diagrams in Fig. 1,
while � (a)–(h) refers to the � diagrams in Fig. 2.

Channel CT PF � (a), (d), (e), (g) � (b), (c), (f), (h)

p → p (N ′ = p) 0 0 1/
√

3 1/
√

3
p → p (N ′ = n) 1 1 −1/

√
3 1/

√
3

n → n (N ′ = p) −1 −1 1/
√

3 −1/
√

3
n → n (N ′ = n) 0 0 −1/

√
3 −1/

√
3

�πN ′ (p, p′, Kπ ) =
∑
κ ′,m′

j

	
m′

j

κ ′ (p′) /Kπγ 5	
m′

j

κ ′ (p), (28)

��N ′ (p, p′, P�) =
∑
κ ′,m′

j

	
m′

j

κ ′ (p′)
α
�πN ′S�,αβ


βμ

γ�N ′	
m′

j

κ ′ (p),

(29)

�̄�N (p, p′, P�) =
∑
κ ′,m′

j

	
m′

j

κ ′ (p′)
̄αμ

γ�N ′S�,αβ

β

�πN ′	
m′

j

κ ′ (p).

(30)

Finally, to account for the nucleon structure we introduce
form factors in the background operators,

FCT (Q2) = FPF (Q2) = FV
1 (Q2), (31)

where FV
1 is the isovector nucleon form factor. Also, we add

a strong form factor in the γπNN and πNN vertices, FπNN ,
and in the π�N vertex, Fπ�N , which accounts for the off-shell
nature of the pion:

FπNN (K2
π ) = �2 − m2

π

�2 − K2
π

, Fπ�N (K2
π ) = �2

π�N

�2
π�N − K2

π

(32)

with � = 1.3 GeV [10,12] and �2
π�N = 1.5M2

N [10,28].

B. The intermediate RFG-nucleon approximation

The complexity of these expressions, in particular the
appearance of a nine-dimensional integral in the two-body
current (15), makes the computational time extremely high.
For this reason, it is useful to describe the intermediate bound-
nucleon state as free Dirac spinors in an RFG, in the same way
as done in infinite nuclear matter [12]. Then, the summation
over the occupied levels of the ground state in Eq. (14) now
implies a sum over the intermediate momentum pph, spin,
and isospin. In contrast with the RMF-nucleon case discussed
above, here, one has the constraint that the momentum of
the intermediate nucleons must be the same and the hadronic
current is reduced to a six-dimensional integral. Additionally,
in an isospin symmetric nucleus, the �-resonance direct terms
and the exchange diagrams (a) and (d) vanish due to the sum
over spin and isospin.

Under this approximation, the two-body current can be
written as

Jμ

2b,free =
∫

dp
∫

dpph

(2π )3
�(pF − pph)

× 	
s
(p + q, pN )
μ

2b,free	
mj
κ (p) (33)

with



μ

2b,free = 

μ
ChPT,(A) + 


μ
ChPT,(B) + 


μ
ChPT,(C)

+ 

μ

�,(b) + 

μ
�,(c). (34)

Note that, now, we can reorganize the expression of the two-
body current and write the hadronic current including one-
and two-body contributions [Eq. (8)] as

Jμ
κ,mj ,s =

∫
dp	

s
(p + q, pN )
μ	

mj
κ (p) (35)

with


μ = 

μ

1b +
∫

dpph

(2π )3
�(pF − pph)
μ

2b,free. (36)

In Eq. (36) pF is the Fermi momentum of the nucleus, for
carbon 12 we use the usual value 228 MeV, both for protons
and neutrons.

Within this approximation, the hadronic current operators
for the background terms are given by



μ
ChPT,(A) = IFCT F 2

πNN

2 f 2

m2
π

M

Eph
/Kπγ 5 �(Pph)

K2
π − m2

π

γ μγ 5, (37)



μ
ChPT,(B) = −IFCT F 2

πNN

2 f 2

m2
π

M

Eph
γ μγ 5 �(Pph)

K2
π − m2

π

/Kπγ 5,

(38)



μ
ChPT,(C) = IFPF FπNN

(
K2

π,1

)
FπNN

(
K2

π,2

)2 f 2

m2
π

M

Eph

× (Q + 2P − 2Pph)μ(
K2

π,1 − m2
π

)(
K2

π,2 − m2
π

)
× /Kπ,1γ

5�(Pph) /Kπ,2γ
5 (39)

with K (A)
π = K (C)

π,1 = P + Q − Pph and K (B)
π = K (C)

π,2 = Pph −
P. For the contributing �-resonance terms, the hadronic cur-
rent operators reads



μ

�,(b) = −IFπNN Fπ�N
f

mπ

M

Eph

α

�πN S�,αβ

βμ

γ�N

× �(Pph)

K2
π − m2

π

/Kπγ 5,

P(b)
� = Pph + Q, (40)



μ
�,(c) = −IFπNN Fπ�N

f

mπ

M

Eph
/Kπγ 5 �(Pph)

K2
π − m2

π

× 
̄
αμ
γ�N S�,αβ


β

�πN ,

P(c)
� = Pph − Q (41)

with K (b)
π = Pph − P and K (c)

π = P + Q − Pph. As before, I is
the isospin coefficient, given in Table I, and to shorten the
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FIG. 3. 12C longitudinal (up) and transverse (bottom) electro-
magnetic inclusive response functions considering only one-body
currents. The transferred momentum q is 380 MeV/c. We show
results for the relativistic Fermi gas (RFG), the relativistic Fermi
gas with a modified initial nucleon (RFG∗), and the relativistic plane
wave impulse approximation (RPWIA).

expressions we have introduced the intermediate RFG
projector

�(Pph) = /Pph + M

2M
. (42)

In this case, the projector is the same for protons and neutrons.

C. The modified intermediate RFG-nucleon approximation

In this approach we extend the RFG-nucleon approxi-
mation by including the relativistic interaction of nucleons
through a modified energy and mass due to the scalar and
vector potentials. The attractive scalar potential is accounted
for in the relativistic effective mass

M∗ = m∗M < M. (43)

Meanwhile, the vector potential produces a repulsive energy,
which is added to the on-shell energy to obtain the modified
nucleon energy

E∗ = E + Ev, (44)

where E =
√

p2 + (M∗)2 is the on-shell energy with effective
mass M∗. Then, the responses are computed as in the inter-
mediate RFG-nucleon case with the change M → M∗ and
Eph → E∗

ph in the intermediate nucleon variables. The �γ N
vertex remains with the unmodified mass [29].

Following Ref. [29], we use an effective mass with m∗ =
0.8 and a vector energy of Ev = 141 MeV for 12C. To validate

FIG. 4. 12C longitudinal (up) and transverse (bottom) electro-
magnetic inclusive response functions. The transferred momentum q
is 380 MeV/c. We show our results when the intermediate bound-
nucleon state is described in terms of free particles in an RFG,
including a modified mass and energy (RFG*), and RMF nucleons.
Data are from Jourdan [31].

this approach, in Fig. 3, we compare the inclusive responses
from the relativistic plane wave impulse approximation
(RPWIA) and from a relativistic Fermi gas with a modified
initial nucleon (RFG∗), both computed with only one-body
currents. In the RPWIA model the initial nucleon is described
by a bound wave function, so one would expect the results
of RFG∗ and RPWIA to be similar. Indeed, one observes that
modifying the mass and energy of the initial nucleon in the
RFG produces a shift of the response to higher transferred
energy and a slight decrease of the strength, looking more like
the RPWIA case. Motivated by these results,2 we have applied
this approach to our study of the two-body contributions.

In what follows, we will refer to this approach as interme-
diate RFG*-nucleon approximation. It has been employed in
the calculations of Ref. [30].

IV. RESULTS

In Fig. 4 we show the comparison of the different ap-
proaches that can be taken to describe the intermediate
bound-nucleon state: The simplest case, RFG nucleons, its
extension including scalar and vector potentials, and, finally,
the most complete approach with intermediate RMF nucle-
ons. Our predictions of the 12C electromagnetic inclusive

2Though not shown here, we have made this study for several q,
obtaining similar outcomes.
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FIG. 5. 12C longitudinal (left) and transverse (right) responses. The transferred momentum q is (from up to bottom) 300, 400, 550, and 570
MeV/c. We show our results when the intermediate bound-nucleon state is described in terms of free particles in an RFG, including a modified
mass and energy (RFG*), and RMF nucleons. Data are from Jourdan [31] and Barreau et al. [33].

responses are compared to data extracted by Jourdan [31]
by means of a Rosenbluth separation. In general terms, the
two-body current operator results in an increase of the trans-
verse response and a tiny effect on the longitudinal sector.
The more realistic the treatment of the intermediate bound-
nucleon state, the lower the increase. This gives rise to an
increase of the transverse response up to 31%, 25%, and
19% for the intermediate RFG-nucleon case, its extension
including scalar and vector potentials, and the RMF one,
respectively. The agreement of our results with data is out-
standing for the longitudinal channel, and improved for the
transverse one with the introduction of the two-body currents.

In Fig. 5 we show our results for the inclusive longitudinal
and transverse responses for four different kinematics, com-
puted using the one- and two-body operators and the ED-RMF

potential to describe the final nucleon. We show the responses
computed within the intermediate RFG*- and RMF-nucleon
approaches, but given the extremely high computational cost
only a few points are shown for the latter. The difference
between the two approaches is smaller for larger values of
q, obtaining essentially identical results for momentum trans-
fer around and above 500 MeV/c. This fact motivated the
choice of the intermediate RFG*-nucleon approximation in
the calculations of Ref. [30]. Meanwhile, at low q, the RMF
description of the intermediate nucleons reduces the trans-
verse increase, especially, at low energy transfer.

As mentioned, the intermediate RFG*-nucleon approxi-
mation has the advantage of reducing the two-body current
from a nine- to a six-dimensional integral as well as less
contributing diagrams, in contrast with the RMF case. While
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it is possible to compute the 12C inclusive responses in a
manageable amount of time for the RFG* approach, the
computational effort required for the RMF one makes it im-
practical for its use in predictions of neutrino-nucleus cross
sections, where one has to average over the neutrino flux.
Luckily, in most of accelerator-based neutrino experiments,
the neutrino energy centers at around 1 GeV or above, and for
those energies most of the strength of the cross section comes
from q > 500 MeV/c [32]. Therefore, the RFG* approach
would be an excellent approximation to the complete
model.

Finally, we point out that it is expected to underestimate
the inclusive data, especially in the high energy transfer re-
gion, because other processes, as 2p-2h and pion production,
contribute.

V. CONCLUSIONS

The main contribution of this work is the development
of a model for the computation of the particle-hole elec-
tromagnetic responses of 12C that includes two-body meson
exchange currents. It incorporates the contribution from the
�-resonance mechanism and the background from a ChPT
πN Lagrangian. The introduction of two-body currents results
in an increase of the transverse response, improving the agree-
ment with the data, meanwhile the longitudinal part remains
practically unchanged.

We have presented different approaches to describe the
intermediate bound-nucleon state which appears in the
particle-hole excitation through two-body currents. Our study
considers a shell model description of the nuclear structure.
Then, we start the computation describing the intermediate
nucleons as bound wave functions using the same RMF po-
tential as that of the initial and final nucleons. The key point
of this approach is that orthogonality is preserved between
all particle states. However, the hadronic current implies the
computation of a nine-dimensional integral with the contri-
bution of a high number of diagrams, requiring extremely

high computational times. For this reason, two possible ap-
proximations that simplify the problem have been presented.
First, we approximated the intermediate bound-nucleon state
by free Dirac spinors in an RFG, reducing significantly the
computational effort as the hadronic current is reduced to
a six-dimensional integral with less diagrams contributing.
However, this approach leads to the lost of consistency be-
tween the intermediate state and the initial and final ones,
as well as the bound aspect of the nucleons. To account for
this bound condition, we introduce a modified energy and
mass due to the mean-field scalar and vector potentials. The
differences with respect to the complete RMF case are notably
reduced. This allows us to estimate the inclusive responses of
12C in a feasible amount of time for a variety of kinematics.
Finally, the transverse response show an increase with respect
to the one-body current result of around 31% and 21% for the
RFG* and RMF approaches, respectively.

The next step will be to apply the present model to heav-
ier nuclei, in particular, we will focus on argon 40, which
is of great interest for the neutrino oscillation experiments
MicroBooNE and DUNE. On the other hand, after this first
validation of our theoretical model with the electron scattering
case, we will explore the neutrino-nucleus interaction.
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