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Variation of multi-Slater determinants in antisymmetrized molecular dynamics
and its application to 10Be with various clustering
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We propose a method to optimize the multi-Slater determinants of the antisymmetrized molecular dynamics
(AMD) in the linear combination form and apply it to the neutron-rich 10Be nucleus. The individual Slater
determinants and their weights in the superposition are determined simultaneously according to the variational
principle of the energy of the total wave function. The multi-AMD basis states of 10Be show various cluster
structures as well as the shell-model type. In the cluster configurations, different intercluster distances are super-
posed automatically, indicating the role of the generator coordinates. We further introduce a procedure to obtain
the configurations for the excited states imposing the orthogonal condition to the ground-state configurations. In
the excited states of 10Be, the linear-chain-like structure is confirmed to consist of various clusters. The energy
spectrum using the obtained basis states reproduces the experiments. The present framework can be used to find
the optimal multiconfiguration for nuclear ground and excited states.
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I. INTRODUCTION

Nuclear clustering is one of the important properties of
nuclei as well as the mean-field states [1–5], in which some
nucleons form a cluster such as an α particle and are spatially
developed in nuclei. A typical case is a 8Be nucleus, which
decays into two α particles. The Hoyle state, the 0+

2 state
of 12C, is considered to have a 3α structure and this state
is the resonance located near the threshold energy of the 3α

breakup.
The clustering phenomena of nuclei have a variety as indi-

cated by the Ikeda diagram [1]. Theoretically, it is important to

*takayuki.myo@oit.ac.jp

investigate the possible cluster states as well as the mean-field
states without any assumption as much as possible. For this
purpose, the antisymmetrized molecular dynamics (AMD)
is one of the possible models of nuclear many-body wave
functions in the Slater determinant form [6,7]. In AMD, the
nucleon wave function has a Gaussian wave packet with a
specific centroid position in phase space. The distribution of
the centroid parameters controls the appearance of the clus-
ter and mean-field states of nuclei and these parameters are
determined according to the variational principle of the total
energy.

The AMD wave function can be extended to the mul-
ticonfiguration (multi-Slater determinants) by applying the
generator coordinate method (GCM), in which various sets
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of the Gaussian parameters are used in each of the Slater
determinants. The weights of the Slater determinants are de-
termined in the energy minimization of the total system. In
AMD with GCM, the basis states are usually produced by
imposing the constraints on the AMD wave functions, such
as deformation and radius, and one often regards the lowest-
energy state in the specific constraint as one of the basis states
in GCM. However, it is not trivial whether the basis states ob-
tained with the constraints can be the optimal configurations
to be superposed in the results of GCM.

In the mean-field model of nuclei, the method to super-
pose the optimal Slater determinants has been discussed in
the multiconfiguration Hartree-Fock theory [8,9] and also
in the self-consistent multiparticle-multihole configuration
mixing [10].

Recently, we developed two variational methods for nuclei
using the AMD wave function to treat the short-range and
tensor correlations induced by the realistic nucleon-nucleon
interaction. One is the “tensor-optimized antisymmetrized
molecular dynamics” (TOAMD) [11–14], in which we in-
troduce the correlation functions of the central-operator and
tensor-operator types. The other is “high-momentum antisym-
metrized molecular dynamics” (HM-AMD) [15–18], in which
high-momentum components are treated using the complex
Gaussian centroids. Two methods are also applied to the
nuclear matter calculations [19,20]. In these methods, when
many basis states are superposed with various variational
parameters, the solutions can show convergence, but the cal-
culation cost becomes high. We need a scheme to find the
optimal basis states in these variational methods.

In this paper, we propose a method to search for the op-
timal multi-Slater determinants using the AMD basis states
for nuclei. In AMD, the Gaussian centroids are variational
parameters and the imaginary-time evolution of them is solved
to gain the total energy until getting the converging solutions,
which is the so-called cooling equation. We extend this cool-
ing method to treat the multibasis states and we can determine
all the parameters in the multibasis states and the weights of
the basis states simultaneously.

In the method, all the configurations (Slater determinants)
are determined in the energy minimization of the total wave
function. This would be useful to find the appropriate configu-
rations of the cluster and mean-field types in the superposition
of the basis states. The present framework would be applica-
ble to the methods of TOAMD and HM-AMD with realistic
interactions. Optimization of the multiconfiguration is also
available in the neural network approach and our collaborators
have recently applied it to the cluster states of 12C [21].

In this paper, we apply this scheme to a neutron-rich 10Be
nucleus in the description of the ground and excited states
including the cluster and shell-like states. There have been
theoretical studies of 10Be focusing on the clustering struc-
tures [22–27]. Using the same Hamiltonian as used in these
studies, we discuss 10Be and compare the results with those of
the previous works.

In Sec. II, we explain the formulation of the variation of
the multi-Slater determinants in the AMD wave functions.
In Sec. III, we discuss the results of 10Be. In Sec. IV, we
summarize this work.

II. THEORETICAL METHODS

A. Hamiltonian

We use the Hamiltonian with a two-body nucleon-nucleon
interaction for mass number A as follows:

H =
A∑
i

ti − Tc.m. +
A∑

i< j

vi j, (1)

vi j = vcentral
i j + vLS

i j + vCoulomb
i j . (2)

Here, ti and Tc.m. are the kinetic energies of each nucleon and
the center-of-mass (c.m.), respectively. Following the previ-
ous works of 10Be in similar models [23–26], we use the
effective nucleon-nucleon interaction vi j of the Volkov No.
2 central force with the Majorana parameter M = 0.6 and the
Bartlett and the Heisenberg parameters B = H = 0.125, the
G3RS spin-orbit LS force with a strength of 1600 MeV, and
the point Coulomb force for protons. This Hamiltonian is the
same as that used in other calculations [23–26] except for the
LS strength of 2000 MeV [23].

In the present Hamiltonian, the total energy of the α par-
ticle is −27.6 MeV with the (0s)4 configuration, and the
α + α + n + n threshold energy of 10Be is −55.2 MeV, which
is close to the experimental value of −56.6 MeV.

B. Antisymmetrized molecular dynamics

We explain the framework of AMD for nuclear many-body
systems. The AMD wave function �AMD is a single Slater
determinant of A nucleons given as

�AMD = 1√
A!

det

{
A∏

i=1

φi(ri )

}
, (3)

φi(r) =
(

2ν

π

)3/4

e−ν(r−Zi )2
χσ,iχτ,i, (4)

χσ,i = αi|↑〉 + βi|↓〉. (5)

The single-nucleon wave function φi(r) has a Gaussian wave
packet with a common range parameter ν and the individual
centroid position Zi with the index i = 1, . . . , A. We set ν =
0.235 fm−2, which is the same value as used in Refs. [23–26].
We impose the condition of

∑A
i=1 Zi = 0. The spin part χσ is

a mixed state of the up (↑) and down (↓) components for the z
direction and the isospin part χτ is a proton (p) or neutron (n).
The variational parameters of each nucleon are Zi, αi, and βi

being complex numbers.
In AMD, the energy variation is performed by solving

the cooling equation, in which the variational parameters are
determined in terms of the imaginary-time evolution of the
following equations:

Xi = {Zi, αi, βi},
�±

AMD = P±�AMD,

E±
AMD = 〈�±

AMD|H |�±
AMD〉

〈�±
AMD|�±

AMD〉 ,

dXi

dt
= −μ

∂E±
AMD

∂X ∗
i

, and c.c. (6)
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Here Xi stands for the set of parameters of a single nucleon, P±
is a parity-projection operator, and μ is an arbitrary positive
number. This equation satisfies the condition of the energy
minimization as dE±

AMD/dt � 0. In this study, we solve the
cooling equation with the parity-projected wave function until
we get the convergence of E±

AMD.
Finally, using the angular momentum projection operator

PJ
MK , one obtains the eigenstate of the angular momentum J

with quantum numbers of M and K , the parity (±), and also
the total energy EJ±

AMD:

�J±
MK,AMD = PJ

MK P±�AMD,

EJ±
AMD =

〈
�J±

MK,AMD

∣∣H ∣∣�J±
MK,AMD

〉
〈
�J±

MK,AMD

∣∣�J±
MK,AMD

〉 . (7)

The formulas of the Hamiltonian matrix elements are ex-
plained in Refs. [28,29].

The AMD wave function is usually extended to the mul-
ticonfiguration (multi-Slater determinants) applying GCM. In
GCM, the parameter set of {Xi} in the single AMD configu-
ration is usually determined by imposing specific constraints
in the cooling equation. The total wave function �GCM is a
linear-combination form of the projected AMD basis states
denoted simply as �n, with the basis index of n = 1, . . . , N :

�GCM =
N∑

n=1

Cn �n,

Hmn = 〈�m|H |�n〉, Nmn = 〈�m|�n〉,
EGCM = 〈�GCM|H |�GCM〉

〈�GCM|�GCM〉 , (8)

where the labels m and n represent the set of the quantum
numbers of the projected AMD basis states in Eq. (7) with
{Xi}. These basis states are nonorthogonal to each other. The
Hamiltonian and norm matrix elements are given as Hmn and
Nmn, respectively. From the variational principle of the total
energy, δEGCM = 0, one solves the following eigenvalue prob-
lem and obtains the total energy EGCM and the coefficients
{Cn} for each J±:

N∑
n=1

(Hmn − EGCMNmn)Cn = 0. (9)

C. Variation of multi-Slater determinants

We propose the method to optimize the multi-AMD basis
states simultaneously without any constraint in the energy
variation of the total system, which is the extension of the
cooling equation in Eq. (6). In this study, in the energy vari-
ation to construct the basis states, every wave function and
equation are given with the parity projection and hereafter we
simply write them omitting the notation of parity (±). We
express the total wave function � in the linear combination
of the basis states {�n} with parity projection in the intrin-
sic frame. Each of the AMD configurations has variational
parameters of Xn,i = {Zn,i, αn,i, βn,i,Cn}, including the coef-
ficient Cn. The total energy EGCM and the cooling equation to

minimize EGCM are expressed as

� =
N∑

n=1

Cn �n, EGCM = 〈�|H |�〉
〈�|�〉 ,

dXn,i

dt
= −μ

∂EGCM

∂X ∗
n,i

, and c.c. (10)

Solving these equations numerically, one can obtain the total
energy EGCM and optimize all the parameters in the multi
AMD basis states simultaneously. Finally, after the angular
momentum projection of the basis states {�n}, one solves
the eigenvalue problem in Eq. (9). The equations in Eq. (10)
represent a cooling of the multibasis states, and we simply call
this new method the “multicool method.”

In the multicool method, one obtains the set of the AMD
configurations {�n} mainly for the ground state of a nucleus
due to the energy minimization, but does not optimize the
configurations for the excited states. In the present study,
we propose one method to obtain the configurations for the
excited states in the multi AMD basis states. It is naively ex-
pected that these configurations should be orthogonal to those
for the ground state. Considering this property, we employ
the orthogonal projection method proposed by Kukulin and
Pomenertsev [30]. This method is often used in the orthogo-
nality condition model (OCM) of the nuclear cluster systems
to remove the Pauli-forbidden states from the intercluster
motions in the structures and reactions of nuclei [31,32].

We first fix the configurations {�n} obtained in the mul-
ticool method in Eq. (10) and regard them as {�c0} with
the index c0 = 1, . . . , N . We define the pseudopotential Vλ

using {�c0} in the projection form, multiplying a real positive
parameter λ, and add this potential to the Hamiltonian:

Hλ = H + Vλ, Vλ = λ

N∑
c0=1

|�c0〉〈�c0 |,

�λ =
N∑

n=1

Cλ,n�λ,n, EGCM,λ = 〈�λ|Hλ|�λ〉
〈�λ|�λ〉 . (11)

Using {�c0} with parity projection and a specific value of
λ, we perform the variation of the total energy EGCM,λ. We
solve the multicool equation in Eq. (10) for Hλ and determine
the basis states {�λ,n} and the total wave function �λ. We
increase the strength λ starting from a small value, and when
λ is sufficiently large, �λ can be orthogonal to {�c0}. We take
several values of λ to trace the basis states {�λ,n}, including
the transitional region from {�c0}. At each λ, we evaluate
the total energy EGCM,λ subtracting the contribution of the
pseudopotential, although its contribution is minor. The value
of λ can be as large as 105–106 MeV in the typical OCM
calculation of the multicluster systems [31].

In the multicool method, the variation is performed for the
intrinsic state without the angular momentum projection. Due
to this approximation, when the configuration �c0 is spatially
deformed to a certain direction, the configuration �λ,n can be
deformed to another direction. These configurations can be
orthogonal to each other in the intrinsic frame, but they might
have a finite overlap after the angular momentum projection.
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To avoid this situation, we rotate the configurations {�c0} and
add them to the projection term of the pseudopotential. In this
study, we adopt two kinds of rotations: (x, y, z) → (z, x, y)
and (x, y, z) → (y, z, x), with parity projection, and the ba-
sis number becomes 3N in the pseudopotential. We describe
the configurations including rotations as {�c} with the index
c = 1, . . . , 3N ;

Vλ = λ

3N∑
c=1

|�c〉〈�c|. (12)

We use this potential to produce the multiconfigurations for
the excited states in the multicool method. The present or-
thogonal condition is a simplified case of the Schmidt’s
orthogonalization after the angular momentum projection
[22,33].

We summarize the calculation procedure of the multicool
method for a nucleus with a mass number A.

(i) We prepare the initial AMD basis states with a num-
ber N , setting the basis parameters randomly. The
basis parameters are {Xn,i} in Eq. (10) for the basis in-
dex n = 1, . . . , N and the particle index i = 1, . . . , A.
The initial coefficients {Cn} are determined by solving
the eigenvalue problem of the Hamiltonian matrix in
the intrinsic frame with parity projection.

(ii) Solving the multicool equation with the multi AMD
basis states in Eq. (10), we minimize the total energy
and determine all the variational parameters {Xn,i}.
The configurations {�n} can be dominant for the
ground state of a nucleus. We regard {�n} as {�c}
with c = 1, . . . , 3N , including the rotations of {�n},
used in the pseudopotential.

(iii) Putting a specific λ in the pseudopotential in Eq. (12),
we solve the multicool equation to obtain the config-
urations for the excited states. At each λ, we obtain a
different set of configurations {�λ,n}.

(iv) Finally, we superpose {�n} and {�λ,n} for various λ in
GCM and solve the eigenvalue problem of the Hamil-
tonian matrix with the angular momentum projection
in Eq. (9). We obtain the ground and excited states
of a nucleus. It is noted that we treat λ as a kind of
the constraint parameter to generate the GCM basis
states.

III. RESULTS

We perform the multicool calculation for 10Be with a
positive-parity state and discuss the reliability of the method.
We first prepare the initial AMD basis states for 10Be with
N = 16 and this number is also used to produce the config-
urations for the excited states using the pseudopotential with
various strengths of λ. This number is sufficient to converge
the final results of the ground and excited states of 10Be with
GCM.

In the energy variation, we employ two schemes: one is that
the directions of the intrinsic spin of nucleons are fixed during
the variation, called “spin-fix,” and the other is that the spin
directions are optimized during the variation, called “spin-
free.” We finally superpose all the basis states obtained in the

TABLE I. Total energies and matter radii of the intrinsic ground
state of 10Be with positive parity in the spin-fix case. Three calcu-
lations mean the single-basis state, the multicool, and the multicool
using the pseudopotential with the strength λ.

Energy (MeV) Radius (fm)

Single −48.9 2.20
Multicool −54.7 2.31
Multicool, λ = 105 MeV −48.0 2.90

two schemes in the total wave function. In the spin-fix case,
we prepare the five nucleons with spin-up (αi = 1, βi = 0)
and spin-down (αi = 0, βi = 1) directions, respectively, for
10Be. In the two schemes, the obtained configurations are
similar, such as the cluster structures. One difference is that
the spin-free calculation tends to give the configurations of
10Be with radii smaller than those of the spin-fix case. This is
because, considering two nucleons with the same spin direc-
tion, they can come close to each other by the nucleon-nucleon
interaction changing their spin directions to satisfy the Pauli
principle.

A. Spin-fix

First, we discuss the spin-fix case. We perform the multi-
cool calculation to determine the ground-state configurations
{�n} for 10Be without the pseudopotential. In Fig. 1, we
show the total energies, matter radii, and components of each
configuration of 10Be for the intrinsic positive-parity state,
in which the component of the basis index n is defined as
|〈�n|�〉|2 in Eq. (10). The total energy and radius of the
GCM wave function � are shown in the blue dashed lines.
It is noted that the calculation results give the order of 16
configurations randomly, and then we rearrange them in the
order of the groups having similar structures, such as density
and clustering, which are shown later, to make the discussion
easier.

In the results, the energies of the configurations are dis-
tributed widely from −45 to −13 MeV. The GCM energy is
−55 MeV with an energy gain of 10 MeV in the superposition
of the basis states. For the radii of the configurations, the
values are also distributed widely from 2.1 to 2.7 fm and the
GCM result is 2.3 fm. For the components, all configurations
contribute to the total wave function, indicating the strong
configuration mixing, and their average is 0.51 and the stan-
dard deviation is 0.13.

In Table I, we compare the results of the multicool method
with the single AMD basis state for N = 1. It is found that
the effect of multiconfiguration is 5.8 MeV in the total energy.
The radius becomes larger by 0.12 fm because of the mixture
of the configurations having large radii.

In Fig. 2, we show the intrinsic density distributions of
the configurations of 10Be, in which the integration of each
distribution in three-dimensional space gives a mass number
of 10. We assign the basis index of each configuration in the
order of the groups having similar structures. In the figure,
we adjust the direction of the longest distribution to be the
horizontal axis by calculating the principal axes. Some of the
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FIG. 1. Configurations of 10Be in the spin-fix case for the intrinsic positive-parity state. The horizontal axis is the basis index n. Total
energies are in units of MeV (left panel), matter radii are in units of fm (middle panel), and the components |〈�n|�〉|2 (right panel) are shown
with red dots for each configuration. The blue dashed lines represent the energy and radius of the total wave function with GCM and the
average of the components.

distributions look similar to each other, but they have different
directions of the longest distribution before adjustment of
the direction. Mixing of these basis states corresponds to the
restoration of the rotational symmetry in GCM. In the dense
part with red color in the distributions, the α cluster often
forms with two protons and two neutrons.

One can confirm various density distributions including
the different clustering. We classify them according to their
spatial structures in Table II. The first six basis states with
an index of 1–6 have the 6He +α configuration and the 1st
basis state gives the largest radius of 2.67 fm and the 2nd
basis state gives the smallest radius of 2.24 fm among them.
This difference comes from the distance between 6He and α,
which indicates the GCM effect of the relative motion. If the
relative distance becomes small, the configuration approaches
the shell-like state shown in the 16th basis state with a small
radius of 2.13 fm.

For the 5He + 5He configuration, the 7th and 8th basis
states are assigned, and if the relative distance between two
5He nuclei becomes small, the state approaches the sym-

TABLE II. Classification of the intrinsic density distributions of
10Be as shown in Fig. 2 for the multicool method and Fig. 5 for the
multicool method with λ = 105 MeV in the pseudopotential. The
number indicates the basis index.

Configuration Multicool Multicool, λ = 105 MeV

6He +α 1,2,3,4,5,6 1,2,3,4,5,6
5He + 5He 7,8 7,8,9,10,11
8Be +2n 9,10 12
9Be +n 11,12,13 13,14,15
Shell-like 14,15,16 –
7Li + 3H – 16

FIG. 2. Intrinsic density distributions of the configurations of 10Be in the spin-fix case. Units of densities and axes are fm−3 and fm,
respectively. The number in each panel means the basis index used in Fig. 1.
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FIG. 3. Intrinsic energy and radius of the total wave function of
10Be with positive parity in the spin-fix case. The strength λ of the
pseudopotential changes.

metric shell-like state shown in the 14th basis state with a
small radius of 2.16 fm. This also indicates the GCM ef-
fect of the relative motion. The 8Be +2n configuration is
also confirmed in two basis states of the 9th and 10th, and
the dineutron is spatially enhanced in the 10th basis state.
The 9Be +n configuration is confirmed in three basis states
of 11th–13th with the different relative distances. The last
three basis states represent the shell-like configurations with
small radii.

In the 6He +α and 5He + 5He configurations, the deforma-
tions of 6He and 5He are confirmed in the vertical direction
and perpendicular to the horizontal one with two clusters be-
ing lined. In these configurations, according to the four-body
picture of α + α + n + n, we can interpret that two valence
neutrons occupy the p orbit around either of two α’s, which

corresponds to the π orbit in the concept of the molecular
orbital [23,34].

In the summary of the multicool calculation of 10Be in
AMD, one confirms the various configurations, shell-like and
clustering, some of which show the different intercluster dis-
tances, representing the GCM effect of the relative motion.
This means that the preferable generator coordinates are de-
termined automatically in the results of the energy variation of
the total system. This is the advantage of the multicool method
to produce the appropriate multi-Slater determinants in AMD
without any constraint.

We regard the AMD basis states {�n} obtained in Eq. (10)
as the ground-state configurations for 10Be. In the pseu-
dopotential in Eq. (12), we adopt these configurations with
rotations in the states {�c} and produce the configurations
for the excited states with a specific strength λ. In Fig. 3, we
show the λ dependencies of the total energy and the radius
of the total wave function of 10Be, in which the contribution
of the pseudopotential is removed from the total energy. At
each λ, the expectation value of the pseudopotential, 〈Vλ〉 =
λ

∑3N
c=1 |〈�c|�λ〉|2, is typically less than 0.5 MeV including

the large prefactor λ, which means that
∑3N

c=1 |〈�c|�λ〉|2 is
tiny. This is sufficient to obtain the configurations {�λ,n}
different from {�c}.

By increasing λ from zero, the total energy goes up first
until λ = 104 MeV by about 5 MeV, and after that it slightly
goes down and again goes up rapidly at λ = 4 × 104 MeV and
becomes the stable energy of −48 MeV with the excitation
energy of around 7 MeV. For the radius, the same tendency
is confirmed and the excited states show a stable radius of
2.9 fm, which is extended from 2.3 fm of the ground state.
These results indicate the structural transition of 10Be after
λ = 4 × 104 MeV.

For the excited states of 10Be, we discuss the configurations
with λ = 105 MeV. We show the total energies, the radii, and
the components in the intrinsic frame in Fig. 4. The energies
are distributed from −38 to −26 MeV, and the radii are also
widely distributed from 2.4 to 3.4 fm. For the components,
all configurations contribute to the total wave function with
similar values of 0.4–0.6, indicating the strong configuration
mixing and their average is 0.46 with a small standard devi-
ation of 0.06. These tendencies are common for the case as
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FIG. 4. Configurations of 10Be in the spin-fix case for the intrinsic positive-parity state. The strength λ = 105 MeV is used in the
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FIG. 5. Intrinsic density distribution of each configuration of 10Be in the spin-fix case using the pseudopotential with the strength of
λ = 105 MeV. Units of densities and axes are fm−3 and fm, respectively. The number in each panel means the basis index used in Fig. 4.

shown in Fig. 1, and the coherency of the configurations in
the excited state is stronger than that in the ground state from
the components.

In Fig. 5, we show the density distributions of the excited-
state configurations of 10Be, which are significantly different
from those for the ground-state configurations shown in Fig. 2.
It is found that all configurations commonly have an elongate
structure with various clustering like a linear chain. In Ta-
ble II, we classify the structure of each configuration similarly
to the calculation for the ground-state configurations. The first
six states show the 6He +α configuration and their structures
show the variety; in the 1st basis state, the small relative dis-
tance between 6He and α is confirmed with the smallest radius
of 2.4 fm among all the basis states. Two valence neutrons are
located in between two α’s and are close to the right-hand side
of α to form 6He. In the 2nd and 3rd basis states, 6He and α

are spatially separated and two valence neutrons in 6He are
located at the right end of the density. In the 6th basis state,
6He and α are the most separated and the radius shows the
largest value of 3.35 fm among all the basis states. This basis
state corresponds to the extension of the relative motion from
the 1st basis state.

Five basis states from the 7th to the 11th show the
5He + 5He configuration with various relative distances,
which represents the GCM effect. Among them, the 7th basis
state gives the smallest radius of 2.75 fm and the 11th basis
state gives the largest radius of 3.3 fm. It is noted that the
direction of deformation of two 5He nuclei is commonly
along the horizontal axis and is different from that in the
ground-state configurations shown in Fig. 2. The location of
two valence neutrons also depends on the basis states; mainly
in between two α’s (7th) and on the left and right ends of
the density (11th) along the horizontal axis. To confirm it
clearly, in Fig. 6, the proton and neutron density distributions
of the two basis states are shown and one can realize
the difference in the neutron distributions. In the proton

part, the different distances between the proton pairs are
confirmed.

In the 12th basis state, two neutrons are spatially sepa-
rated from two α’s contacting each other as 8Be, indicating
the 8Be +2n structure. The 9Be +n configuration is also con-
firmed in the 13th, 14th, and 15th basis states, in which the last
neutron is located at the left end of the density with a slight
bending. In the distributions, 9Be shows the 5He +α structure
and the valence neutron is located in between two α’s (13th)
and on the left end of 9Be (14th, 15th). The last 16th basis state
shows the 7Li + 3H (triton) configuration where 7Li shows the
α + 3H structure contacting with each other. This means that
one α cluster and two tritons form in 10Be. We do not confirm
the spatially compact shell-like state among the excited-state
configurations.

According to the four-body picture of α + α + n + n, in
the configurations of 6He +α, 5He + 5He, and 8Be +2n, two
valence neutrons mostly occupy the orbit in the horizontal
direction along with two α’s, with various locations and vari-

FIG. 6. Intrinsic density distributions of protons and neutrons in
the 7th (upper) and 11th (lower) configurations of 10Be with the same
conditions as those given in Fig. 5.

064314-7



TAKAYUKI MYO et al. PHYSICAL REVIEW C 108, 064314 (2023)

TABLE III. Total energies and matter radii of the intrinsic ground
state of 10Be with positive parity in the spin-free case. Three calcu-
lations mean the single basis state, the multicool, and the multicool
using the pseudopotential with the strength λ.

Energy (MeV) Radius (fm)

Single −49.5 2.18
Multicool −56.0 2.23
Multicool, λ = 3 × 105 MeV −45.5 2.75

ous relative distances between two α’s. We can interpret this
structure of two neutrons as the σ orbit in the molecular
orbital picture [23]. From the results of the excited-state con-
figurations together with the ground-state ones, the molecular
orbital structure is automatically confirmed in 10Be in the re-
sults of variation of multi-Slater determinants without a priori
knowledge.

B. Spin-free

We perform the multicool calculation of 10Be with the
variation of the spin directions of all nucleons in the AMD
basis states. The basis number is 16 and is common as used
in the spin-fix case. In Table III, we obtain the ground-state
energy in the multicool method and compare the results with
the single AMD basis state. The single basis state gives a
total energy of −49.5 MeV and the multicool method gives
−56.0 MeV, and the energy gain is 5.5 MeV. In the multicool
method, the radius is 2.23 fm, which is smaller than that of
the spin-fix case of 2.31 fm, as shown in Table I. This is
because two nucleons can come close to each other by the
interaction changing their spin directions. This effect gains
the total energy of 10Be of 1.3 MeV in comparison with the
spin-fix case of −54.7 MeV.

We add the pseudopotential in the Hamiltonian with the
strength λ using the ground-state configurations in the mul-
ticool method and produce the configurations for the excited
states. In Fig. 7, we show the results of changing the strength
λ for the total energy and the radius in the multicool method.
The overall trend is similar to the spin-fix case as shown in
Fig. 3. When we use the value of λ larger than 1.8 × 105 MeV,
the state transits to the stable solution with the higher energy
and the larger radius. As shown in Table III, the excitation
energy is about 11 MeV from −56 to −45 MeV, and the radius
becomes as large as 2.75 fm, which is a little smaller than the
2.9 fm of the spin-fix case in Fig. 3.

In the spin-free calculation of 10Be, the densities of the
ground- and excited-state configurations provide distributions
similar to those of the spin-fix case as shown in Figs. 2 and 5,
such as the shell-like and clustering structures.

In the spin-free case, the lowest value of λ to get the
excited state of 10Be with a large radius is larger than that
of the spin-fix case. This is because the variation of the
spin directions of nucleons in �λ can reduce the overlap
of 〈�c|�λ〉 in the matrix elements of the pseudopotential
without the spatial extension of �λ. Hence, a larger λ is
necessary to extend the system spatially in the spin-free
calculation.
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FIG. 7. Intrinsic energy and radius of the total wave function of
10Be with positive parity in the spin-free case. The strength λ of the
pseudopotential changes.

C. Energy spectrum

We perform the angular momentum projection of the
multicool basis states of 10Be for the positive-parity states
and solve the eigenvalue problem of the Hamiltonian ma-
trix in Eq. (9). This calculation corresponds to the GCM
one using the basis states obtained in the multicool method.
For spin-fix and spin-free cases, we employ all the ba-
sis states obtained for the ground state and the excited
states with the different values of λ, as shown in Figs. 3
and 7. The total basis number is about 600 in the present
calculation.

Here, we mention the threshold energies to separate 10Be
into the subsystems. We calculate 6He and 9Be in the multi-
cool method in a way similar to that for 10Be. The energy of
the 0+ ground state of 6He is obtained as −29.2 MeV with
the two-neutron separation energy being 1.6 MeV measured
from the energy of −27.6 MeV of the α particle, and the
6He +α threshold energy is −56.8 MeV. The energy of the
3/2− ground state of 9Be is obtained as −57.5 MeV, which
becomes the threshold energy of 9Be +n. We summarize these
values in Table IV with their radii in comparison with the
experimental values. The charge radii of 6He and 9Be are
consistent with the experimental values [35,36]. For 10Be,
the energy spectrum is shown in Fig. 8 in comparison with
the experiments. The present results fairly agree with the
observed spectrum for positive-parity states. In Table V, the
total energies and radii of each state are listed. For the 0+
states, the 0+

1 state is spatially compact with a matter radius
of 2.33 fm and is mainly described by the configurations
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with small values of λ before the structural transition of
10Be. The total energy is −63.7 MeV, which is close to the
experimental value of −64.98 MeV. For the spin-fix basis
states only, the energy is −62.5 MeV and the spin-free case is
−62.8 MeV, and their coupling makes an energy gain of about
1 MeV.

The 0+
2 state is spatially extended with a radius of 2.88

fm and is mainly described by the excited-state configurations
with large radii produced using large values of λ after the tran-
sition. The 0+

2 state obtained is lower than the α + α + n + n
threshold energy of −55.2 MeV by about 0.8 MeV. The exci-
tation energy is 7.7 MeV, which is close to, but slightly higher
than the experimental value of 6.2 MeV by 1.5 MeV. This state
is mainly described by the basis states in the spin-fix case with
large radii. In the spin-fix basis states only, the energy of the
0+

2 state is −55.7 MeV, which is close to −56.0 MeV in the
full basis states, with a radius of 2.89 fm. The spin-free basis
states only give the energy of −52.1 MeV with a radius of
2.82 fm.

We predict the 1+ state with the excitation energy of 10
MeV, which is not observed experimentally, but is predicted
in other theories [23,37]. For 2+ states, the 2+

1 and 2+
2 states

are rather spatially compact states. The 2+
3 state gives a large

radius and is mainly described by the excited-state configura-
tions with large radii. This state can be the band member of
the 0+

2 state because the two states have a similar large radius
of 2.9 fm.

TABLE IV. Total energies and radii of 6He and 9Be. Radii of mat-
ter, proton, neutron, and charge are rm, rp, rn, and rch, respectively.
The values with square brackets are the experimental energies and
charge radii [35,36]. Units of energy and radius are MeV and fm,
respectively.

Energy rm rp rn rch

6He(0+) −29.2 [−29.3] 2.38 1.88 2.59 2.04 [2.068(11)]
9Be(3/2−) −57.5 [−58.2] 2.44 2.37 2.50 2.51 [2.519(12)]

We obtain one 3+ state, which can be a member of the
Kπ = 2+ band, with 2+

2 showing a similar radius of around
2.4 fm [23,24]. The candidate of this state is reported exper-
imentally with a similar excitation energy of 9.4 MeV [38].
We obtain two 4+ states and the 4+

1 state can be a band
member of the 0+

1 and 2+
1 states and the three states have

a similar radius of around 2.3–2.4 fm. The 4+
2 state shows

a large radius and can be a band member of the 0+
2 and

2+
3 states and the three states also have a similar radius of

around 2.9 fm.
We discuss the GCM effect on the energies of 10Be in the

multicool method and focus on the ground 0+ state. In the
single AMD basis state, the lowest intrinsic energy is −49.5
MeV as shown in Table III, and after the angular momentum
projection, the 0+ state gives −54.9 MeV with an energy gain
of 5.4 MeV. In the multicool method with 16 configurations,
the lowest intrinsic energy is −56.0 MeV in the spin-free
case. The superposition of these basis states with the angular
momentum projection gives the energy of −60.7 MeV and by
adding 16 more configurations in the spin-free case, we obtain
the energy of −61.8 MeV. Hence, the projection effect is

TABLE V. Total energies of the 10Be states in the multicool
method in units of MeV. Matter radii are given in units of fm.

Energy (MeV) Radius (fm)

0+
1 −63.72 2.33

0+
2 −56.01 2.88

1+ −53.31 2.51

2+
1 −59.84 2.33

2+
2 −57.54 2.42

2+
3 −54.16 2.89

3+ −54.25 2.40

4+
1 −51.99 2.40

4+
2 −50.64 2.91
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TABLE VI. Excitation energies of 10Be in the multicool method
in comparison with four theories using the same Hamiltonian
[23–26] except for Ref. [23] with 2000 MeV LS strength. Units are
MeV. The values given in parentheses are the total energies.

Multicool MO [23] β-γ [24] DC [25] β-γ K [26]

0+
1 0 0 0 0 0

(−63.7) (−61.4) (−59.2) (−60.4) (−63)

0+
2 7.7 8.1 8.0 9.5 12

(−56.0) (−53.3) (−51.2) (−50.9) (−51)

1+ 10.4 10.1 – – –

2+
1 3.9 3.3 3.3 – –

2+
2 6.2 5.7 5.8 – –

2+
3 9.6 9.5 9.9 – –

3+ 9.5 9.6 9.2 – –

4+
1 11.7 10.6 11.0 – –

4+
2 13.1 12.5 13.5 – –

5.8 MeV in the multicool method, which is close to the value
obtained in the single-basis state. Using the pseudopotential,
we construct the various configurations, and finally adding
these configrations, we obtain the energy of −63.7 MeV. This
means that the effect of the configuration mixing with the
pseudopotential is 1.9 MeV, which is smaller than the effect
of the angular momentum projection.

For reference, in the 2+
1 state, the single basis state gives

−51.8 MeV, the multicool method without the pseudopo-
tential gives −58.0 MeV, and the final energy with all
configurations is −59.8 MeV.

In Table VI, we compare the present energies of 10Be
with four similar cluster models: molecular orbital model of
α + α + n + n (MO) assuming two α clusters [23], AMD
with the constraints of the β−γ deformations [24], AMD
with dineutron condensation model (DC) [25], and AMD with
the β−γ constraints in the K quantum number projection
(β−γ K) [26]. In these models and the present multicool
method, the same Hamiltonian is used except for MO with
2000 MeV LS strength [23].

It is found that the present multicool method provides the
lowest energy of the 0+

1 state with −63.7 MeV, which is
slightly lower than −63 MeV of β-γ K [26]. This result is
consistent from the viewpoint of the variational principle. It
is found that the 0+

2 state with an energy of −56.0 MeV is
lower than the values of other theories by about 5 MeV with
the same Hamiltonian including the LS strength, and also
gives the lowest excitation energy of 7.7 MeV. This indicates
that the present multicool method with the pseudopotential
produces the appropriate configurations for the excited states.
When we use 2000 MeV for the LS strength, the energy
of the 0+

1 (0+
2 ) state is −66.8 MeV (−57.3 MeV) and the

excitation energy of the 0+
2 state is 9.5 MeV, which becomes

larger than the present 7.7 MeV. This is because of the at-
traction of the LS force in the 0+

1 state is larger than that
in the 0+

2 state, which indicates the j j-coupling component
in the 0+

1 state. For the 2+, 3+, and 4+ states, our results
are almost consistent with those of Refs. [23,24], although

TABLE VII. Radii of the 0+
1,2 states of 10Be for matter (rm),

proton (rp), neutron (rn), and charge (rch) in comparison with the
experiments [36,39] and other theories using the same Hamiltonian.
Units are fm.

Expt. Multicool MO [23] β-γ [24] DC [25]

rm 2.30(2) 2.33 – 2.39 2.37
0+

1 rp – 2.21 – – 2.31
rn – 2.40 – – 2.41
rch 2.357(18) 2.36 2.51 – –
rm – 2.88 – 2.98 2.96

0+
2 rp – 2.70 – – 2.66

rn – 2.99 – – 3.14
rch – 2.82 2.93 – –

the total energy is lower in the multicool method by about
4–5 MeV.

In Table VII, we list the radial properties of two 0+ states
of 10Be in comparison with the experimental and theoretical
values. For the 0+

1 state, the multicool method gives 2.33 fm
of matter radius, which is close to the experimental value [39]
and is smaller than that of other theories. The charge radius
in the multicool method is consistent with the experimental
value [36]. For the 0+

2 state, our results give a large radius, in
which both proton and neutron radii are enhanced from those
of the 0+

1 state by about 0.5 fm. This is the common feature
seen in other theories.

Finally, in Table VIII, we list the electric quadrupole
transition strength B(E2) from the 2+ states to the 0+
states, some of which are compared with the experimental
and theoretical values. In the multicool method, we almost
obtained consistent results with other theories. For 2+

3 to 0+
2 ,

these states commonly have large radii, and the E2 strength
shows a large value, which is consistent with the results in the
MO model [23].

IV. SUMMARY

We proposed a method to optimize the multi-Slater deter-
minants of the antisymmetrized molecular dynamics (AMD)
in the linear combination form for nuclei. The configurations
of the Slater determinants and their weights were determined

TABLE VIII. Electric quadrupole transition strength B(E2) of
10Be in the multicool method in comparison with those of the exper-
iments [38,40] and other theories with the same Hamiltonian. Units
are e2 fm4.

Experiment Multicool MO [23] β-γ [24]

2+
1 → 0+

1 10.5(1.0), 9.2(3) 7.9 11.26 9.4

2+
1 → 0+

2 0.66(24) 0.09 0.23 1.2

2+
2 → 0+

1 0.11(2) 0.37 0.44 0.7

2+
2 → 0+

2 – <0.002 0.00 –

2+
3 → 0+

1 – 0.05 0.19 –

2+
3 → 0+

2 – 27.1 35.56 –
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simultaneously to minimize the energy of the total wave func-
tion. This method is useful to find the important generator
coordinates for many-body systems. We further optimized
the excited-state configurations, imposing the orthogonal con-
dition to the ground-state configurations. In this paper, we
formulated this method in AMD and applied it to neutron-rich
10Be, which shows the various structures of the shell-like and
clustering states.

In AMD, the nucleon wave functions are Gaussian wave
packets and the centroid parameters of Gaussians in all the
Slater determinants are determined in the variation for the to-
tal wave function. We employ the cooling method in the multi
AMD basis states, and we call this the multicool method.
We first obtain the ground-state configurations, and next, we
obtain the excited-state configurations under the orthogonal
condition to the ground-state configurations.

In the multicool calculation of 10Be, we obtain the basis
states with the various spatial configurations and deforma-
tions including clustering of 5He + 5He, 6He +α, 7Li + 3H,
8Be +2n, and 9Be +n. These configurations are produced
without a priori knowledge and support the molecular orbital
picture of two valence neutrons surrounding two α’s in 10Be.
We also confirm that the appropriate generator coordinates,
such as the intercluster distances, are obtained automatically
in the energy variation of the total system. This is the ad-
vantage of the present multicool method. By superposing all
the basis states, we finally obtain the energy spectrum of

10Be, which reproduces the experiments. We also provide the
electric quadrupole transitions, which are consistent with
those of other cluster models. These results indicate the re-
liability of the present multicool method.

The concept of the multicool method is general for nuclei
and it is interesting to apply it to the configuration mixing
phenomena including the clustering. We plan to extend this
method to the ab initio type calculations, such as TOAMD
and HM-AMD with realistic nuclear forces, to determine the
optimal variational parameters in many basis states efficiently.
It is a remaining issue to describe the scattering states with
resonances above the particle threshold energy. One possibil-
ity for it is to combine the multicool method with complex
scaling [32,41].

Note added in proof, The present framework for the ground
state provides the same approach as used in the density func-
tionals by Matsumoto et al. [42].
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