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Ab initio descriptions of A = 16 mirror nuclei with resonance and continuum coupling
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We have used an ab initio Gamow shell model to study the isospin symmetry breaking in the A = 16 mirror
nuclei of 16F, 16N, 16Ne, and 16C. Starting from a chiral interaction with two-nucleon force (2NF) at N3LO
and three-nucleon force (3NF) at N2LO, a complex-momentum psd-shell Hamiltonian was constructed by
employing the many-body perturbation theory in the Gamow Hartree-Fock basis which includes bound, resonant,
and continuum states self-consistently. Such an elaborated ab initio Gamow shell model with both continuum
coupling and 3NF included can properly treat the many-body correlations of weakly bound and unbound nuclei.
The mirror partners of 16F and 16N exhibit different level orders in their excitation spectra, which can be well
explained by the inclusion of 3NF in the calculation. The isospin asymmetry between the mirror partners 16Ne
and 16C was studied in detail by insight into their configuration structures. The interplay between 3NF and the
continuum coupling is discussed in the weakly bound and unbound nuclear states.
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I. INTRODUCTION

With next-generation rare isotope beam (RIB) facilities, we
have the ability to produce most of the rare isotopes located at
the edge of the nuclear landscape, thus shedding light on the
origin of elements, the fundamental problems of nuclear struc-
ture, and nuclear forces. However, theoretical descriptions of
proton-rich or neutron-rich nuclei in these regions are chal-
lenging in terms of theoretical methods and computational
demands. As nuclei approach driplines, the effect of single-
particle long-distance asymptotic behavior and the coupling to
the continuum are vital in understanding these open quantum
systems [1]. Indeed, they lead to novel phenomena in weakly
bound and unbound nuclei, such as halo [2], Borromean [3,4],
and Thomas-Ehrmann shift (TES) [5,6].

Among the open quantum systems, the A = 16 mirror
partners are interesting, and could provide more insights
into the isospin symmetry breaking of nuclear force and the
evolution of nuclear properties from the valley of stability
to driplines. The apparent symmetry breaking in the spec-
tra of the mirror partners 16F and 16N was observed with
significant level inversions starting from the ground states
(g.s.), which was explained by the continuum coupling [7].
In Ref. [8], energy shifts in pairs of isobaric analog states in
mirror nuclei were systematically analyzed. It turns out that
the large energy splittings of the 16F - 16N mirror pair exceed
the normal isospin-symmetry-breaking (ISB) behavior, which

*frxu@pku.edu.cn

requires additional ISB effects. Theoretically, as mentioned in
Ref. [7], the phenomenological Gamow shell model (GSM)
and coupled-channel GSM calculations with a dedicated treat-
ment of nuclear correlations have been performed to analyze
the 16F - 16N mirror pair [9]. It shows that only coupled-
channel GSM calculations with corrective factors reproduce
the TES observed in the 16F - 16N mirror pair. For the mirror
partners 16C and 16Ne, larger isospin asymmetries in the con-
figurations of the g.s. and first 2+ state are demonstrated and
considered as a new mechanism of TES [10,11]. In addition,
16Ne is an intermediate nucleus of the cascade 2p emission
of the recently observed four-proton unbound nucleus 18Mg.
The study of mirror asymmetry in the 16C - 16Ne mirror pair
is meaningful to further understand the nature of higher 2+
excitation energy in 18Mg [12]. Nuclei at driplines exhibit
novel phenomena arising from the proximity of the contin-
uum, which also provides a comprehensive and rigorous test
of nuclear theory.

In recent decades, significant progress in ab initio calcula-
tions [13–18] has been made with the developments of chiral
effective field theory (χEFT) [19,20], similarity renormaliza-
tion group (SRG) [21,22], and many-body methods [23–27].
Meanwhile, three-nucleon force (3NF) has been shown to
be crucial in the detailed descriptions of nuclear structure
[28–44]. However, as the continuum coupling is essential
at the proximity of driplines, weakly bound and unbound
nuclei are challenging theoretical studies with standard ap-
proaches, such as many-body methods using the harmonic
oscillator (HO) basis. To include the continuum effect, the
continuum shell model [45,46] has been developed, taking
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into account the continuum effect by projecting the model
space onto the subspaces of bound and scattering states in a
real-energy basis. By introducing an interaction for the cou-
pling to the continuum, the continuum-coupled shell model
[47] was suggested to include the continuum effect. Several
ab initio methods, such as the no-core shell model with
resonating group method [48,49], the single-state harmonic
oscillator representation of scattering equations [50,51], and
the no-core shell model with continuum [52,53], have also
been successfully applied to open quantum systems of nuclei.
Another choice for that matter is the Berggren basis [54],
which can treat bound, resonant, and continuum states on the
same footing. The GSM [55,56] is a powerful tool, which
provides a full description of the interplay between contin-
uum coupling and internucleon correlations via the use of
the Berggren basis and configuration mixing. Ab initio meth-
ods have also been developed in the frame of the Berggren
basis, hence with the continuum coupling included, such as
the complex coupled cluster [32,57], the complex in-medium
similarity renormalization group [58], and the no-core GSM
[59–61]. Added to that, the GSM with a core has been further
developed by generating effective interactions from realistic
forces [62–65].

The A = 16 nuclear systems provide remarkable cases of
interest, which would lead to new insights into nuclear prop-
erties, nuclear forces, and many-body methods due to the
emergence of the continuum coupling. In this work, we will
thus perform ab initio GSM calculations for 16F, 16N, 16C, and
16Ne. We will depict g.s. energies, excitation spectra, as well
as other observables of physical interest. With both 3NF and
the continuum coupling considered, we probe the ISB effect
in the A = 16 mirror partners. Our calculations will show the
necessity to combine the effects between 3NF and continuum
coupling in nuclei close to driplines.

II. THE AB INITIO GAMOW SHELL MODEL
WITH THREE-NUCLEON FORCE INCLUDED

We employ the intrinsic Hamiltonian of the A-nucleon
system,

H =
A∑

i=1

(
1 − 1

A

)
p2

i

2m
+

A∑
i< j

(
vNN

i j − pi · p j

mA

)

+
A∑

i< j<k

v3N
i jk , (1)

where pi is the nucleon momentum in the laboratory
coordinate, and m is the nucleon mass, while vNN and v3N

denote the two-nucleon force (2NF) and 3NF, respectively.
In Ref. [38], a chiral 2NF plus 3NF interaction, named
EM1.8/2.0, was suggested, in which the 2NF took the
next-to-next-to-next-to-leading order (N3LO) of Entem and
Machleidt [66] and was evolved to a low momentum scale
λSRG = 1.8 fm−1 by the SRG method. The 3NF was obtained
at the next-to-next-to-leading order (N2LO) using a nonlocal
regulator with a cutoff of �3N = 2.0 fm−1. The low-energy
constants (LECs) c1, c3, c4 appearing in the two-pion-
exchange of 3NF have the same values as those in vNN. For the

LECs in the one-pion exchange and contact term of the 3NF,
the EM1.8/2.0 interaction has cD = 1.264 and cE = −0.120
which were obtained by fitting the 3H binding energy and
the 4He point-charge radius. In many-body calculations, 3NF
is usually normal ordered at a two-body level neglecting the
residual three-body term [39,42,67–69]. It has been proved
that the EM1.8/2.0 interaction can well reproduces nuclear
matter saturation [38] and globally reproduce ground-state
energies from light to heavy nuclei [39,42,69]. We take the
same procedures including the same LECs and regulators as
in EM1.8/2.0 to construct the chiral 2NF plus 3NF interaction
that will be used in the present work.

The Hartree-Fock (HF) calculation is our starting point.
The single-particle HF equation can be written as

∑
β

⎡
⎣(

1 − 1

A

)
p2

α

2m
δαβ +

∑
γ δ

ργ δV
NN
αγβδ

+ 1

2

∑
γμδν

ργ δρμνV 3N
αγμβδν

⎤
⎦ψ (β ) = eαψ (α), (2)

where ργδ = ∑
i�εF

〈γ |i〉〈i|δ〉 is the one-body density matrix,
with the sum about i running over all hole states below the
HF Fermi surface εF of the reference state. V NN

αγβδ and V 3N
αγμβδν

stand for antisymmetric 2NF and 3NF matrix elements,
respectively. The two-body term, − pi p j

mA , which is to remove
the effect from the center-of-mass (c.m.) motion, has been
incorporated into V NN.

To deal with the continuum coupling, we have extended the
HF method into the complex-momentum (complex-k) plane,
which leads to the Gamow Hartree-Fock (GHF) calculation
[62,65,70]. The complex-k single-particle GHF equation can
be expressed as

h̄2k2

2μ
ψnl j (k) +

∫
L+

dk′k′ 2U (l jk′k)ψnl j (k
′)

= enl jψnl j (k), (3)

where μ = m/(1 − 1
A ), and k (k′) is defined on a contour L+

in the fourth quadrant of the complex-k plane [64]. U (l jk′k)
is the complex GHF single-particle potential given by

U (l jk′k) =
∑
αβ

〈k′|α〉〈α|U |β〉〈β|k〉, (4)

where l , j are the orbital and total angular momenta of a
single-particle orbital, respectively. Greek letters denote HO
states, so that 〈β|k〉 is the HO basis wave functions |β〉
expressed in the complex-k plane. 〈α|U |β〉 is the HF single-
particle potential which is obtained by solving the real-energy
HF equation (2) in the HO basis [58]. The 3NF enters the
GHF solution through 〈α|U |β〉. In numerical calculations, the
GHF equation is solved using the Gauss-Legendre quadrature
scheme [62] with 35 discretizing points on the contour L+,
which has been proved to be sufficient to make calculations
converged [65,70]. The GHF basis is composed of bound,
resonant, and continuum states. Only the chosen core nucleus
which is at a closed shell is performed with the HF and GHF
calculations to generate the Berggren basis for many-body
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GSM calculations of nuclei located in a valence space on top
of the closed core.

In ab initio many-body calculations, the full inclusion of
3NF is computationally costly and often renders calculations
impossible. Therefore, the normal-ordered two-body (NO2B)
approximation [42] to the full 3NF has been widely used in
nuclear ab initio calculations. In the NO2B approximation, the
normal-ordered 3NF in the chosen reference is truncated at a
two-body level. Namely, the approximation takes the zero-,
one-, and two-body parts of the 3NF in the normal-ordered
form, but neglects the residual three-body term. The coupled
cluster and importance-truncated no-core shell model calcula-
tions have shown that the contribution of the residual 3NF is
not significant [67,68].

The total Hamiltonian (1) is first transferred to the GHF
basis, and then normal ordered with respect to the reference
state which can take the GHF Slater determinant of the closed
core. The NO2B Hamiltonian with neglecting the residual
three-body term reads

Ĥ =
A∑

i=1

tii + 1

2

A∑
i, j=1

W NN
i ji j + 1

6

A∑
i, j,k=1

W 3N
i jki jk

+
∑

pq

⎛
⎝tpq +

A∑
i=1

W NN
piqi + 1

2

A∑
i, j=1

W 3N
pi jqi j

⎞
⎠ : â†

pâq :

+ 1

4

∑
pqrs

(
W NN

pqrs +
A∑

i=1

W 3N
pqirsi

)
: â†

pâ†
qâsâr :, (5)

where ti j is the matrix element of the nucleon kinetic energy
with a c.m.-corrected mass μ = m/(1 − 1

A ), while W NN
pqrs and

W 3N
pqirsi are antisymmetric 2NF and 3NF matrix elements given

in the GHF basis, respectively, which can be obtained by
calculating overlaps between the GHF and HO basis states.
p, q, r, s and i, j, k stand for generic states and hole states,
respectively. â† and â represent the creation and annihilation
operators, respectively. The colons indicate normal-ordering
with respect to the reference state. Hamiltonian (5) serves as
the initial input of the many-body perturbation theory (MBPT)
[23,24].

For the A = 16 mirror partners 16F - 16N and 16C - 16Ne, we
can choose the mirror-symmetric 14O and 14C as the closed
cores. With the 14O core, 16F has a valence proton and a
valence neutron outside the closed core, while 16Ne has two
valence protons. With the 14C core, 16N has a valence proton
and a valence neutron, while 16C has two valence neutrons.
Therefore, no residual 3NF appears in the systems of two
valence particles, though it may still appear in the calcula-
tions of the Ŝ- and Q̂-box folded diagrams which are used to
construct the valence-space effective Hamiltonian. However,
the effect of the residual 3NF on the Ŝ- and Q̂-box folded
diagrams should be neglected. Note that the full 3NF was used
in the HF and GHF calculations of the closed cores. The HF
calculation starts within a HO basis at a frequency of h̄ω = 16
MeV. This frequency was usually used in ab initio calculations
with the EM1.8/2.0 interaction from light (He isotopes) to
heavy (Sn isotopes) nuclei [39,42,69]. In the calculation, we

set a basis truncation with e = 2n + l � emax = 12, and limit
3NF with e1 + e2 + e3 � e3max = 12. After the HF calcula-
tion, we perform the GHF calculation as described above. For
the A = 16 mirror nuclei, the SM or GSM valence space can
be chosen as 0p1/20d5/21s1/20d3/2. The 0p1/2 orbital should
be well bound, while 0d5/2, 1s1/2, and 0d3/2 can be weakly
bound or resonance. Therefore, we treat the d5/2, s1/2 and
d3/2, partial waves within the GHF basis which includes res-
onance and continuum, while other partial waves are treated
within a discrete real-energy HF basis to reduce the compu-
tational task, which has been shown to be quite reasonable
(see, e.g., [71,72]). Finally, our GSM model space is defined
as {π0p1/2, π1s1/2, π0d5/2, π0d3/2, νs1/2, νd5/2, νd3/2} with
the 14C core, and {πs1/2, πd5/2, πd3/2, ν0p1/2, ν1s1/2, ν0d5/2,

ν0d3/2} with the 14O core.
We use the many-body perturbation theory (MBPT) to

derive the effective Hamiltonian in the valence space, i.e., one-
body Ŝ-box and two-body Q̂-box folded diagrams [73–75].
The Ŝ box is by definition the one-body part of the Q̂ box.
The MBPT calculation has been extended to the complex-k
Berggren basis [63–65]. Due to the large number of dis-
cretized continuum states, the inclusion of third-order Q̂-box
diagrams is computationally very costly and often renders
MBPT calculations impossible. Therefore, we calculate the
Ŝ-box folded diagrams up to the third order, while Q̂-box
folded diagrams up to the second order, which has been shown
to offer a good approximation [65]. For nuclear excitation
spectra, the effect from the neglected third-order Q̂-box folded
diagrams is rather small compared with the effect on the total
binding energy [65].

After the Ŝ-box and Q̂-box calculations, we obtain the
GSM effective Hamiltonian in the chosen complex-energy
Berggren valence space,

Ĥeff =
∑

pq

εpqâ†
pâq + 1

4

∑
pqrs

V eff
pqrsâ

†
pâ†

qâsâr, (6)

where p, q, r, s indicate valence particles in the valence space.
εpq stands for valence-space effective single-particle Hamil-
tonian matrix elements obtained by Ŝ-box with the GHF
Hamiltonian (3), which correspond to valence single-particle
energies but containing some nonzero (but small) off-diagonal
matrix elements due to the coupling in the same partial wave.
V eff

pqrs is the effective interaction matrix elements (including
the NO2B 3NF) derived by the Q̂ box. The complex-
symmetric GSM effective Hamiltonian is diagonalized in the
valence space using the Jacobi-Davidson method in the m
scheme [76].

III. CALCULATIONS AND DISCUSSIONS

Figure 1 shows calculated and experimental [77] g.s. ener-
gies for 16O, 16F, and 16Ne with respect to the closed 14O core
(left panel) and for 16O, 16N, and 16C with respect to the closed
14C core (right panel). We see that the GSM calculations well
reproduce the experimental energies of the A = 16 mirror
nuclei. To see the continuum effect, we have also performed
standard SM calculations in the real-energy HF basis with the
same EM1.8/2.0. The real-energy calculation means that no
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FIG. 1. Calculated and experimental [77] g.s. energies of 16O,
16F and 16Ne with respect to the 14O core (a), and 16O, 16N, and
16C with respect to the 14C core (b). The 2NF plus 3NF interaction
EM1.8/2.0 is used. Standard real-energy SM calculations with the
same EM1.8/2.0 have also been performed to see the continuum
effect defined by �E = EGSM − ESM shown in the insets.

continuum coupling is included. For the energies, the standard
SM can also give quite good results. By comparing the energy
difference between the GSM and SM calculations, we can see
the continuum effect as shown in the insets of Fig. 1. The
continuum coupling lowers the energies of 16F, 16Ne, 16N, and
16C by ≈0.4–1.1 MeV, while the energy of the deeply bound
16O is nearly unchanged whether the continuum coupling is
included or not.

The SM (GSM) gives the energy of an open-shell valence-
particle system outside the closed core. This energy is relative
to the core. For the total energy of an open-shell nucleus,
one needs to know the core energy. SM (GSM) itself is not
able to produce the core energy, while the HF (GHF) cal-
culation based on a realistic interaction is not sufficient to
describe the core. Higher-order correlations beyond the HF
approximation should be considered. This can be done us-
ing the many-body Rayleigh-Schrödinger perturbation theory
(RSPT) [78]. As commented in Ref. [78], the RSPT cor-
rections up to the third order can well describe the energy
of a closed nucleus. With the same EM1.8/2.0 interac-
tion, the RSPT calculation based on the HF approximation
gives the g.s. energies of −96.19 MeV and −102.36 MeV
for the 14O and 14C cores, respectively, almost the same as
the values of −96.16 MeV and −102.38 MeV calculated by
the ab initio in-medium similarity renormalization group (IM-
SRG) with the same interaction. The calculated energies are
also in reasonable agreements with the data of −98.73 MeV
and −105.28 MeV [77] for 14O and 14C, respectively. For
16O as shown in Fig. 1, the left panel gives the energy of
the two valence neutrons outside the closed 14O core, while
the right panel shows the energy of the two valence pro-
tons outside the closed 14C core. Added to the core energies
calculated by RSPT, we obtain the 16O total g.s. energy:
−126.20 MeV with the 14O core or −126.14 MeV with the
14C core. The two calculated energies for 16O are almost the
same, and also agree well with the experimental g.s. energy of
−127.62 MeV [77].

FIG. 2. Low excitation spectra of the mirror partners 16F and
16N. N 3LO and N 4LO indicate only bare 2NF used in the calcula-
tions. EM1.8/2.0 includes 3NF. SM and GSM mean the continuum
coupling excluded and included in calculations, respectively. The
shadow indicates a resonance with the resonance width (in MeV)
given by the number above (below) the level. Experimental data are
taken from [7,77].

Experiment data [7,77] give very different excitation
spectra with different g.s. levels and different level orderings
between the pair of the mirror partners 16F and 16N, and the
pronounced TES’s are seen, as shown in Fig. 2. With the
continuum coupling included, the recent coupled-channel
GSM calculation with phenomenological potentials can
produce the correct ordering of excitation levels in 16F and
16N in the presence of ad hoc corrective factors [9]. Here,
we employ the self-consistent ab initio GSM with the chiral
3NF included to investigate the 3NF and continuum effects
on the spectra of the mirror partners 16F and 16N, including
the observed TES’s. Figure 2 shows the low-lying excitation
spectra calculated by different models or interactions.
Calculations start with the real-energy standard SM and only
2NF considered (bare chiral N 3LO [66] and N 4LO [79] at
� = 500 MeV). These calculations mean that the continuum
and 3NF effects are not included. For the 16F spectrum,
the level orderings obtained with N 3LO and N 4LO are in
agreements with the experimental spectrum [7,77], but the
calculated 2− and 3− levels are too high compared with the
data, see Fig. 2. Similarly, SM calculations with N 3LO and
N 4LO also give too high 2− and 3− levels in the mirror
partner 16N, as shown in Fig. 2. In the experiment, 16F has
an unbound resonant 0− g.s., while the mirror partner 16N
has a bound 2− ground state. This phenomenon that the
mirror partners have different ground states in configurations
cannot be reproduced in the 2NF-only SM calculations which
instead give the same 0− g.s. for the pair of mirror nuclei. For
the mirror partner 16N, the experiment gives different level
ordering from that in 16F, while the SM calculations with
2NF-only give the same level ordering for this pair of mirror
partners. It then shows the inability of SM calculations to
reproduce the experimental data using 2NF only. Since the
contribution of the continuum coupling is much smaller than
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FIG. 3. Effective single-particle energies (ESPEs) of the sd pro-
ton (π ) orbitals in 16F (a) and sd neutron (ν) orbitals in 16N (b),
calculated by SM with the 2NF N3LO and the 2NF plus 3NF
EM1.8/2.0 interactions.

the theoretical and experimental differences in the energy
spectra, we do not perform GSM calculations with 2NF only.

With the 3NF included (e.g., using the EM1.8/2.0 in-
teraction), the agreements with experimental spectra are
significantly improved in both SM and GSM calculations for
the mirror partners 16F and 16N, as shown in Fig. 2. The
correct level ordering in the 16N spectrum is reproduced in
both SM and GSM calculations when 3NF is included. In
16F, however, the SM calculation without the continuum effect
included cannot give the correct order between the 1− and
2− levels compared with data, while the GSM calculation
with both 3NF and continuum coupling included provides a
correct order of the two levels. The GSM calculation shows
that the 1− excited state in 16F is mainly composed of the
πs1/2 ⊗ ν0p1/2 configuration, whereas the 2− excited state
primarily consists of πd5/2 ⊗ ν0p1/2. Since there is no cen-
trifugal barrier with l = 0, the wave function of the s-wave
is more spread in space, resulting in a stronger coupling to
the continuum, and thus a lower energy for the 1− state. This
corrects the level order between the 1− and 2− states. From the
experimental and calculated resonance widths of the unbound

FIG. 4. Similar to Fig. 2, but for the even-even mirror partners
16C and 16Ne. Experimental data are taken from [77,81,82].

16F states, indeed, the states containing a significant compo-
nent of the s partial wave, e.g., the 0− and 1− levels, have
broader resonance widths. Therefore, to describe the nature
of weakly bound and unbound nuclei, a rigorous treatment of
the asymptotic behavior of the single-particle wave functions
and their coupling to the scattering continuum is necessary.
Nevertheless, for 16F and 16N, the 3NF is the first important
factor to improve the spectrum description, as shown in Fig. 2.

We see in Fig. 2 that the inclusion of 3NF causes a large en-
ergy drop in the 2− and 3− states of the mirror partners 16F and
16N. This can be understood by calculating effective single-
particle energies (ESPEs) [80] with the same EM1.8/2.0,
as shown in Fig. 3. 16F has a dominant configuration of
π1s1/2 ⊗ ν0p1/2 for the 0− g.s. and 1− excited state, and
a primary configuration of π0d5/2 ⊗ ν0p1/2 for the 2− and
3− excited states, while 16N has a dominant configuration
of ν1s1/2 ⊗ π0p1/2 for the 0− and 1− states, and a main
configuration of ν0d5/2 ⊗ π0p1/2 for the 2− and 3− states. As
shown in Fig. 3, the 3NF causes a large energy drop in both
proton and neutron 0d5/2 orbitals, which leads to large energy
drops in the 2− and 3− states. In 16N, the neutron 0d5/2 orbital
is even lower than 1s1/2 when 3NF is included, which results
in a 2− g.s. instead a 0− g.s. in 16N.

16C and 16Ne form a pair of even-even A = 16 mirror
partners. The works [10,11] using a three-body model had
investigated the 0+ g.s. and the first 2+ excited state, com-
menting that significant structure differences exist between
the mirror isobaric analog states (IAS) in the mirror partners
16C and 16Ne, and was suggested as an additional dynamic
TES mechanism. With both 3NF and the continuum cou-
pling included, we have performed the self-consistent ab
initio many-body GSM calculations with the same chiral
EM1.8/2.0 interaction, as shown in Fig. 4. We see that the
3NF and continuum coupling are important to reproduce the
experimental spectra including the level order and resonance
nature.

Figure 5 shows the ESPEs in 16C and 16Ne. We see that
the energy drop also appears in the neutron and proton 0d5/2

orbitals when 3NF is included in the calculations. However,
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FIG. 5. Similar to Fig. 3, but for sd neutron orbitals in 16C (a) and
sd proton orbitals in 16Ne (b).

the drop is not as large as that seen in the odd-odd 16F and
16N mirror nuclei. The energy drop can also be found in the
calculated spectra, as shown in Fig. 4. The mechanism of the
energy drop is similar to that occurring in the odd-odd 16F
and 16N. For example, the first 2+ excited state in 16C and
16Ne contains a large 0d5/2 component (see Fig. 6), therefore
we see the energy drop in the 2+

1 levels when 3NF is included
in the calculations.

Figure 6 shows the dominant 0d5/2 and 1s1/2 configurations
in the g.s. and first 2+ excited states of 16C and 16Ne. The
continuum coupling lowers the energies of the 1s1/2 and 0d5/2

orbitals, with the 1s1/2 orbital being lowered more signifi-
cantly due to the strong coupling to the continuum in the l = 0
partial wave. The ground states have more 1s1/2 component
than the 2+ excited states, therefore the g.s. energy drop due
to the continuum coupling is more significant than the 2+
state, which in turn raises the 2+ excitation energy which is
relative to the g.s. energy. Therefore, the actual 2+ energy drop
due to 3NF is larger than that shown in Fig. 4 which plots
the combined effect from 3NF and the continuum coupling.
The 3NF-caused energy drop in even-even 16C and 16Ne is
not as pronounced as in odd-odd 16F and 16N. In addition
to the less pronounced 0d5/2 energy drop in 16C and 16Ne,

FIG. 6. Neutron (ν) or proton (π ) 1s1/2 and 0d5/2 ESPEs, and
nucleon occupation probabilities on s1/2 and d5/2 partial waves in
the 0+ g.s. [upper (a), (b)] and 2+

1 excited state [lower (c), (d)] for
16C [left (a), (c)] and 16Ne [right (b), (d)]. In the GSM calculation,
π1s1/2 and π0d5/2 are resonances, indicated by shadowing with
the resonance width given above (below) the bar. The EM1.8/2.0
interaction is used.

a less pronounced d5/2 component is another reason for the
less pronounced energy drops in even-even 16C and 16Ne. The
states in 16C and 16Ne do not purely occupy the d5/2 partial
wave, but also contain significantly other partial waves, e.g.,
the s1/2 partial wave, as shown Fig. 6.

We predict a resonance excitation spectrum for 16Ne with
a similar level scheme to its mirror partner 16C, but significant
TES’s are seen in the 0+

2 , 2+
2 and 4+ states. Calculated res-

onance widths for the observed 0+ g.s. and 2+ excited state
are broader than data in the unbound resonant nucleus 16Ne.
The resonance width is sensitive to the separation energy of
particle emissions [72], and the present GSM calculation of
the g.s. energy is more unbound than the experimental datum,
therefore broader widths have been obtained. However, the
present predictions of the excitation energies and resonance
widths in 16Ne are similar to those of the GSM calculations
using phenomenological potentials [72].

In the low-lying states of the odd-odd 16F and 16N, due to
the magic shell gap above 0p1/2, the odd neutron in 16F or the
odd proton in 16N mainly occupies the 0p1/2 orbital, while the
odd proton in 16F or the odd neutron in 16N stays in the sd shell
with our defined model space, which leads to negative-parity
low excitation levels as shown in Fig. 2. For the even-even 16C
and 16Ne, the pair of valence neutrons or valence protons stay
in the sd shell defined by our model space. Therefore, lowly
excited states in 16C and 16Ne should have a positive parity.
Negative-parity levels should have higher excitation energies,
with valence particle(s) being excited to the higher pf shell
above the sd shell or hole excitation in the p shell of the core.

In Refs. [10,11], the mirror symmetry breaking and TES in
the lowest 0+ and 2+ states of the mirror partners 16Ne and
16C were studied using a three-body model with phenomeno-
logical interactions. Here, we analyze the mirror symmetry
breaking using the wave functions obtained in our ab initio
calculations. The low-lying states are governed by the s1/2

and d5/2 partial waves, as shown in Fig. 6 for the 0+
1 and 2+

1
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states in 16Ne and 16C. The neutron 1s1/2 and 0d5/2 orbitals are
weakly bound, while the proton 1s1/2 and 0d5/2 orbitals are
unbound resonances (note that the real-energy standard SM
calculation cannot provide the description of the resonance
nature). We see that the continuum effect on the 1s1/2 orbital
is more pronounced with a significant energy shift between
the GSM and SM ESPE’s, as shown in Fig. 6. This is because
no centrifugal barrier exists in the s-wave, which leads to a
stronger coupling to the continuum. We also see that, in the
0+ g.s., the occupation probability on the s1/2 partial wave
in 16Ne is significantly larger than that in the mirror partner
16C, while this mirror asymmetry does not appear to be ob-
vious in the 2+ IAS (shown in the lower panel). This is in
consistence with the statement given in Refs. [10,11]. The
unbound 16Ne 0+ g.s. contains more s1/2 component, and
thus has a stronger continuum coupling effect, which leads
to a more energy drop than in other states. Consequently,
this raises the 2+ excitation energy of the GSM calculation,
which may provide an explanation for the recent experi-
mental observation that the 2+ state in 18Mg is higher than
that in 18C [12].

Finally, we test the stability or convergence of the cal-
culations in which we have to take some approximations or
truncations due to limitations of computing power. The calcu-
lations start with the HF (GHF) approximation using the same
realistic interaction, which provides the basis for many-body
calculations. When the discretized continuum partial waves
are included in the valence space, it is difficult to include
the third-order Q̂-box perturbation diagrams due to the huge
model dimension. In our previous works [65,83], however,
it has been shown that the effect from the third-order Q̂-box
folded diagrams is rather small on the spectrum. The HO h̄ω

value which was taken at the beginning to generate interaction
matrix elements is another factor that should be checked to see
whether the calculation is heavily dependent on the h̄ω value
used. In Ref. [42], the EM1.8/2.0 interaction with h̄ω = 16
MeV was used for the ab initio calculations of nuclei from He
to Fe isotopes, showing good agreements with data. The phe-
nomenological h̄ω = 45A−1/3–25A−2/3 gives h̄ω ≈ 14 MeV
for A = 16 mass. The generation of the interaction matrix
elements in the complex-k space is a huge task due to the huge
dimension with the large number of discretized continuum
states. However, we have tested the h̄ω dependence of calcula-
tions in the real-energy space. Using h̄ω = 14 MeV, 16 MeV,
and 20 MeV with the same EM1.8/2.0 interaction, we find
that obtained HF single-particle energies remain almost the
same, and the RSPT calculations with the inclusion of the
third-order correction give the total energy of −102.12 MeV,
−102.36 MeV, and −102.39 MeV for the 14C core, respec-
tively. Therefore, the dependence on the h̄ω value should not
be serious in the calculations. With the EM1.8/2.0 interac-
tion at h̄ω = 16 MeV, we have tried a larger 3NF truncation

with e3max = 14 and a denser contour discretization with 40
discretizing points for each continuum partial wave, which
reaches the maximum limit of our computer resources. Ob-
tained GSM results are almost the same as those obtained
using e3max = 12 and 35 discretizing points. The maximum
difference in the g.s. energies is 14 keV occurring in 16N,
while it is only 4 keV in the excitation energies of spectra
occurring in the 1− level of 16N.

IV. SUMMARY

Nuclei around driplines exhibit unique features with res-
onance and strong coupling to the continuum. Using the ab
initio Gamow shell model with chiral three-nucleon force
included, we have investigated the mirror asymmetry in A =
16 mirror pairs. This model provides a comprehensive and
rigorous ab initio description of many-body correlations in
the presence of the continuum coupling. As compared to
previously used Gamow shell models, the present calculations
make use of the Gamow Hartree-Fock basis based on the
initial chiral two- and three-nucleon forces. With both the
three-nucleon force and the continuum coupling included,
the calculations can well reproduce the experimental level
inversions in the 16F - 16N mirror pair. Comparisons with other
models demonstrate that both the three-nucleon force and
the continuum coupling should be included in the ab initio
calculations of weakly bound and unbound open quantum
nuclear systems. Our calculations have also provided a rig-
orous test of the EM1.8/2.0 nuclear force and the ab initio
method used. The calculations reasonably reproduce the ex-
perimental low-lying excited states of 16C except the 3+ level,
and predict the low-lying spectrum of its mirror partner 16Ne
which is resonance. We calculated effective single-particle
energies and analyzed occupation probabilities on partial
waves, which reveals that a Thomas-Ehrmann shift develops
in the 0+ ground-state configurations of 16C - 16Ne mirror
pairs. The study of the mirror asymmetry in the 16C - 16N
mirror pair can also provide further insight into the origin of
the relatively high 2+ excitation energy in 18Mg.
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