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Lifetime measurements in 92Mo: Investigation of seniority conservation in the N = 50 isotones
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Excited states in the yrast and negative parity bands in 92Mo were populated in two different experiments using
the 90Zr(α, 2n) 92Mo and 93Nb(p, 2n) 92Mo fusion-evaporation reactions at the Cologne FN Tandem accelerator
and measured using a hybrid setup of high purity germanium and lanthanum bromide detectors. Lifetimes of the
excited 2+

1 , 4+
1 , 6+

1 , 8+
1 , 5−

1 , 7−
1 , and 9−

1 states were measured using the γ -γ fast-timing technique. The newly
measured lifetime of the 4+

1 state differs from the recently published value measured using the recoil distance
Doppler shift method. Experimental B(E2) strengths of excited states in 92Mo are used to predict theoretical
B(E2) values in the N = 50 isotones from 93Tc up to 95Rh using semiempirical calculations in the single- j
orbital 0g9/2 for the protons.
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I. INTRODUCTION

The semimagic N = 50 isotones between 90Zr and the
doubly magic 100Sn are of particular interest to test the nuclear
shell model (SM) since in this region the valence protons grad-
ually fill the 0g9/2 orbital above an energetically separated,
closed core. Consequently, the low energy nuclear structure in
this region can be assumed to originate from the interaction
of protons confined to the 0g9/2 orbital. This implies the use
of the concept of seniority to describe the low-spin structure
(J � 8) of these nuclei. Seniority was first introduced by
Racah to describe pairing interaction of electrons in the atom
[1]. For a fermionic system of n identical particles, which all
have the same angular momentum j and interact through a
pairing force, seniority υ is a conserved quantum number and
defined as the number of particles that do not pairwise couple
to angular momentum J = 0 [1]. In nuclear physics, the va-
lidity of seniority symmetry has also been demonstrated for a
broader class of empirical nucleon-nucleon interactions [2–5]
and is expected to provide a useful description for a variety of
regions of the nuclear chart [6]. Seniority is strictly conserved
for systems with j � 7/2 [7] but is usually relatively well
conserved among identical nucleons, even if j > 7/2 [8,9].
Recent studies found indications for a partial seniority con-
servation [10] as well as seniority-breaking behavior [11–13]
for protons in the 0g9/2 orbital. Seniority conservation and
breaking remains a topic of current interest in this region of
the nuclear chart.

The single- j approximation applied in this article uses
the experimentally determined quadrupole transition strength
from the two-nucleon j2 system (92Mo) to make analytical

*Corresponding author: mley@ikp.uni-koeln.de

predictions for the quadrupole transition strength in the jn

systems of the isotonic chain, up to 95Rh. This ansatz already
proved to be successful in the similar case of protons in the
0h9/2 orbital in the region above 208Pb [14]. Relations between
B(E2) values in the j2 and jn systems can be derived in gen-
eral. Such relations become analytical if seniority is conserved
and therefore deviations from the analytical relations may
provide important information on the question of seniority
conservation.

In order to have an adequate basis for the single- j predic-
tion, lifetimes of the first excited states in 92Mo, especially
of the 4+

1 state, were measured with high precision using the
fast-timing method with two independent experiments.

II. EXPERIMENT

The two independent experiments used different nuclear
reactions to populate excited states in 92Mo. In the first ex-
periment, the states were populated using a 90Zr(α, 2n) 92Mo
fusion evaporation reaction, it will be referred to as EXP1 in
the following. The 5.3 mg/cm2 thick target of 97.62% en-
riched 90Zr was irradiated with a beam of 27 MeV α particles
provided by the Cologne 10 MV FN Tandem accelerator with
an average current of 3 pnA. Due to a clean reaction channel,
almost no other nuclei were populated, and hence no major
contaminations are visible in the γ -ray spectrum. The setup
consisted of eight high purity germanium (Ge) detectors and
nine LaBr3(Ce) detectors (hereafter denoted as LaBr). Six of
the LaBr detectors were actively shielded with bismuth ger-
manium oxide (BGO) anti-Compton shields. The remaining
LaBr detectors were passively shielded against scattered γ

rays using lead sheaths. A 500 MHz digitizer, implementing
online interpolation constant fraction discrimination (CFD),
was used to record time and pulse height information from
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the LaBr detectors photomultipliers (PM). A detailed investi-
gation of the digital CFDs for fast-timing experiments is given
in Ref. [15].

In the second experiment (EXP2), excited states in 92Mo
were populated using a 93Nb(p, 2n) 92Mo reaction. The tar-
get was 5.4 mg/cm2 of monoisotopic 93Nb and the proton
beam had an energy of 18 MeV. In both cases the targets
were solid and thick enough to stop all reaction residues.
The stopping times are much shorter than the lifetimes
measured with the fast-timing technique. Both experiments
were performed using the HORUS spectrometer fast-timing
configuration [16–19]. Notably, the second experiment was
performed almost one year later and the exact positions of the
detectors differ between the two configurations. The two data
sets yield strictly independent results.

Using the fast-timing method, lifetimes of excited states
are deduced by measuring the time difference between the
observation of events that indicates the population and depop-
ulation of the state. Here, these events are γ rays populating
and depopulating the state of interest. The fast-timing method
is sensitive down to the range of picoseconds [20,21]. Life-
times that are significantly larger than the time resolution
of the fast-timing setup can be extracted by fitting the ex-
ponential tail of the time spectrum or using the convolution
method [20,22]. For lifetimes in the range of the setups time
resolution and smaller, the centroid shift method [23] is used.
The method is based on measuring the centroid of the time
distribution, mathematically also referred to as the first mo-
ment, to deduce the lifetime.

To extract the signals time information, a fast 500 MHz
digitizer with an implemented real-time interpolating CFD
algorithm was used to provide time stamps with picosec-
ond precision [15]. In this way the data are intrinsically
symmetrical with regard to the interchange of the start and
stop detectors and therefore, an easy creation of symmetrical
energy-energy-time-difference cubes for the analysis is possi-
ble. In the following, only aspects of the fast-timing method
that are relevant to the presented analysis will be discussed.
For more details on the fast-timing method in general, please
refer to Refs. [21,24] and for the analysis using symmetri-
cal fast-timing cubes as done in this study, please refer to
Refs. [15,25].

A time difference spectrum for a given feeder-decay cas-
cade is created by gating on the respective transitions. The
lifetime τ results from the spectrum as the shift of the distri-
bution’s centroid C, corrected for the energy-dependent γ -γ
time walk (TW ) of the respective feeder-decay combination

C = τ + TW (Efeeder, Edecay), (1)

TW (Efeeder, Edecay) = TW (Efeeder ) − TW (Edecay). (2)

The energy dependence of the time walk was determined
experimentally using the standard calibration procedure with
a 152Eu source [15,26], which covers a wide range of suitable
transition energies and well-known lifetimes of intermediate
states. From the measured centroid of the time distribution,
for a given feeder-decay cascade with intermediate states in
152Gd or 152Sm with well-known lifetime, the time walk can
be derived according to Eq. (1). The lifetimes used within the

FIG. 1. Calibrated mean time-walk characteristic of the setup
used for EXP1 (top). The residuum of the fit and the 1σ uncertainty
interval (bottom).

time walk calibration procedure were taken from Ref. [27] and
the lifetime from the 2+

1 in 152Gd from Ref. [28]. Recently, the
lifetime of the first excited 2+ state in 152Gd was remeasure
with high precision, reducing its uncertainty by an order of
magnitude [28]. This significantly reduces the uncertainty of
the time walk calibration using a 152Eu source as calibration
standard. Because the γ -ray energies from the 330–773 keV
cascade in 92Mo are almost identical to the 344–779 keV
cascade in 152Gd, this optimization of the calibration standard
significantly reduced the contribution of the time walk to
the uncertainty for the lifetime of the 4+

1 state in 92Mo. The
resulting data points are fitted using the function

TW (Eγ ) = a√
Eγ + b

+ E2
γ c + Eγ d + e. (3)

The resulting TW (Eγ ) curves for EXP1 and EXP2 are shown
in Figs. 1 and 2, respectively. For both experiments, the

FIG. 2. Calibrated mean time-walk characteristic of the setup
used for EXP2 (top). The residuum of the fit and the 1σ uncertainty
interval (bottom).

064313-2



LIFETIME MEASUREMENTS IN 92Mo: … PHYSICAL REVIEW C 108, 064313 (2023)

FIG. 3. Coincidence spectra of both experiments for multiplicity
three data with Ge-LaBr-LaBr coincidences shown in black and
Ge-LaBr-Ge coincidences shown in red. Transitions that were used
within the analysis are labeled. The insets show a zoom of the low-
energy part.

maximum range of the time-walk curves amounts to less than
20 ps in the range between 244 and 1299 keV. Coincidence
spectra for both experiments are shown in Fig. 3. The spectra
are sorted with the coincidence multiplicity condition of one
Ge and two LaBr. In both experiments, no significant peaks
from nuclei other than 92Mo are visible. Transitions important
within the analysis are labeled and Fig. 4 displays a partial
level scheme of 92Mo showing the yrast and negative parity
bands.

III. ANALYSIS

The lifetimes were extracted from the data using the cen-
troid shift method or by fitting the exponential tail of the time
distribution. As an example the procedure for the latter case
is shown in Fig. 5 for the lifetimes of the first excited 6+

1 and
5−

1 states in 92Mo. The lifetime of the 8+
1 state was determined

in the same way but using Ge-LaBr timing. In the following
the focus is on the analysis of the lifetime of the 4+

1 state in
92Mo, which was performed using the centroid shift method.
The analyses of the 2+

1 , 7−
1 , and 9−

1 states were performed
analogously. For the lifetime analysis of the 4+

1 state the
data were sorted with a threefold coincidence multiplicity
condition. Different conditions on the detector types were
tested: triples of one Ge and two LaBr and triples of three
LaBr with a narrow coincidence window of 20 ns. Taking into
account background corrections, which will be discussed in
detail later in the text, led to consistent results in all cases.
The adopted analysis was done using a threefold multiplicity
condition with exactly one Ge and two LaBr detectors. As
an example, Figs. 6 and 7 show the resulting LaBr spectra
(black) after setting a Ge and a LaBr gate on the feeder (b) or

FIG. 4. Partial level scheme showing important states and tran-
sitions used within the analysis. The transition energies are given
in keV. The arrows thickness approximately emphasize the relative
intensities of the transitions observed with the 90Zr(α, 2n) 92Mo re-
action (EXP1). Adopted from Refs. [29,30].

decay (a) transition. To significantly reduce the influence of
random correlated γ rays, an additional timing window was
placed for the LaBr-LaBr coincidences within the threefold
Ge-LaBr-LaBr coincidences. As shown in Ref. [15], for a
well-synchronized LaBr array a coincidence window of less

FIG. 5. Time spectra used for the measurement of the lifetime of
the 6+

1 state (a) and for lifetime of the 5−
1 state (b). The procedure is

shown for the data from EXP1. The term for the random distributed
background was set to a constant value, which was determined via
integration and also as parameter from a fit, leading to consistent
results. The data from EXP2 was processed in the same way.
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FIG. 6. Background correction procedure for the analysis of the
4+

1 state measured in EXP1. (a) Resulting spectra after gating on
the 773 keV decay transition. (b) Respective spectra after gating
on the 330 keV feeder transition. The LaBr spectra are shown in
black and corresponding gated Ge spectra for monitoring in red.
(c) and (d) The corresponding background interpolation (black), the
uncorrected centroid Cexp is shown in red, the interpolated centroid
CBG is marked with ⊗.

than 10 ns is sufficient for LaBr-LaBr timing. To still gain
sufficient coincidences with the Ge detector a large time win-
dow of 400 ns was combined with the short LaBr-LaBr timing
coincidence window of 10 ns. If such an additional LaBr-LaBr

FIG. 7. Background correction procedure for the analysis of the
4+

1 state measured in EXP2. (a) Resulting spectra after gating on
the 773 keV decay transition. (b) Respective spectra after gating
on the 244 keV feeder transition. The LaBr spectra are shown in
black and corresponding gated Ge spectra for monitoring in red.
(c) and (d) The corresponding background interpolation (black), the
uncorrected centroid Cexp is shown in red, the interpolated centroid
CBG is marked with ⊗.

FIG. 8. The resulting time distributions, centroids (dashed lines)
and gate information used to measure the 4+

1 state for EXP1 (top)
and EXP2 (bottom). For the upper time distribution, matrices with
Ge gates on 148 keV and 1510 keV were added to increase the
statistic. Since the multiplicity condition was set to only validate
coincidences containing exactly two LaBr hits and one Ge hit the
two energy conditions are mutual excluding/exclusive and no risk of
double counting exists.

timing window is not applied, the P/B ratios measured in
the LaBr spectra will be smaller due to the continuum of
random coincidences within the large coincidence window.
To verify the absence of contaminating transitions within the
broad LaBr peaks, triple events with a coincidence condition
for two Ge and one LaBr detectors were built. Using the same
gates as before yielded the respective Ge spectra shown in red,
which shows no major contamination within the LaBr peaks
for the given cascade. The resulting time spectra after setting
the second LaBr gate are shown in Fig. 8 together with the
resulting centroid of the respective distribution.

The measured time spectra are always influenced by
Compton background beneath the peaks of interest and a
background correction procedure was applied. As described
in Ref. [26], the centroid of an experimental time-difference
distribution is a linear superposition of multiple centroid
components and for a proper lifetime determination, the com-
ponent of the pure peak vs. peak centroid CPP is needed, which
was approached by using a background correction procedure
as shown in Ref. [26]. The correction is based on Eqs. (4)–(6):

CPP = Cexp + t̃cor, (4)

t̃cor = P/B(E f ) tcor (Ei ) + P/B(Ei ) tcor (E f )

P/B(Ei ) + P/B(E f )
, (5)

tcor = Cexp − CBG(E )

P/B(E )
, (6)

where CBG is the centroid of the Compton background under
the peak and P/B(E ) are the respective peak to background
ratios. The component CBG is only accessible by interpo-
lating the Compton background in the vicinity of the peak.
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TABLE I. Summary of the measured mean lifetimes of the states Jπi
i and the respective reduced transition probabilities.

τEXP1 τEXP2 τadopted B(σλ; Jπi
i → J

π f
f ) B(σλ; Jπi

i → J
π f
f )

Jπi
i → J

π f
f ps ps ps Multipolarity adopted literature

2+
1 → 0+

1 �3 �8 �3 E2 �35 e2 fm4 207(12) e2 fm4 [30,31]

4+
1 → 2+

1 22.5(11) 23(2)a 22.5(11) E2 132+7
−6 e2 fm4 84.3(14) e2 fm4 [5]

6+
1 → 4+

1
2200(20) 2220(70) 2200(20)

E2b 81(2) e2 fm4 80(3) e2 fm4 [30,32]

→ 5−
1 E1b 5.3(6) ×10−5 e fm2 5.3(7) ×10−5 e fm2 [30]

8+
1 → 6+

1 310(3)×103c − 310(3)×103 E2 28.6(3) e2 fm4 32(1) e2 fm4 [30,33–37]

5−
1 → 4+

1 2270(30) 2250(60) 2270(30)
E1d �1.88(3)×10−5 e fm2 1.91(5)×10−5 e fm2 [30,38]

M2d �93 µN2 fm4 �98 µN2 fm4 [30]

7−
1 → 5−

1 �5 �7 �5 E2 �101 e2 fm4 −
9−

1 → 7−
1 37(11) 29(7) 31(6)e E2 271+65

−44 e2 fm4 −
aAveraged value from feeder-decay cascades 244–773 and 330–773 calculated using a Monte Carlo method.
bThe branching ratio for the 6+

1 level was derived using the intensities from Ref. [29].
cDetermined using Ge-LaBr timing.
dMixing ratio δ � 0.05 from Ref. [39].
eWeighted average from EXP1 and EXP2.

The interpolation of the Compton background is shown in
Figs. 6 and 7 (bottom). The results for both experiments are
listed in Table I alongside the respective reduced transition
probabilities B(σλ), which were calculated using the adopted
values for the measured lifetimes, decay energies, and the to-
tal conversion coefficient calculated using the program BrIcc
[40]. The remeasured values for the lifetimes of the 2+

1 , 6+
1 ,

5−
1 , and 8+

1 state fit well to the current literature values. The
lifetime of the 4+

1 state is in significant disagreement with
the recently published literature value τRDDS = 35.5(6) ps [5],

measured using the recoil distance Doppler shift method and
a radioactive beam.

IV. DISCUSSION

The present experimental work established another case
of a nucleus with two valence nucleons in a j = 9/2
orbital, in which all B(E2) values in the sequence
8+

1 → 6+
1 → 4+

1 → 2+
1 → 0+

1 are measured. In a single- j ap-
proach the E2 transition probabilities in this sequence obey
the following rule:

B(E2; j2J → j2J − 2) = 15(2 j + 1 − J )(2 j + 2 − J )(2 j + J )(2 j + 1 + J )(J − 1)

128π j2( j + 1)2(2J − 1)(2J + 1)

(
N + 3

2

)2

b4e2
eff , (7)

where N is the major oscillator quantum number associated
with the j orbital and eeff is the effective charge of the nucleon,
which usually is taken the same for all E2 transitions in a
given nucleus. In Eq. (7) also appears the oscillator length
parameter b, for which we use the estimate of Blomqvist and
Molinari [41] (see also the more recent discussion of Kirson
[42]):

b =
√

41.46

45A−1/3 − 25A−2/3
fm. (8)

It should be stressed that the result (7) is purely geometric,
that is, it depends only on the angular momenta involved and
not on the interaction between the nucleons. In the column
labeled ‘T̂1(E2)’ of Table II, the single- j prediction is com-
pared with the B(E2) values measured in 92Mo. The effective
charge in the one-body operator T̂1(E2) is obtained from the
quadrupole moment of the 9/2+ ground state of 91Nb, with the
experimental value and uncertainty Q(9/2+

1 ) = −25(3) e fm2.
With an oscillator length parameter b ≈ 2.18 fm this implies

eeff ≈ 1.32. This effective charge is essentially the same as
what is obtained from the B(E2; 8+ → 6+) value in 92Mo,
eeff ≈ 1.31. It is possible to obtain better results for 92Mo by
fitting the effective charge to the n = 1 and n = 2 data but that
would be problematic given the discrepant description of the
B(E2) values in 92Mo.

It is seen from Table II that there are significant devia-
tions from Eq. (7) for all transitions other than 8+

1 → 6+
1 , in

TABLE II. Experimental and calculated B(E2) values in 92Mo.

B(E2; Jπ
i → Jπ

f ) (e2 fm4)

υi Jπ
i υf Jπ

f Exp T̂1(E2) T̂ ′
1 (E2)

2 2+
1 0 0+

1 207(12) 89 207(12)

2 4+
1 2 2+

1 132+7
−6 103 132+7

−6

2 6+
1 2 4+

1 81(2) 71 81(2)

2 8+
1 2 6+

1 28.6(3) 28 28.6(3)
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particular for the 2+
1 → 0+

1 transition. The situation is rem-
iniscent of the one in the A = 210 isotopes of lead and
polonium but, interestingly, whereas in the latter nuclei the
calculated B(E2; 2+

1 → 0+
1 ) is a factor two larger than the

measured value, in 92Mo the single- j prediction is more than
a factor two too small.

It is assumed that the correct B(E2) values can be obtained
by considering an appropriately large model space, which,
when reduced to a manageable model space, gives rise to
effective charges. The purpose of the present discussion is not
a microscopic derivation of an effective E2 operator in nuclei
with two valence nucleons but rather the use of effective
charges determined from the two-nucleon E2 data in nuclei
with n > 2 valence nucleons.

A. State-dependent effective charges

In this approach, the E2 operator remains of one-body
character but state-dependent effective charges are taken. To
distinguish this operator from the one with a constant effective
charge, T̂1(E2), it is denoted in the following as T̂ ′

1 (E2). The
idea is that, if the B(E2; J → J − 2) values in the two-nucleon
system cannot be explained with a constant effective charge,
these can be made J dependent so as to reproduce the data.
These effective charges are subsequently propagated to the
n-nucleon systems. In Refs. [14,43,44] this procedure was
applied to express B(E2) values in the three-nucleon system
in terms of those in the two-nucleon system. This could be
achieved analytically under the assumption of conservation of
seniority. In this subsection, we outline the procedure for n
nucleons for a general interaction in a single- j orbital. In the
next subsection analytic results are presented for an interac-
tion that conserves seniority.

The matrix element of a one-body tensor of rank λ between
n-body states can be calculated with the following recursive
formula [45,46]:

〈 jnα′J ′‖T̂1(λ)‖ jnαJ〉
= n

n − 1
(−) j+J [J][J ′]

∑
α̃Rα̃′R′

cα̃R
nαJcα̃′R′

nα′J ′

×
{

J J ′ λ

R′ R j

}
〈 jn−1α̃′R′‖T̂1(λ)‖ jn−1α̃R〉, (9)

where [x] ≡ √
2x + 1. The label α denotes possible quantum

numbers needed to distinguish states of the jn configura-
tion with the same angular momentum J and cα̃R

nαJ is a
short-hand notation for the coefficient of fractional parentage
[ jn−1(α̃R) jJ|} jnαJ]. Usually this recursion relation is applied
until one arrives on the right-hand side at a one-nucleon matrix
element, i.e., until n = 2. Therefore, for the operator T̂1(E2)
with a constant effective charge eeff , all E2 matrix elements
between n-nucleon states can be expressed in terms of

〈 j‖T̂1(E2)‖ j〉 ≡ eeff〈 j‖r2Y2‖ j〉 =
√

5ẽeff , (10)

where ẽeff is proportional to the effective charge, ẽeff =
f j (A)eeff , with

f j (A) = −
(

N + 3

2

)
b2

[
(2 j − 1)(2 j + 1)(2 j + 3)

64π j( j + 1)

]1/2

.

(11)

For the operator T̂ ′
1 (E2), with effective charges that depend on

the two-nucleon states | j2J〉, the recursive procedure is halted
when one arrives on the right-hand side of Eq. (9) at a two-
nucleon matrix element

〈 j2Jf‖T̂ ′
1 (E2)‖ j2Ji〉

= −
√

20[Jf ][Ji]

{
j j 2

Jf Ji j

}
ẽeff (Ji, Jf ). (12)

This recursive procedure can only be carried out if all
two-nucleon matrix elements, that is, all effective charges
ẽeff (Ji, Jf ), are known. If these are to be obtained from mea-
sured E2 data, that is unlikely to be possible since it would
require the knowledge of the ‘moment’ effective charges
ẽeff (Ji, Jf ) with Ji = Jf . A possible strategy to circumvent this
problem was outlined in Ref. [14] and leads to the following
relation between ẽeff (J, J ) and ẽeff (J, J − 2):

ẽeff (J, J )

ẽeff (J, J − 2)
= [J]

[J − 2]

{
j j 2
J J j

}{
j j 2

J − 2 J j

}−1

,

(13)

which allows to deduce all required effective charges from the
B(E2; J → J − 2) values in the nucleus with two nucleons in
the valence space.

B. Analytic results for seniority-conserving interactions

As shown many years ago by de-Shalit and Talmi [45,46],
the interaction between identical nucleons conserves seniority
to a good approximation. With this assumption it is possible
to derive analytic results for the matrix elements of T̂ ′

1 (E2)
between all states in a single- j orbital as long as j � 9/2,
that is, if all states are uniquely defined by their angular mo-
mentum and seniority. The matrix elements of the one-body
operator with state-dependent effective charges can be written
in generic form as

〈 jnυf Jf‖T̂ ′
1 (E2)‖ jnυiJi〉

=
2 j−1∑

J=2,4,...

fJ ( jnυiJiυf Jf )ẽeff (J, J − 2), (14)

where fJ ( jnυiJiυf Jf ) are numerical coefficients. Similar re-
sults relating the B(E2) values in n = 3 and n = 2 nuclei were
derived in Refs. [14,43] for j = 7/2, 9/2. The coefficients
fJ ( jnυiJiυf Jf ) can be derived for any n and are available on
request [47].

C. Application to N = 50 isotones

We apply the method outlined in the previous subsec-
tions to N = 50 isotones, making use of the complete set of
B(E2) values for the sequence 8+

1 → 6+
1 → 4+

1 → 2+
1 → 0+

1
measured in 92Mo in order to fix an effective E2 operator.
Similarly, an effective Hamiltonian appropriate for the 0g9/2

orbital can be derived from energy spectra. The two-body
interaction matrix elements are taken from 92Mo and from
98Cd, corresponding to two valence particles and two valence
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TABLE III. Experimental and calculated B(E2) values in 93Tc.

B(E2; Jπ
i → Jπ

f ) (e2 fm4)

υi Jπ
i υf Jπ

f Exp T̂1(E2) T̂ ′
1 (E2)

3 3/2+
1 3 5/2+

1 – 212 256+7
−6

3 3/2+
1 3 7/2+

1 – 31 35(1)

3 5/2+
1 3 7/2+

1 – 17 9.0+1.3
−1.1

3 5/2+
1 1 9/2+

1 – 93 156(6)

3 7/2+
1 1 9/2+

1 – 178 278+9
−8

3 9/2+
2 3 5/2+

1 – 23 32(1)

3 9/2+
2 3 7/2+

1 – 20 26(2)

3 9/2+
2 1 9/2+

1 – 11 16.0(5)

3 9/2+
2 3 11/2+

1 – 85 99(1)

3 9/2+
2 3 13/2+

1 – 3.3 4.8(3)

3 11/2+ 3 7/2+
1 – 39 63(2)

3 11/2+
1 1 9/2+

1 – 59 87(3)

3 11/2+
1 3 13/2+

1 – 102 132(3)

3 13/2+
1 1 9/2+

1 – 102 166(6)

3 15/2+
1 3 11/2+

1 – 52 62(1)

3 15/2+
1 3 13/2+

1 – 16 17.7+0.4
−0.3

3 17/2+
1 3 13/2+

1 88(18)a 99 114(3)

3 17/2+
1 3 15/2+

1 – 30 30.1(5)

3 21/2+
1 3 17/2+

1 73(5)b 57 61(1)

aFrom Ref. [48].
bFrom Ref. [49].

holes in 0g9/2, respectively, and an interpolated interaction
is taken for intermediate N = 50 isotones. This procedure
breaks particle-hole symmetry in the 0g9/2 orbital, akin to the
effect of a three-body interaction. However, the interaction
remains of two-body character and exhibits selection rules as-
sociated with the partial conservation of seniority, in particular
in the midshell nucleus 95Rh.

In the following we compare the results obtained with the
operator T̂1(E2) with a constant effective charge with those
of the operator T̂ ′

1 (E2) with state-dependent effective charges,
and with the data when available. The input data depend on the
assumed character of the E2 operator, as is explained below.

Results obtained with the two different E2 operators are
summarised in Tables II–V for 92Mo, 93Tc, 94Ru, and 95Rh,
respectively. Note that the method allows to estimate the
uncertainty on a given B(E2) value. For example, in the cal-
culation with the operator T̂ ′

1 (E2), one obtains information on
how the uncertainties on the experimental values in the n = 2
nucleus 92Mo propagate into the results for nuclei with n > 2.

We now comment on the results obtained with the two E2
operators.

1. The E2 operator with a constant effective charge

The effective charge derived from the quadrupole moment
of the ground state of 91Nb, eeff = 1.32(16), is assumed to
be normally, and therefore symmetrically, distributed around

TABLE IV. Experimental and calculated B(E2) values in 94Ru.

B(E2; Jπ
i → Jπ

f ) (e2 fm4)

υi Jπ
i υf Jπ

f Exp T̂1(E2) T̂ ′
1 (E2)

4 0+
2 2 2+

1 – 30 37(1)

4 0+
2 4 2+

2 – 128 164(4)

2 2+
1 0 0+

1 165(80)a 136 186(4)

4 2+
2 0 0+

1 – 7 × 10−6 0.07+0.06
−0.03

4 3+
1 2 2+

1 – 9 × 10−6 0.04+0.03
−0.02

4 3+
1 4 2+

2 – 66 79(1)

4 3+
1 2 4+

1 – 55 73(2)

4 3+
1 4 4+

2 – 12 14(1)

2 4+
1 2 2+

1 38(3)a, 103(24)b 12 7.8(7)

2 4+
1 4 2+

2 – 25 35(1)

4 4+
2 2 2+

1 – 165 224(5)

4 4+
2 4 2+

2 – 9.5 15(1)

4 5+
1 4 3+

1 – 16 22(1)

4 5+
1 2 4+

1 – 124 173(4)

4 5+
1 4 4+

2 – 8.3 5.4+0.4
−0.3

4 5+
1 2 6+

1 – 26 38(1)

4 5+
1 4 6+

2 – 16 23(1)

2 6+
1 2 4+

1 3.0(2)b 8.0 3.9+0.5
−0.4

2 6+
1 4 4+

2 – 60 80(2)

4 6+
2 2 4+

1 – 25 36(1)

4 6+
2 4 4+

2 – 107 130+3
−2

2 8+
1 2 6+

1 0.09(1)b 3.2 1.0(2)

2 8+
1 4 6+

2 – 98 137(3)

4 8+
2 2 6+

1 – 61 82(2)

4 8+
2 4 6+

2 – 21 27(1)

4 10+
1 2 8+

1 – 105 147(3)

4 10+
1 4 8+

2 – 22 23.3(4)

aFrom Ref. [5].
bFrom Ref. [13].

a central value. As a result all calculated B(E2) values have
asymmetric uncertainties—a property of the squared normal
distribution. In this example it leads to an upper uncertainty
of about 27% and a lower uncertainty that is somewhat
smaller, 22%, uncertainties not indicated in the column la-
beled ‘T̂1(E2)’ of Tables II to V.

Although calculations have been performed with a general
two-body interaction, which in principle can break seniority
symmetry for a j = 9/2 orbital, it is found that the υ quantum
number is conserved to a very good approximation and for
many states this conservation of seniority is rigorously valid.
Specifically, in the midshell nucleus 95Rh no mixing can occur
between levels that differ by 
υ = 2 [7,51] and therefore
all levels carry an exact seniority quantum number with the
exception of 9/2+

1 , which is dominantly υ = 1 but does carry
a small υ = 5 component, and 9/2+

3 , which is orthogonal to it.
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TABLE V. Experimental and calculated B(E2) values in 95Rh.

B(E2; Jπ
i → Jπ

f ) (e2 fm4)

υi Jπ
i υf Jπ

f Exp T̂1(E2) T̂ ′
1 (E2)

5 1/2+
1 3 3/2+

1 – 161 205(4)

5 1/2+
1 1 5/2+

1 – 0 0.98+0.24
−0.21

5 1/2+
1 3 5/2+

2 – 231 294(5)

3 3/2+
1 1 5/2+

1 – 10 13.1(2)

3 3/2+
1 3 5/2+

2 – 0 1.5+0.5
−0.4

3 3/2+
1 3 7/2+

1 – 0 0.61+0.24
−0.17

1 5/2+
1 3 7/2+

1 – 328 417+8
−7

1 5/2+
1 1 9/2+

1 – 0 0.04+0.03
−0.02

3 5/2+
2 1 5/2+

1 – 205 260(5)

3 5/2+
2 3 7/2+

1 – 0 0.78+0.16
−0.14

3 5/2+
2 1 9/2+

1 – 125 159(3)

3 7/2+
1 1 9/2+

1 – 238 303+6
−5

3 11/2+
1 3 7/2+

1 – 0 0.02+0.03
−0.01

3 11/2+
1 1 9/2+

1 – 78 100(2)

5 11/2+
2 3 7/2+

1 – 97 123(2)

5 11/2+
2 1 9/2+

1 – 0 0.05+0.04
−0.02

3 13/2+
1 1 9/2+

1 – 137 174(3)

3 13/2+
1 3 11/2+

1 – 0 0.38+0.07
−0.06

3 15/2+
1 3 13/2+

1 – 0 <0.02

5 15/2+
2 3 13/2+

1 – 15 18.9(3)

3 17/2+
1 3 13/2+

1 – 0 0.87+0.22
−0.19

3 17/2+
1 3 15/2+

1 – 0 0.36+0.06
−0.05

5 17/2+
2 3 13/2+

1 – 168 213(4)

5 17/2+
2 3 15/2+

1 – 62 79(1)

3 21/2+
1 3 17/2+

1 24(2)a 0 1.0(2)

3 21/2+
1 5 17/2+

2 113(13)a 138 176(3)

5 25/2+
1 3 21/2+

1 – 86 109(2)

aFrom Ref. [50].

In 94Ru, 4+
2 and 2+

2 are solvable states and carry exact υ = 4
for any two-body interaction [52–54]. Furthermore, the usual
selection rules hold for the one-body operator T̂1(E2), namely
the seniorities of the initial and final states cannot differ by
more than 2, 
υ � 2, and E2 transitions with 
υ = 0 are
suppressed toward, and exactly forbidden in, the middle of the
orbital. As a result many E2 transitions in 95Rh are therefore
characterized by an exact ‘0’ in the column ‘T̂1(E2)’ of
Table V. In the n = 4 nucleus 94Ru the 
υ = 0 E2 transitions
are not exactly zero but rather suppressed. The only 
υ = 4
transition in this nucleus is between 2+

2 and 0+
1 , which is

forbidden if seniority is conserved. The calculated result for
the 2+

2 → 0+
1 transition in Table IV indicates that a very

small breaking of seniority occurs in 94Ru. Another transition
with a tiny B(E2) value is 3+

1 → 2+
1 . The latter transition

is forbidden if seniority is conserved due to a summation
property of coefficients of fractional parentage.

2. The E2 operator with state-dependent effective charges

The state-dependent effective charges needed to repro-
duce the B(E2; J → J − 2) values in 92Mo are eeff (J, J −
2) = 1.99(6), 1.48(4), 1.39(2), and 1.31(1) for J = 2, 4, 6,
and 8, respectively. These are obtained from ẽeff (J, J − 2) =
f j (A)eeff (J, J − 2), where f j (A) is the proportionality factor
defined in Eq. (11), together with the expressions

B(E2; 2+
υ=2 → 0+

υ=0) = 2
5 ẽeff (2, 0)2,

B(E2; 4+
υ=2 → 2+

υ=2) = 91
198 ẽeff (4, 2)2,

B(E2; 6+
υ=2 → 4+

υ=2) = 500
1573 ẽeff (6, 4)2,

B(E2; 8+
υ=2 → 6+

υ=2) = 7
55 ẽeff (8, 6)2. (15)

The different values of the effective charge could also be an
indication that there is more collectivity in the lowest transi-
tion, which could come from components with more than one
g9/2 pair, effectively coming from the excitations from p1/2

[11,12] leading to mixing of configurations with different even
number of protons in g9/2, especially for the 0+

1 state.
The E2 transition properties of the N = 50 isotones cal-

culated with an E2 operator with state-dependent effective
charges are shown in the column ‘T̂ ′

1 (E2)’ of Tables II to
V. All B(E2) values in nuclei with n � 3 valence protons in
the 0g9/2 orbital are expressed in terms of the two-nucleon
effective charges ẽeff (J, J − 2) and do not depend on the one-
nucleon effective charge ẽeff . Understandably, the effective
charges ẽeff (J, J − 2) for J = 6 and 8 are close to ẽeff derived
from the quadrupole moment of the ground state of 91Nb
but ẽeff (2, 0) is considerably and ẽeff (4, 2) somewhat larger
than ẽeff . This reflects the deviations for the B(E2; 2+

1 → 0+
1 )

and B(E2; 4+
1 → 2+

1 ) values in 92Mo obtained with the op-
erator T̂1(E2) with a constant effective charge. As a result,
most B(E2) values calculated with state-dependent effective
charges are larger than the corresponding ones obtained with
a single effective charge. However, the differences cannot be
represented by a simple scale factor. Generally, the E2 tran-
sitions between high angular momentum states do not change
much while B(E2) values between states of low angular mo-
mentum states do.

Two B(E2) values have been measured to date in 93Tc.
The B(E2; 21/2+

1 → 17/2+
1 ) value essentially depends only

on the effective charges ẽeff (6, 4) and ẽeff (8, 6) (see Table IV
of Ref. [14]) and therefore is rather close to the value obtained
with the T̂1(E2) operator with a constant effective charge. The
B(E2; 17/2+

1 → 13/2+
1 ) value depends additionally on the ef-

fective charge ẽeff (4, 2), which leads to an increase compared
with the result obtained with T̂1(E2).

To obtain an understanding of the results for the nucleus
94Ru in Table IV, we note that, under the assumption of
seniority conservation, the relevant expressions for the B(E2)
values of the 6+

1 → 4+
1 and 8+

1 → 6+
1 transitions can be
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derived from the matrix elements

〈 j44+
υ=2‖T̂ ′

1 (E2)‖ j46+
υ=2〉 =

√
1

5

(
− 40

33
ẽeff (2, 0) + 24220

51909
ẽeff (4, 2) + 90422

51909
ẽeff (6, 4) + 816

1573
ẽeff (8, 6)

)
,

〈 j46+
υ=2‖T̂ ′

1 (E2)‖ j48+
υ=2〉 =

√
119

55

(
− 526

1485
ẽeff (2, 0) + 21046

70785
ẽeff (4, 2) − 31604

1061775
ẽeff (6, 4) + 13513

32175
ẽeff (8, 6)

)
. (16)

The calculated B(E2) values in 94Ru are obtained by in-
serting the state-dependent effective charges obtained from
92Mo. Compared with the calculation with a constant effective
charge a somewhat better agreement with the measured B(E2)
values is found but the improvement is marginal.

On the other hand, a disagreement is seen to occur for
the 4+

1 → 2+
1 transition in 94Ru. While the two experimental

B(E2; 4+
1 → 2+

1 ) values are discrepant, both are significantly
larger than the theoretical prediction. To obtain an understand-
ing of this disagreement, it is essential to consider two 4+
levels, which for four particles or four holes in a j = 9/2
orbital occur close in energy. For a one-body E2 operator
with a constant effective charge the B(E2) values in a j = 9/2
orbital, under the assumption of conservation of seniority, are

B(E2; 4+
υ=2 → 2+

υ=2) = 91
1782 ẽ2

eff ,

B(E2; 4+
υ=4 → 2+

υ=2) = 34000
46629 ẽ2

eff . (17)

In 94Ru (as well as 96Pd) the dominant component of the 4+
1

(4+
2 ) state has seniority υ = 2 (υ = 4). Given that the 
υ =

2 transition is ∼14 times faster than the one with 
υ = 0,
a small admixture of υ = 4 in the 4+

1 state can considerably
alter the B(E2; 4+

1 → 2+
1 ) value. However, as has been shown

in Refs. [52,53], the 4+
υ=4 state is solvable for any interaction

in a j = 9/2 orbital, which means that it cannot mix with other
4+ states. A proper description of the 4+

1 → 2+
1 transition in

94Ru and 96Pd therefore necessarily must involve components
outside the 0g9/2 orbital.

The use of a one-body E2 operator with state-dependent
effective charges does not alter this conclusion. Under the
assumption of seniority conservation, the matrix elements of
the operator T̂ ′

1 (E2) for 4+ → 2+ transitions in 94Ru are

〈 j42+
υ=2‖T̂ ′

1 (E2)‖ j44+
υ=2〉 =

√
7

286

(
442

165
ẽeff (2, 0) − 2369

605
ẽeff (4, 2) − 12392

9075
ẽeff (6, 4) − 476

275
ẽeff (8, 6)

)
,

〈 j42+
υ=2‖T̂ ′

1 (E2)‖ j44+
υ=4〉 =

√
85

5181

(
446

99
ẽeff (2, 0) + 1828

363
ẽeff (4, 2) + 18802

5445
ẽeff (6, 4) + 1156

165
ẽeff (8, 6)

)
. (18)

If one makes the association 4+
1 = 4+

υ=2 and 2+
1 = 2+

υ=2,
one finds, with the effective charges obtained in 92Mo,
B(E2; 4+

1 → 2+
1 ) = 7.8(7) e2 fm4, more than an order of

magnitude smaller than observed in 94Ru. In fact, with state-
dependent effective charges the disagreement increases as
compared to the result obtained with a constant effective
charge.

While a single- j calculation cannot reproduce the observed
4+

1 → 2+
1 E2 transition in 94Ru, at least not with reasonable

effective charges, it can give insight into the problem by
assuming an ad hoc mixed structure of the 4+

1 state,

|4+
1 〉 = α4|4+

υ=2〉 + β4|4+
υ=4〉 (19)

with α2
4 + β2

4 = 1. A large B(E2; 4+
1 → 2+

1 ) value, as in 94Ru,
is obtained through a constructive interference between the
two components, which happens if α4 and β4 have the op-
posite sign. The corresponding transition in 96Pd is much

slower [B(E2; 4+
1 → 2+

1 ) = 3.8(4) e2 fm4] because of de-
structive interference: the 
υ = 0 matrix elements change
sign under particle-hole conjugation while those with 
υ = 2
do not. This is the essence of the argument presented in
Ref. [13], which therefore can be understood from a simple
perspective.

It should be emphasized that, due to the dominance of the

υ = 2 over the 
υ = 0 E2 transitions in 94Ru, results are
extremely dependent on the admixture β4. In addition, since
6+

υ=4 is also a solvable state [52,53], the same type of mixing
should be assumed for the 6+

1 state,

|6+
1 〉 = α6|6+

υ=2〉 + β6|6+
υ=4〉 (20)

with α2
6 + β2

6 = 1. The three E2 transitions, 4+
1 → 2+

1 , 6+
1 →

4+
1 and 8+

1 → 6+
1 , depend on the 4+ or 6+ mixing, or on both.

The B(E2) values between the mixed 4+ and 6+ states can
be calculated with the help of Eqs. (16) and (18) together
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with

〈 j44+
υ=4‖T̂ ′

1 (E2)‖ j46+
υ=2〉 =

√
238

6123

(
9256

5445
ẽeff (2, 0) + 66608

19965
ẽeff (4, 2) + 371744

299475
ẽeff (6, 4) + 28832

9075
ẽeff (8, 6)

)
,

〈 j44+
υ=2‖T̂ ′

1 (E2)‖ j46+
υ=4〉 =

√
2261

843

(
−1372

5445
ẽeff (2, 0) + 3352

259545
ẽeff (4, 2) − 160228

778635
ẽeff (6, 4) − 6664

23595
ẽeff (8, 6)

)
,

〈 j44+
υ=4‖T̂ ′

1 (E2)‖ j46+
υ=4〉 =

√
2470

44117

(
952

1089
ẽeff (2, 0) + 1149253

311454
ẽeff (4, 2) + 18704

11979
ẽeff (6, 4) + 6881

1573
ẽeff (8, 6)

)
,

〈 j46+
υ=4‖T̂ ′

1 (E2)‖ j48+
υ=2〉 =

√
19

9273

(
556

33
ẽeff (2, 0) + 12104

1573
ẽeff (4, 2) + 315992

23595
ẽeff (6, 4) + 15776

715
ẽeff (8, 6)

)
. (21)

With the state-dependent effective charges fixed from 92Mo
all experimental E2 transitions in 94Ru can be exactly re-
produced with the admixtures (α4, β4) = (0.854,−0.520)
and (α6, β6) = (0.994,−0.111) if the the experimental
B(E2; 4+

1 → 2+
1 ) value of 103(24) is adopted. If the exper-

imental B(E2; 4+
1 → 2+

1 ) value is taken as 38(3), reason-
able agreement is obtained with the admixtures (α4, β4) =
(0.980,−0.204) and (α6, β6) = (0.994,−0.113). It can
therefore be concluded that the currently known E2 data in
94Ru are consistent with moderate to strong seniority mixing
of the 4+ levels and 6+ states that are rather pure in seniority.

Also for 95Rh the known B(E2) values for the states of
interest are scarce (see Table V) due to the fact that only the
lifetime of the 21/2+

1 state is known, yielding B(E2) values
to the first two 17/2+ states. The prediction for the seniority
forbidden transition to the first 17/2+ state is clearly not in
agreement with the experimental findings. Also here a mixing
between both states could be considered provided more is
known on the decay of both 17/2+ states.

V. CONCLUSION

Lifetimes of excited states in 92Mo were measured using
the γ -γ fast-timing technique in two independent experi-
ments. The lifetime of the first excited 4+ state was measured

with high accuracy. The experimental B(E2) values calcu-
lated with the measured lifetimes were used to obtain state
dependent effective charges for the single- j calculation with
j = 9/2. Comparing the predicted B(E2) values for 93Tc with
the scarce experimental data, one finds that the single- j pre-
diction qualitatively reproduces the experimental data within
3σ of the experimental uncertainties. The discrepancy from
the B(E2) for B(E2; 4+

1 → 2+
1 ) in 94Ru to the experimental

value is quantitatively discussed in terms of an ad hoc mixing
between υ = 2 and υ = 4 states, with the result that in this
way the experimental data in 94Ru is exactly reproduced using
state-dependent effective charges. Since the data on lifetimes
in 93Tc, 94Ru, and 95Rh is yet to be completed, further ex-
periments are planned to probe the results from the single- j
calculation.
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