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In-medium nucleon-nucleon cross sections from characteristics of nuclear
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Based on the Boltzmann-Uehling-Uhlenbeck (BUU) transport equation, a medium correction to the elastic
nucleon-nucleon (NN) cross sections is given by comparing the width of the isovector giant dipole resonance in
208Pb and the nuclear stopping obtained from the BUU equation with those from experimental measurements.
For the nuclear stopping, we choose the scaled rapidity distributions and the nuclear stopping power vart l ,
denoted as the ratio of the variances of the transverse to that of the longitudinal rapidity distributions, of central
197Au + 197Au collisions at the energy of 150A MeV measured by the INDRA and the FOPI collaborations. This
enables us to provide a unified medium correction of elastic NN cross sections for distinct energy regimes. A
reliable in-medium NN cross section, as given here, will reduce the uncertainties of the BUU equation when
applying it to nuclear collective motion and heavy-ion collisions to extract the information of the nuclear
equation of state.
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I. INTRODUCTION

The transport model of heavy-ion collisions (HICs) serves
as an effective tool for describing their dynamical evolution
and exploring the properties of the strong-interacting matter
produced during the collisions [1–7]. There are two main
ingredients in the transport approach, i.e., the mean-field and
the collision term. The former is responsible for the drift part
of the transport equation, which embodies the information
of the nuclear equation of state (EoS) [8–10], and the latter
contains the properties of two-body scattering cross sections.
By comparing the certain final-state observable obtained from
the transport model with that from experimental measure-
ments, information about the nuclear EoS can be extracted
[11–19]. For example, through the observables of nuclear
giant resonance [20–23], the neutron-proton flow [24–26], the
nuclear stopping [27–29], the neutron-to-proton spectral ratio
[30–33], and the charged pion ratio [34–36], characteristic
quantities of the nuclear EoS and/or its symmetry energy
term, have been extracted through studying these collisions.

The prerequisite of such a methodology is that the nucleon-
nucleon (NN) cross sections in the collision term of the
transport approach remain relatively fixed, or the observable
shows little dependence on it. Therefore, to improve the reli-
ability of the transport model when employing it to extract
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the information of the nuclear EoS, it is necessary to nar-
row down the uncertainties of the NN cross sections used
in transport models. Since the NN scatterings occur in the
nuclear medium formed during the collisions, one should
use in-medium NN cross sections σ ∗

NN in transport models.
The σ ∗

NN is usually described by the NN cross sections in
free space σ free

NN multiplied by a medium correction factor F ,
with the former being directly measured through experiments
[37]. The σ ∗

NN can be calculated using different theoretical
approaches like the Dirac-Brueckner-Hartree-Fock approach
and the closed time-path Green’s function approach [38–42].
It is generally suppressed with respect to σ free

NN due to the Pauli
blocking. On the other hand, the σ ∗

NN or its correction fac-
tor F can be constrained within the transport model through
experimental observables that are sensitive to the in-medium
NN scatterings, such as the collective flow and the rapidity
distribution [43–48]. In this case, F is usually parametrized
as a function of the local density of the nuclear medium and
the total kinetic energy of the two scattering nucleons [45,46].
As the total kinetic energy of the two scattering nucleons
increases, the phase-space density around them decreases and
the medium correction of their cross section should diminish.
Therefore, observables corresponding to low energy regimes
play an important role in obtaining a unified parametrization
of σ ∗

NN . The width of nuclear giant resonances � is related
to the two-body dissipation of nucleons, which manifests
itself through the NN scattering σ ∗

NN in transport models.
Consequently, the � provides a natural probe to study the
medium effect of NN cross sections in the low-energy regime
[48].

2469-9985/2023/108(6)/064603(10) 064603-1 ©2023 American Physical Society

https://orcid.org/0009-0009-1938-0609
https://orcid.org/0000-0002-6465-6186
https://orcid.org/0000-0003-3334-8508
https://orcid.org/0000-0002-0233-9900
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.108.064603&domain=pdf&date_stamp=2023-12-06
https://doi.org/10.1103/PhysRevC.108.064603


SONG, WANG, ZHANG, AND MA PHYSICAL REVIEW C 108, 064603 (2023)

In the present work, based on the Boltzmann-Uehling-
Uhlenbeck (BUU) transport equation, we combine observ-
ables from nuclear stopping and that from nuclear collective
motion to study the σ ∗

NN . The lattice Hamiltonian method
is employed to deal with the mean-field part of the BUU
equation [49–51], while its collision integral is implemented
through a full-ensemble stochastic approach [48,51–54]. Sub-
sequently, we deduce a medium correction factor F or the σ ∗

NN
that can be used in HICs of different energy regimes. This
deduction is based on experimental data from the width of the
iso-vector giant dipole resonance (IVGDR) in 208Pb measured
through the photonuclear reaction [55,56], and the nuclear
stopping data of central 197Au + 197Au collisions at an energy
of 150A MeV measured by the INDRA Collaboration and the
FOPI Collaboration [57–60].

The present article is organized as follows. In Sec. II, we
provide the basic concepts of the BUU equation and how we
solve it. Sec. III is further divided into four subsections, which
cover the parametrization of the medium correction, the result
of IVGDR as well as nuclear stopping based on the medium
correction, and the determination of the medium correction,
respectively. It includes the definition and related formulas of
the observables for IVGDR and nuclear stopping, as well as
the constraint of the medium correction parameters. Finally,
we summarize the present work in Sec. IV.

II. MODEL DESCRIPTION

The BUU transport equation is used to describe the time
evolution of the one-body phase-space distribution function
of nucleons f (�r, �P), also known as the Wigner function. It
can be derived through a semi-classical approximation to the
time-dependent Hartree-Fock theory [1,61], which can be ex-
pressed as follows:

∂ f

∂t
+ �p

E
· ��r f + � �p U (�r, �p) · ��r f − ��r U (�r, �p) · � �p f = Ic.

(1)
The left-hand side of Eq. (1) describes the time evolution
of the f (�r, �p) in the momentum-dependent potential U (�r, �p).
Meanwhile, the collision integral term Ic, which incorporates
the Pauli blocking effect through the Pauli factor (1 − fi), is
closely related to the σ ∗

NN [51]. The Ic can be written

Ic = −g
∫

d3 p2

(2π h̄)3

d3 p3

(2π h̄)3

d3 p4

(2π h̄)3

× |M12→34|2(2π )4δ4(p1 + p2 − p3 − p4)

× [ f f2(1 − f3)(1 − f4) − f3 f4(1 − f )(1 − f2)], (2)

where g = 2 is the spin degeneracy factor and M12→34 is the
in-medium transition matrix element. The σ ∗

NN can be directly
introduced into Ic, through

σ ∗
NN = 1

vrel

∫
d3 p3

(2π h̄)3

d3 p4

(2π h̄)3
|M12→34|2(2π )4

× δ4(p1 + p2 − p3 − p4), (3)

where vrel is the relative velocity of the test nucleons. The σ ∗
NN

is usually given by multiplying the σ free
NN [37] by a medium

correction factor F . Though omitted in Eqs. (1) and (2), the

isospin degree of freedom τ should be understood to enter
those equations implicitly.

We employ the lattice Hamiltonian method [49,50] to deal
with the mean-field U (�r, �p) evolution of the BUU equation by
mimicking fτ (�r, �p, t ) by a large number of test nucleons [62],

fτ (�r, �p, t ) = 1

g

(2π h̄)3

NE

ANE ,τ∑
i

S[�ri(t ) − �r ]δ[ �pi(t ) − �p ]. (4)

In the above equation, A is the mass number of the system,
and NE is the number of parallel ensembles (the number of test
particles in some literature). The �ri and �pi correspond to the
coordinates and momenta of the test nucleons, respectively.
The factor S is introduced to modify the relation between test
nucleons and the f , and we adopt a triangle form factor S
[49,50] in the present work. The local density at a lattice site
α can be obtained by the integral of the Eq. (4) concerning
momentum �p,

ρτ (�rα, t ) = g
∫

fτ (�rα, �p, t )
d3 p

(2π h̄)3
= 1

NE

τ∑
i

S[�ri(t ) − �rα],

(5)
where �rα represents the coordinates of the lattice site α. The
summation in the above expression runs over all test nucleons
with isospin τ .

To obtain the equations of motion for the test nucleons
and other physical quantities governed by the total Hamil-
tonian H , we need to calculate the lattice Hamiltonian HL,
which is approximately equal to the H , i.e., H = ∫ H(�r)d�r ≈
lxlylz

∑
α H(�rα ) ≡ HL. The lx = ly = lz = 0.5 fm are the

lattice spacing. Testing shows that further decreasing the lat-
tice spacing used in the transport model has only a slight effect
on the final-state observable. The Hamiltonian density H is
obtained from Skyrme-Hartree-Fock approach, and it contains
the kinetic term, the local term, the momentum-dependent
term, the density-dependent term, the gradient term, and the
Coulomb term.

We employ the stochastic collision method [48,51–54] to
deal with the NN scattering process within the Ic in the trans-
port model. In the stochastic collision method, the scattering
probability Pi j between two test nucleons i and j in a time
interval 
t is a numerical value between 0 and 1, and it can be
obtained directly by substituting the f in Eq. (4) into Eq. (2).
It reads

Pi j = υrelσ
∗
NN S(�ri − �rα )S(�r j − �rα )lxlylz
t . (6)

Once we have determined the value of Pi j , it is necessary to
ascertain whether a scattering between two test nucleons i
and j occurs by comparing Pi j with a random number, which
corresponds to the attempted collision. Then, we can get a
true collision if this attempted collision satisfies the Pauli
principle.

In the part of the initialization, the radial density distribu-
tion ρτ (r) of a ground-state nucleus is established using the
Thomas-Fermi approach via the variation of the total energy
E with respect to ρτ (r). The E can be defined as an inte-
gral, i.e., E = ∫ H[r, ρτ (r),∇ρτ (r),∇2ρτ (r) . . . ]dr, and it is
a function of ρτ (r) and its spatial gradients ∇nρτ (r) [50,51].
We want to note that the Hamiltonian density H used in
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the initialization also governs the mean-field evolution in the
BUU equation, which ensures the stability of the ground-state
evolution. Based on the ρτ (r) we can obtain the initial coordi-
nates �ri of test nucleons and generate their initial momenta �pi

from a zero-temperature Fermi distribution, with local Fermi
momentum defined as pF

τ = h̄[3π2ρτ (r)]
1/3

.
The present framework of solving the BUU equation is

implemented numerically using high-performance parallel
computing, i.e., the graphics processing unit (GPU) that en-
ables us to employ a vast number of test particles in the
calculation process, and significantly increases the numerical
efficiency and accuracy [63]. More detailed descriptions of
the present lattice BUU (LBUU) framework can be found in
Ref. [51].

III. RESULTS AND DISCUSSION

In this work, the LBUU model is used to study the nuclear
collective motion and the nuclear stopping, where we set the
NE = 10000 to ensure the convergence of the numerical
results and select a representative Skyrme interaction SkM∗
[64] to simulate the NN effective interaction during these
reactions. We utilize the nuclear stopping power vart l and
the scaled rapidity distributions in the transverse direction
Yx = yx/y0 as well as the longitudinal direction Yz = yz/y0

of central 197Au + 197Au collisions at the energy of 150A MeV
to constrain the medium correction of the σ ∗

NN at intermediate
energy. Beyond that, the width � of IVGDR for heavy nucleus
208Pb is naturally related to the σ ∗

NN , and it can be employed to
determine the medium correction at low energy [48]. By com-
paring these observables obtained from the transport model
with those from experimental measurement, we can extract a
unified medium correction applicable to HICs across the low
to intermediate energy range. For higher incident energies, the
influence of the medium correction on the σ ∗

NN in the HICs
essentially disappears, i.e., the σ free

NN can be used directly.

A. The medium correction in the transport model

In previous studies, the medium correction can usually be
obtained by the calculation based on microscopic theories and
the extraction through experimental observables that are sen-
sitive to the σ ∗

NN [19,40–42,44,46,48,65,66]. However, some
problems regarding medium correction in the low energy
regime are still not completely resolved. It is found that the
width � of nuclear collective motion is mainly composed of
three parts, i.e., the escape width, the Landau damping width,
and the collisional damping width [66,67]. The collisional
damping is naturally related to the in-medium NN scattering
in the de-excitation process of an excited nucleus and then
affects the results of the � [48]. Therefore, we can constrain
the σ ∗

NN in low energy region using � of nuclear collective
motion. Then considering the observables that are dependent
on the σ ∗

NN in intermediate energy collisions, we can obtain a
new medium correction of the σ ∗

NN which applies to HICs at
low to intermediate energies.

The medium correction reduction factor F = σ ∗
NN/σ free

NN
is usually parametrized to depend on both the local nucleon
density and the total kinetic energy of the two scattering

nucleons. Since the medium correction is mainly a conse-
quence of the Pauli blocking caused by the nucleons in the
nuclear medium, the F should approach 1.0 when the local
nucleon density decreases or the total kinetic energy increases.
We choose an exponential reduction factor, which has been
used to parametrize the medium correction factor of the NN
cross sections calculated from the T -matrix approach [40,41].
The in-medium NN cross sections used in the present work
read

σ ∗
nn = σ free

nn exp

[
− αnn

( 2ρn

ρ0

)1/3

1 + ( Tc.m.

0.015 GeV

)3

]
,

σ ∗
np = σ free

np exp

⎡
⎣−αnp

( ρn+ρp

ρ0

)1/3

1 + ( Tc.m.

0.045 GeV

)
⎤
⎦.

(7)

In the above equations, the σ ∗
nn represents the in-medium cross

sections of the elastic scattering channels n + n → n + n or
p + p → p + p, while the σ ∗

np being the cross section of the
elastic scattering channel of n + p → n + p. Here, we focus
solely on NN elastic scattering. The local neutron (proton)
density ρn and ρp during the evolution of HICs can be calcu-
lated through Eq. (5), where the ρ0 = 0.16 fm−3 represents
the nuclear normal density. The Tc.m. is the total kinetic en-
ergy of two scattering nucleons in the rest frame of the local
medium. In the following Secs. III B, III C, and III D, we
provide a detailed discussion of using the LBUU model with
Eq. (7) to calculate the IVGDR and the nuclear stopping, as
well as the process of constraining the values of the medium
correction parameters αnn and αnp.

B. In-medium NN elastic cross section and nuclear giant dipole
resonance

Typically, the nuclear collective motion can be generated
by acting as a perturbation excitation operator Q̂ on the
ground-state Hamiltonian Ĥ0 at the initial time t0, i.e., Ĥ (t ) =
Ĥ0 + λQ̂δ(t − t0), where the λ is a small excitation parameter
and the δ(t − t0) is the Dirac delta function. The expectation
value of the excitation operator 〈Q̂〉 is the key quantity used
to study the collective motion of a nucleus. For a nucleus con-
sisting of A nucleons (comprising N neutrons and Z protons),
〈Q̂〉 can be expressed through the Wigner function f (�r, �p) in
the Wigner representation [61,68]

〈Q̂〉 =
∫

f (�r, �p)q(�r, �p)d3�rd3 �p. (8)

In Eq. (8), the q(�r, �p) represents the Wigner transform of
single-nucleon excitation operator q̂i acting on each nucleon,
with the latter connected to the single-particle excitation op-
erator Q̂ through Q̂ = ∑A

i q̂i. For the IVGDR, the excitation
operator Q̂IVD can be written as

Q̂IVD = N

A

Z∑
i=1

ẑi − Z

A

N∑
i=1

ẑi, (9)

where ẑi is the z-axis component of the coordinate operator
of the ith nucleon. The detailed derivation of the relevant
equations can be found in Refs. [23,50,51]. Transport models

064603-3



SONG, WANG, ZHANG, AND MA PHYSICAL REVIEW C 108, 064603 (2023)

FIG. 1. The time evolution of 
〈Q̂IVD〉 in 208Pb from LBUU
calculations using various values of αnp and αnn.

have been employed extensively to study the nuclear giant
resonances [21,69–73].

The collectively excited nucleus can be obtained by chang-
ing the initial coordinates �ri and momenta �pi of each test
nucleon from the ground-state nucleus according to the form
of the external excitation operator in the transport model. For
the dipole-excited nucleus, we only need to modify the initial
momenta of test nucleons through

pzi →
{

pzi − λN
A for protons,

pzi + λ Z
A for neutrons,

(10)

where the pzi is the component of the momentum of the ith
nucleon along the z axis. We set the excitation parameter λ to
be 0.015 GeV/c in the present work.

After exciting the nucleus based on Eq. (10), we can get
a dipole-excited nucleus and its time evolution of the 〈Q̂〉(t ).
Subsequently, we can obtain the strength function S(E ) based
on the Fourier integral of 
〈Q̂〉(t ) in the linear response
theory [74],

S(E ) = − 1

πλ

∫ ∞

0
dt
〈Q̂〉(t )sin

Et

h̄
. (11)

The 
〈Q̂〉(t ) = 〈0′|Q̂|0′〉 − 〈0|Q̂|0〉 represents the time
evolution of the response function of the nucleus to the Q̂,
with |0〉 and |0′〉 denoting the nuclear states before and after
the perturbation, respectively [51]. It is worth noting that the
full width at half-maximum � of the S(E ) is related to the
σ ∗

NN and can be adopted to determine the medium correction
in low energy. We can employ the experimental �exp. of the
IVGDR presented in Ref. [56] to constrain the σ ∗

NN within the
transport model, thereby determining an appropriate medium
correction in low-energy.

As shown in Fig. 1, we first calculate the time evolution
of the 
〈Q̂IVD〉 in 208Pb based on LBUU model. The black
solid line, the blue dashed line, the green dotted line, and the
red dash-dotted line represent the result based on the different
values of αnp and αnn in Eq. (7), respectively. We notice from

FIG. 2. The S(E ) of the IVGDR in 208Pb with different values
of αnp and αnn. The gray solid line represents the experimental
excitation energy Ex = 13.4 MeV [55].

the figure that the result represented through the black solid
line, with the αnp = 1.8 (αnn = 0.6), exhibits the least oscil-
lation among the four cases, indicating the strongest damping.
On the contrary, the maximum oscillation and the weakest
damping occur in the results represented through the red dash-
dotted line, with the αnp = 4.5 (αnn = 1.5). The damping of
the nuclear collective motion, reflecting the restraining capa-
bility for NN scattering by dissipation of energy, is directly
related to the σ ∗

NN and subsequently influences the � of the
S(E ). Therefore, the IVGDR with the αnp = 1.8 (αnn = 0.6)
in Fig. 1 should have a weakest damping and a largest �.

In Fig. 2, the strength function S(E ) of the IVGDR in 208Pb
is calculated with the Fourier integral based on results shown
in Fig. 1, and the legends of lines are the same as Fig. 1. As the
αnp and the αnn increases, the � of the S(E ), connecting with
the σ ∗

NN , have an obvious tendency to decrease corresponding
to the property of the damping. This trend allows us to find
the correlation between the � of the IVGDR and the medium
correction. The gray solid line represents the experimental
excitation energy Ex = 13.4 MeV of the S(E ) measured at
RCNP [55]. Interestingly, the S(E ) obtained through different
αnp and αnn give similar Ex. This suggests that the σ ∗

NN has
little effect on the Ex. Similar results on the isoscalar giant
quadruple resonance have been observed in Ref. [23].

In order to visualize the correlation between the � of the
IVGDR in 208Pb and the medium correction, we show the
� calculated through the LBUU model with different αnp

and αnn in Fig. 3. The gray hatched band corresponds to the
experimental width �exp = 4.08 ± 0.09 MeV [56]. First, we
explore the influence of αnn on the � and conduct a detailed
analysis by varying the value of αnn from 0.3 to 3.0 while
keeping αnp constant at 3.0. The inset of Fig. 3 demonstrates
that results for different αnn (the green empty circle) oscillate
in small amplitude around the �exp., i.e., αnn having almost no
influence on the �. Therefore, in the following discussion, we
pay more attention to the constraint on the parameter αnp and
fix the value of αnn = αnp/3. In Fig. 3, the red solid circles
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FIG. 3. The correlation between the αnp (αnn) and the � of the
IVGDR in 208Pb. The red solid circles are results based on different
αnp (αnn = αnp/3) with the LBUU model, and the green empty
circles in the inset are results based on different αnn (αnp = 3.0).
The gray hatched band corresponds to the experimental width �exp =
4.08 ± 0.09 MeV [56].

and the red dashed line represent the results obtained from
the LBUU model and its fitting line, respectively. It is evident
that the tendency of the � decreases from 4.90 MeV to 3.65
MeV with the increase of αnp, and it reproduces well the �exp

of the IVGDR in 208Pb when selecting parameters near the
αnp = 3.0 (αnn = 1.0).

C. In-medium NN elastic scattering cross section
and nuclear stopping

The nuclear stopping power vart l , first proposed by the
FOPI Collaboration, is one of the essential observables for
understanding the basic reaction dynamics in the HICs, and
it can be used to directly reflect the degree of stopping of
the projectile [57,75,76]. The vart l refers to the ratio of the
variances of the rapidity distributions in the transverse direc-
tion and the longitudinal direction of the emitted particles in
the HICs, defined as vart l = 〈y2

x〉/〈y2
z 〉 [57,59]. When the 〈y2

x〉
and the 〈y2

z 〉 are approximately equal, i.e., vart l ≈ 1, it indi-
cates that the projectile is theoretically completely stopped by
the target.

Based on the results from the FOPI and INDRA Collab-
oration [58,59,77], the experimental vart l of light-charged
particles (Z = 1) in the central 197Au + 197Au collisions at the
energy of 150A MeV and the impact parameter b � 2 fm is
estimated to be vart lexp = 0.85 ± 0.05. With the proton
number of the emitted particles increasing steadily to 20, the
value of vart lexp is reduced to around 0.1. This indicates that
the type of the emitted particles included in the calculation of
vart l can significantly affect the results. Therefore, we only
compare the calculated proton vart l with the experimental
measurement for light-charged nuclei (Z = 1).

In Fig. 4, we display the proton vart l (the black solid
circles) for central 197Au + 197Au collisions at the incident

b

FIG. 4. The proton vart l for central Au + Au collisions at the en-
ergy of 150A MeV and the impact parameter of b = 1.4 fm calculated
using the LBUU model as a function of the αnp. The brown hatched
band corresponds to the measured vart l of Z = 1 particles in central
collisions of b � 2 fm by the FOPI and INDRA Collaborations [59].

energy of 150A MeV and the impact parameter b = 1.4 fm
based on the LBUU model with the Skyrme interaction SkM∗
and various values of αnp (αnn). Here, we still set αnn = αnn/3.
For comparison, we show the experimental vart lexp. = 0.85 ±
0.05 for Z = 1 particles in the central 197Au + 197Au colli-
sions at the energy of 150A MeV and the impact parameter
of b � 2 fm through the hatched band [59]. As expected, a
larger αnp leads to smaller in-medium NN cross sections and
thus a smaller vart l value. And it is seen that with the αnp in
the range of 2.7–3.3, the LBUU results are in good agreement
with the experimental measurements.

With the INDRA 4π multidetector, the central
150A MeV 197Au + 197Au collisions have been measured
well at centrality 0–2 % [59]. In these reactions, the scaled
rapidity distributions in the longitudinal direction Yz = yz/y0

and the transverse direction Yx = yx/y0 for several fragment
species with charge numbers Z ranging from 1 to 20 can also
be utilized to constrain the σ ∗

NN in intermediate energy. The
y0 is the beam rapidity in the center-of-mass frame. The yz

and yx are defined as

yz =1

2
ln

E + pz

E − pz
,

yx =1

2
ln

E + px

E − px
,

(12)

where the pz and px represent the momentum of the particle
along the Z axis and X axis, respectively, and E =

√
m2 + p2

is the nucleon energy. To further study the effect of the
medium correction in intermediate energy, we simulate the
central 197Au + 197Au collisions at the energy of 150A MeV
and impact parameter b = 1.4 fm through the LBUU model
with different parameters αnp to extract the results of the Yz

and Yx. It should be noted that, since the experimental trans-
verse rapidity distribution is in an arbitrarily fixed transverse
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FIG. 5. The scaled proton longitudinal (upper panel) and trans-
verse (lower panel) rapidity distributions for central Au + Au
collisions at the energy of 150A MeV and the impact parameter of
b = 1.4 fm calculated using the LBUU model with four values of the
αnp. The coalescence invariant proton rapidity distributions measured
by the INDRA collaboration [59] are shown as black solid circles. All
distributions are normalized for a easier comparison of their shape.

direction [59], the calculated dN/dYx is obtained by averaging
the rapidity distribution in x and y directions from LBUU
simulations.

The scaled rapidity distributions in the longitudinal and
the transverse direction obtained from the LBUU model, are
compared with experimental measurements in Figs. 5(a) and
5(b), respectively. The yellow solid lines, the blue dashed
lines, the red dotted lines, and the green short dotted lines
represent the results of scaled rapidity distributions for pro-
ton, obtained by varying the αnp = 1.8 to αnp = 4.5, using
the LBUU model with the Skyrme interaction SkM∗. In the
center-of-mass frame of the colliding system, these rapidities
are calculated through the information of the protons in the
phase-space of t = 300 fm/c. The black solid circles repre-
sent the experimental coalescence invariant proton rapidity
distributions which are given by the sum of measured rapidity
distributions of all charged baryonic particles with Z � 20
weighted with their respective charges. For easier compari-
son, both theoretical and experimental spectra are normalized
by their respective total charged numbers. According to our
transport calculation, the neutron and proton density can reach
as high as ρn = 0.156 and ρp = 0.097, respectively, in the
central 5 × 5 × 5 fm3 area of the reaction region. This enables

us to explore the high-density behavior of σ ∗
NN shown in

Eq. (7).
As can be seen from Fig. 5, with the αnp increasing,

the scaled longitudinal (transverse) rapidity distribution be-
comes wider (narrower), and its maximum value decreases
(increases), because a larger αnp leads to a smaller σ ∗

NN and
thus results in weaker nuclear stopping. Particularly, one can
see that, compared with the transverse rapidity distribution,
the longitudinal one is much more sensitive to the αnp, which
suggests that the dN/dYz should be a better probe of the σ ∗

NN .
Further comparing the LBUU results with the experimental
coalescence invariant proton rapidity distributions, we find
the INDRA data for dN/dYz favors αnp = 2.4, while those
for dN/dYx prefers a larger value of αnp = 3.9. Similar with
the � of IVGDR, we find that the results of vart l and scaled
rapidity distributions based on the LBUU model are not sen-
sitive to the parameter αnn. Therefore, we adopt the parameter
αnn = αnp/3 in Eq. (7), and only focus on the constraint on
the value of αnp in the next subsection.

D. Determination of the in-medium correction parameter αnp

Given the sensitivities of the IVGDR width, the vart l , and
the scaled longitudinal and transverse rapidity distributions
to the σ ∗

NN as demonstrated in previous sections, we further
determine the medium correction parameter αnp in Eq. (7) by
minimizing the sum of the squared deviations from the data
[78],

χ2 =
Nd∑
i=1

[Oi(αnp) − Oexp
i

]2


Oi
. (13)

Here, Oexp
i stands for experimental data for the ith selected ob-

servables, Oi represents the calculated values, and 
Oi is the
adopted error. In this work, we take into account four experi-
mental data including the IVGDR width of 208Pb, the vart l of
Z = 1 particles, and the coalescence invariant proton dN/dYz

and dN/dYx at Y = 0.05. The adopted errors for the IVGDR
width of 208Pb and the vart l in central 197Au + 197Au colli-
sions are taken to be the experimental uncertainties of σ� =
0.09 MeV and σvart l = 0.05, respectively. As to the scaled
longitudinal and transverse rapidity distributions, since their
experimental uncertainties are not given in Ref. [59], we tune
their adopted errors following the usual strategy [78], to guar-
antee the minimum of total χ2 is around the degree of freedom
(3 in our case) and their weights are similar. The resulting
adopted errors for the scaled longitudinal and transverse di-
rection are σdN/dYz = 0.03 and σdN/dYx = 0.03, respectively.

The obtained χ2 as a function of the medium correction
parameter αnp is shown in Fig. 6, the χ2

i for the IVGDR
width, the vart l , the dN/dYz and dN/dYx contained in χ2

per data point are also shown as blue circles, the red squares,
the green stars, and the orange triangles in the inset of Fig. 6,
respectively. The χ2

i represent single observation’s contribu-
tion to the χ2 under each type and indicate their sensitivity to
parameters αnp. It is seen that the IVGDR width, the vart l ,
the dN/dYz, and dN/dYx data prefer 3.0, 3.0, 2.4, and 3.9,
respectively, where the χ2

dN/dYx
(χ2

GDR) makes a relatively
smaller (larger) contribution to calculating χ2. By combining
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FIG. 6. χ 2 as a function of the medium correction parameter αnp.
The contributions on the χ 2 from the IVGDR width, the vart l , and
the coalescence invariant proton longitudinal and transverse rapidity
distributions, i.e., χ 2

GDR, χ 2
vart l , χ 2

dN/dYz
, and χ 2

dN/dYx
are shown as the

blue circles, red squares, green stars, and orange triangles in the inset,
respectively.

all these data and employing a parabolic fit of the results of 2.4
� αnp � 3.3 (magenta dotted line), we determine the medium
correction parameter αnp with the minimum χ2 to be 2.8.

In Fig. 7, we show the total kinetic energy Tc.m. dependence
of the medium correction σ ∗

NN/σ free
NN at different local densities

ρ. The results of Figs. 7(a), 7(b), and 7(c) are based on the
ρ = 0.01 fm−3, ρ = 0.05 fm−3, and ρ = 0.16 fm−3,
respectively. The black solid line and the red dashed line are
the σ ∗

NN/σ free
NN of the elastic scattering channel with αnp = 2.8

and αnn = αnp/3 in Eq. (7). The green dotted line is the
σ ∗

NN/σ free
NN obtained solely from the IVGDR width of 208Pb in

Ref. [48]. By comparing the results at different local densities,
it can be found that both two medium corrections have more
suppression for the σ ∗

NN in low energy region, and it gradually
disappears when the ρ decreases or the Tc.m. increases. The
suppression for the σ ∗

NN of the green dotted line has a large
change in different ρ, and it means that the medium correction
in Ref. [48] is more sensitive to the local density. In contrast,
the cases of the black solid line and the red dashed line are
less affected by the changes of the ρ.

IV. SUMMARY

In the present study, the σ ∗
NN/σ free

NN has been investigated
through the IVGDR and the nuclear stopping with the LBUU
model. We employ a lattice Hamiltonian method based on
the Skyrme-Hartree-Fock approach, to solve accurately and

FIG. 7. The Tc.m. dependence of the medium correction at dif-
ferent local density ρn = ρp = ρ/2. The black solid line and the red
dashed line are calculated through Eq. (7) with αnp = 2.8. The green
dotted line is the result of the medium correction in Ref. [48].

efficiently the BUU equation with the use of a sufficiently
large number of test particles. Based on the experimental
observables that are sensitive to σ ∗

NN , e.g., the � of the IVGDR
in 208Pb, the vart l and the scaled rapidity distributions for
central 197Au + 197Au collisions at the energy of 150A MeV,
we extract the in-medium NN cross sections σ ∗

NN that can be
applied to the HICs from low energy to intermediate energy.
It will reduce the uncertainties of the BUU equation when
applying it to nuclear collective motion and heavy-ion col-
lisions to extract the information of the nuclear equation of
state. It will also be helpful for the experimental research of
the dipole excitation of nuclei in the future, e.g., at the facility
of Shanghai Laser-electron gamma source (SLEGS) [79–81].
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