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Charmed �+
c hypernuclei are investigated in the framework of the deformed Skyrme-Hartree-Fock approach.

Their ground-state bulk properties, single-particle energy levels, potential energy curves, as well as the existence
limit of charmed hypernuclei are studied with particular regard to the effects of deformation. �+

c 1p states are
found to be strongly bound, in particular in deformed nuclei.
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I. INTRODUCTION

Charmed hypernuclei may be the only source of infor-
mation for studying interactions of charmed baryons with
nucleons at low energy and related symmetries, which cannot
be obtained by other methods due to the short lifetime of
charmed particles.

Bound charmed hypernuclei were first discussed in 1977
by Dover and Kahana within SU(4) symmetry [1]. Later, a
candidate event with a He, Be, or C core and an assumed
�c separation energy between 0 and 10 MeV was found [2],
which motivated further theoretical work [3–8]. However, the
experimental results have not been on solid ground. Hope-
fully new experimental programs, such as the GSI-FAIR and
JPARC facilities, will provide new experimental data for a
better understanding of the properties of hypernuclei [9].

Since �c is a positively charged particle, the Coulomb
repulsion with the protons influences the stability of its hyper-
nuclei. In recent decades, the possible existence of charmed
hypernuclei was investigated by various theoretical ap-
proaches. The first studies within SU(4) one-boson-exchange
models assumed or motivated a �cN interaction strength sim-
ilar or slightly weaker than for the strange hyperon, �N , and
pointed out the possible existence of many �c hypernuclei
[6,10–12]. Within the relativistic mean-field (RMF) model, it
was found that the spin-orbit (s.o.) splittings for �c hyper-
nuclei are very small and the positive charge of �c plays an
important role [13]. Lattice quantum chromodynamics (QCD)
calculations (with an unphysical very large pion mass mπ =
410 MeV) found that the �cN interaction is attractive with a
similar strength in the 1S0 and 3S1 channels at low energies
and predicted that �c hypernuclei can be formed for atomic
numbers A � 50 [14]. The same interaction strength was
assumed in a quark-mean-field model [15] with compatible
results regarding the stability of hypernuclei. This was
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debated in a perturbative many-body approach [16,17], who
pointed out that extrapolation to the physical pion mass yields
hypernuclei over the full range of A. Recently, the ground
state properties of charmed nuclei were investigated in the
Skyrme-Hartree-Fock (SHF) approach [18], which also found
�c hypernuclei over the full range of A with a maximum
binding around A ≈ 40, due to the Coulomb repulsion effect.

In general, due to the absence of quantitative experimental
data, those different theoretical investigations used different
(types of) more or less phenomenological �cN interactions,
which is the main reason for their varying predictions. We
refer to the review in Ref. [19]. For an overview and compar-
ison, we list in Table I the results obtained by different works
for the �c mean field in nuclear matter of normal density, U�c .
One may conclude that there is a general consensus (or self-
imposed restriction) on a reduction of about 20% relative to
the binding of the strange � in nuclear matter, U� ≈ 30 MeV.

All calculations mentioned above were performed for
spherical nuclei. However, it is well known that the ground
states of many p- and d-shell nuclei are deformed [20]. For
example, 8Be and 12C have large quadrupole moments [21].
Therefore, the purpose of this paper is to extend the calcu-
lation of closed-shell spherical hypernuclei to more complex
open-shell nuclei and investigate the impact of the �cN inter-
action strength on the hypernuclei [22,23]. The calculations
will be carried out in the framework of the deformed SHF
(DSHF) model [24–27], which has already been widely ap-
plied for the study of various kinds of strangeness nuclei,
such as � [28–31], �− [32,33], and K− [34,35] nuclei. We
will discuss the effects of �c on the light hypernuclei and the
possible properties of 9

�c
B and 13

�c
N. Here, the notation for

the �c hypernuclei follows the chemical convention, where
the element name refers to the total charge of the nucleus
(including protons and �+

c charges), as well as the mass
number counting nucleons and hyperons. Finally, the range of
deformed charmed hypernuclei with varying �cN interaction
strengths will be estimated.

The paper is organized as follows. In Sec. II, we briefly re-
view the DSHF approach for charmed hypernuclei. In Sec. III,
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TABLE I. Theoretical predictions for the �c potential depth −U�c in nuclear matter. No Coulomb interaction is included. ≡ indicates ‘ad
hoc’ values.

Year Method Ref. −U�c [MeV] or U�c/U�

1978 SU(4) One-boson exchange [10] ≈ 28
1981 SU(4) One-boson exchange [11] ≈ 22
1985 SU(4) One-boson exchange [12] ≈ 24.6
1986 SU(4) One-boson exchange [6] ≈ 0.8U�

2004 Relativistic mean field [13] ≡ 30
2017 Parity-projected QCD sum rules [36] ≈ 23
2018 Lattice QCD (mπ = 410 MeV) [14] � 20
2019 Heavy quark eff. potential [37] ≈ 24 − 28
2020 Chiral pert. + lattice QCD [17] ≈ 19
2021 Skyrme-Hartree-Fock [18] ≡ 0.8U�

the properties of deformed charmed hypernuclei are analyzed.
Conclusion and prospects are given in Sec. IV.

II. FORMALISM

The SHF mean-field method is a powerful theoretical
density-functional formalism, which can be applied compre-
hensively from light to heavy nuclei [25–27]. Our approach
is the axial-symmetric SHF model, which is combined with
a density-dependent Skyrme force for the �cN interaction. In
this self-consistent model, the total energy of a hypernucleus
is calculated as [24,38–41]

E =
∫

d3r ε(r), ε = εNN + ε�cN + εC, (1)

where εNN is the energy density of the nucleon-nucleon inter-
action, ε�cN is the contribution due to the �cN interaction, and
εC is the energy density of the Coulomb interaction involving
protons and �+

c hyperon. These energy-density functionals
depend on the one-body densities ρq, kinetic densities τq, and
s.o. currents Jq,

[ρq, τq, Jq] =
Nq∑
i=1

ni
q

[∣∣φi
q

∣∣2
,

∣∣∇φi
q

∣∣2
, φi

q
∗(∇φi

q × σ
)/

i
]
,

(2)
where φi

q (i = 1, Nq) are the self-consistently calculated
single-particle (s.p.) wave functions of the Nq occupied states
for the different particles q = n, p,�+

c in a hypernucleus.
The occupation probabilities nk

q are calculated by taking into
account pairing within a Bardeen–Cooper–Schrieffer (BCS)
approximation for nucleons only. The pairing interaction
between nucleons is taken as a density-dependent δ force
[42,43],

Vq(r1, r2) = V ′
q

[
1 − ρN ((r1 + r2)/2)

0.16 fm−3

]
δ(r1 − r2), (3)

where ρN = ρp + ρn is the nucleon density, and pairing
strengths V ′

p = V ′
n = −410 MeV fm3 are used for light nuclei

[44], while V ′
p = −1146 MeV fm3, V ′

n = −999 MeV fm3 for
medium-mass and heavy nuclei [20]. A smooth energy cutoff
is employed in the BCS calculations [45]. In the case of an
odd nucleon number, one has to block particle orbits near the
Fermi energy to pick out the largest binding of (hyper)nuclei
[46].

The minimization of the total energy in Eq. (1) implies the
SHF Schrödinger equation for each s.p. state (q, i),[

−∇ · 1

2m∗
q (r)

∇ + Vq(r) − iW q(r) · (∇ × σ)

]
φi

q(r)

= ei
qφ

i
q(r), (4)

where the mean fields of nucleons and hyperons (including
the Coulomb interaction) are written as

Vq = V SHF
q + V (�c )

q , V (�c )
q = ∂ε�cN

∂ρq
, (q = n, p), (5)

V�c = ∂ε�cN

∂ρ�c

+ q�cVC, (6)

where V SHF
q is the Skyrme mean field of the nucleon without

hyperon (but including the modified Coulomb field) [24,38],
V (�c )

q is its change due to the addition of the �c, and V�c

is the �c mean field. The nucleonic s.o. mean field is rep-
resented by W n,p and is provided by the NN Skyrme force
used here, whereas we assume W �c = 0 in this work. For
the nucleonic energy-density functional εNN we employ the
SLy4 parametrization [25–27,47], while the functional for the
hyperonic part is given by Refs. [39–41,48]

ε�cN = τ�c

2m�c

+ a0ρ�cρN + a3ρ�cρ
2
N + a1(ρ�cτN + ρNτ�c )

− a2(ρ�c�ρN + ρN�ρ�c )/2

− a4(ρ�c∇ · JN + ρN∇ · J�c ), (7)

which provides the hyperonic SHF mean fields

V�c = a0ρN + a3ρ
2
N + a1τN − a2�ρN − a4∇ · JN+q�cVC,

(8)

V (�c )
N = a0ρ�c + 2a3ρNρ�c + a1τ�c − a2�ρ�c − a4∇ · J�c ,

(9)

and a �c effective mass

1

2m∗
�c

= 1

2m�c

+ a1ρN , (10)

where m�c = 2286.5 MeV [49], more than twice the mass of
the strange � baryon, m� = 1115.7 MeV.
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The relation to the standard �cN Skyrme parameters t�cN
0,1,2,3

is [40]

a0 = t0, a1 = t1 + t2
4

, a2 = 3t1 − t2
8

, a3 = 3t3
8

. (11)

An approximate center-of-mass correction is applied as usual
by replacing the bare masses [24–27,38]

1

mq
→ 1

mq
− 1

M
, (12)

where M = (Nn + Np)mN + N�c m�c is the total mass of the
(hyper)nucleus.

In our approach, we assume axial symmetry of the mean
field, and the deformed SHF Schrödinger equation is solved
in cylindrical coordinates (r, z) within the axially deformed
harmonic-oscillator basis [24–27]. This allows us to make cal-
culations of axially deformed (hyper)nuclei with a quadrupole
constraint. The optimal quadrupole deformation parameters,

β
(q)
2 ≡

√
π

5

〈2z2 − r2〉q

〈r2 + z2〉q
, (13)

are determined by minimizing the energy-density functional,
while the rms radii are given by

Rq ≡
√

〈r2 + z2〉q. (14)

Note that in this work, we reduce the SLy4 s.o. interaction
strength for 12C and its corresponding � and �c hypernuclei
to 60%, as in Refs. [50,51], to obtain a reasonable deformation
of the ground state of 12C.

The calculated results of these observables will be dis-
cussed in the next section, together with the � and �c

separation energies

B� ≡ E [A−1(Z )] − E
[A

�
Z
]
, (15)

B�c ≡ E [A−1(Z − 1)] − E
[A

�c
Z
]
. (16)

We now discuss the choice of the five �cN interaction
parameters ai, Eq. (7). Due to absence of quantitative data
on �c hypernuclei, it is currently impossible to determine
them. We therefore use the well-constrained parameters for
the strange � hyperon as a guideline, which were deter-
mined in Refs. [41,48] by a simultaneous fit to the current
global data set of � hypernuclei, and the optimal values
a0,1,2,3 = [−322.0, 15.75, 19.63, 715.0] (in appropriate units
for ρ given in fm−3 and ε in MeV fm−3) were obtained.
In the absence of further information, we then introduce a
global scaling factor K for the parameters a0,1,2,3, and will
study in the following the dependence of the results on this
parameter, in particular in comparison with the results of other
approaches, as listed in Table I.

The parameter a4, which governs the �cN s.o. splitting, is
already very small for � hypernuclei [29,52,53], and a strong
reduction of spin orbitals in the �cN channels was found
based on the quark substructure of hadrons [54]. Due to the
large mass of the �c baryon, an even smaller s.o. splitting may
occur in �c hypernuclei. Therefore, we omit here the �cN s.o.
interaction.

FIG. 1. The calculated potential energy surfaces as functions of
the total quadrupole deformation β2 for 8Be and 12C and their corre-
sponding 1s � and �c hypernuclei 9

�Be and 9
�c B as well as 13

�C and
13
�c N, obtained with different �cN interaction strengths K = 0.4, 0.6,
0.8, 1.0. The energies of the hypernuclei are shifted with respect to
those of their core nuclei, as specified in the legend.

III. RESULTS

In the following, we compare the properties of � and �c

hypernuclei and the dependence on the �cN interaction pa-
rameter K . Compared to the �, the �c features two important
differences: its much larger mass, and its positive electric
charge. The first one leads to a strong reduction (about 1/2) of
the �c kinetic energy, in particular in light and small nuclei,
whereas the additional Coulomb repulsion becomes dominant
in heavier nuclei. The competition between both effects will
clearly be seen in the following.

A. Potential energy curves

The impurity effect of an s-state hyperon is often reflected
by a deformation reduction of the nuclear core [30,55–60]. In
order to study this effect for �c hypernuclei, we show in Fig. 1
the calculated potential energy surfaces (PESs) as functions
of the quadrupole deformation parameter β2 for 8Be, 12C, and
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TABLE II. The calculated deformations, radii (in fm), and energies (in MeV), for different Y = �, �c (hyper)nuclei. The last two columns
compare BY values of DSHF and spherical SHF calculations.

K β2 β
(N )
2 β

(Y )
2 RN RY −E B(def.)

Y B(sph.)
Y

8Be 0.622 0.621 2.548 49.51
9
�Be 0.566 0.592 0.308 2.484 2.200 56.95 7.44 8.08

9
�c B 1.0 0.586 0.596 0.435 2.494 1.793 58.10 8.59 9.02

9
�c B 0.9 0.589 0.600 0.429 2.504 1.845 56.10 6.59 6.93

9
�c B 0.8 0.594 0.606 0.424 2.516 1.912 54.14 4.63 4.88

9
�c B 0.7 0.595 0.609 0.410 2.526 1.996 52.25 2.74 2.88

9
�c B 0.6 0.597 0.615 0.393 2.539 2.115 50.42 0.91 0.94

9
�c B 0.5 0.594 0.618 0.362 2.549 2.297 48.71 −0.80 −0.90

9
�c B 0.4 0.588 0.624 0.325 2.563 2.651 47.14 −2.37 −2.58

12C −0.299 −0.298 2.595 83.47
13
�C −0.262 −0.269 −0.154 2.547 2.168 94.77 11.30 11.64

13
�c N 1.0 −0.277 −0.280 −0.211 2.558 1.850 94.70 11.23 11.49
13
�c N 0.9 −0.280 −0.283 −0.209 2.564 1.896 92.43 8.96 9.18
13
�c N 0.8 −0.282 −0.286 −0.205 2.570 1.952 90.20 6.73 6.91
13
�c N 0.7 −0.284 −0.288 −0.200 2.577 2.025 88.02 4.55 4.68
13
�c N 0.6 −0.286 −0.291 −0.191 2.583 2.124 85.90 2.43 2.51
13
�c N 0.5 −0.290 −0.297 −0.181 2.592 2.276 83.86 0.39 0.42
13
�c N 0.4 −0.293 −0.303 −0.164 2.601 2.536 81.96 −1.51 −1.53

their corresponding � and �c hypernuclei 9
�Be and 9

�c
B as

well as 13
�C and 13

�c
N, for different interaction strengths K =

0.4, 0.6, 0.8, 1.0. All (hyper)nuclei are strongly deformed, 8Be
prolate (β2 ≈ +0.6) and 12C oblate (β2 ≈ −0.3). With an un-
modified interaction strength K = 1, 9

�c
B is more bound than

9
�Be, but 13

�c
N is less bound than 13

�C. As pointed out above,
this is the consequence of the competition between attractive
effect of the large �c mass (dominant for very light nuclei)
and the Coulomb repulsion dominant for heavy nuclei. With
decreasing interaction parameter K , the PESs of the �c hyper-
nuclei correspondingly increase together with their deforma-
tion β2. For K = 0.4, both 9

�c
B and 13

�c
N are unbound.

In Table II we list in detail the values of binding energies,
deformations, and radii obtained for the different configu-
rations. The removal energy of the 13

�C � 1s state is B� =
11.30 MeV, in fair agreement with experimental values (see
Ref. [61] for a recent compilation) 11.22 ± 0.08 MeV (emul-
sion), 11.69 ± 0.12 ± 0.04 MeV (emulsion), 11.98 ± 0.05 ±
0.08 MeV (π+, K+), 11.0 ± 0.4 MeV (K−, π−), which un-
fortunately do not agree very well. For 9

�Be the experimental
data are 6.71 ± 0.04 ± 0.04 MeV (emulsion), 6.59 ± 0.07 ±
0.08 MeV (π+, K+), 6.30 ± 0.10 ± 0.10 MeV (K−, π−),
compared to the theoretical 7.44 MeV, which is too large,
because the SHF mean field cannot account for the 2α cluster
structure of this nucleus [62,63]. This might be alleviated in a
beyond-mean-field calculation [64].

There are no experimental data for charmed hypernuclei,
but the calculated separation energy B�c of 13

�c
N for K =

0.8 is 6.73 MeV, qualitatively consistent with other theoret-
ical approaches [14–18] employing similar �cN interaction
strengths. The Table II contains also the values of BY for

the undeformed calculations, which are generally up to about
1 MeV more bound than including deformation. Therefore
deformation reduces the binding of hyperon 1s states, due to a
reduction of the central density of the core nucleus [57]. This
is opposite to the effect on 1p states [29,53,65] that will be
analyzed in more detail later.

Regarding deformations and radii, one notes that with in-
creasing K , the radius R�c decreases, but the deformation
β

(�c )
2 increases, as the 1s �c is more and more molded into

the embedding strongly deformed nuclear core. However, the
total deformation β2 of the hypernuclei diminishes, due to the
shrinking effect of the added hyperon on the nuclear core.

To visualize better the results, we present in Fig. 2 the den-
sity distributions for nucleons and hyperons in the deformed
ground states of 13

�C and 13
�c

N obtained with K = 1. Due to its
large mass, the �c is more localized than the �, and therefore
the central density of �c is significantly higher than that of �

inside nearly the same nuclear core.

B. Mean fields

To illustrate better the results, we show in Fig. 3 the
hyperon total mean fields VY , Eq. (6), of the � and �c 1s
hypernuclei with 8Be, 12C, 40Ca, and 208Pb cores, as a function
of the radial coordinate r (z = 0). The Coulomb field VC is
shown separately for each case. One observes that for K = 1
the �c and � strong-interaction mean fields VY − qY VC are
very similar, as the nuclear core is nearly the same in both
cases. For smaller values of K , this �c mean field becomes
more shallow and for K ≈ 0.8 is similar to the theoretical
values reported in Table I. The main difference between light
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FIG. 2. Contour plots of the nucleon and hyperon densities of
13
�C and 13

�c N (K = 1).

and heavy nuclei is provided by the Coulomb field, whose
magnitude varies from about 4 MeV to 26 MeV going from
9

�c
B to 209

�c
Bi, resulting in VY ≈ −30 MeV (13

�C) vs −24 MeV
(13
�c

N, K = 1).
The figure shows also the hyperon 1s s.p. levels as hori-

zontal bars. The effect of the Coulomb repulsion for the �c is
obvious. It is also notable that the �c states are much deeper
bound inside their respective mean field than the �, which is
a consequence of the larger mass and smaller kinetic energy.
In the case of the 8Be core, this leads to a stronger binding of
the �c (K = 1) than the �, in spite of the Coulomb repulsion.

FIG. 4. The hyperon 1s separation energies as a function of
mass number A for � and �c hypernuclei with different interaction
strengths. Results are for spherical calculations (full circles) and
deformed ones (open circles), with the deformations β2 listed in the
bottom row. Experimental data for the � hypernuclei [67] are also
shown.

C. �c drip point

These features influence strongly the capability of a nu-
clear core to bind a �c, which is summarized in Fig. 4,
showing the � and �c separation energies, Eqs. (15),
(16), of various typical nuclei with varying mass num-
ber, for different values of the interaction strength K =
0.5, 0.6, 0.7, 0.8, 0.9, 1.0. We have chosen to compare hyper-
nuclei with the same nuclear core, for which experimental
�-hypernuclear data are available, even if the corresponding

FIG. 3. � mean field in 9
�Be, 13

�C, 41
�Ca, 209

�Pb and �c mean field in 9
�c B, 13

�c N, 41
�c

Sc, 209
�c

Bi as a function of radial coordinate r (z = 0). In
the latter case different scaling parameters K = 0.4, 0.6, 0.8, 1.0 are used. The Coulomb field VC is also shown (thin curves). Horizontal lines
indicate the hyperon 1s s.p. levels.
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FIG. 5. Same as Fig. 4, but for the hyperon 1 s, p, d, f , g s.p.
states of � and �c(K = 1) hypernuclei. Only the most bound de-
formed states are shown.

�c hypernuclei might not be convenient to produce
experimentally.

Contrary to � hypernuclei, �c hypernuclei reach a maxi-
mum binding energy at A ≈ 20, . . . , 50 for each interaction
strength K , and the upper limit Amax for binding depends
on K . The limiting values for the binding of 209

�c
Bi, 139

�c
Ce,

89
�c

Zr, and 51
�c

Cr are K � 0.80, 0.70, 0.60, 0.50, respectively.
Thus even for a rather weak �cN interaction K = 0.5 some
medium-sized �c hypernuclei are still predicted to exist as
weakly bound states of about 1 MeV.

The results are qualitatively similar to those of
Refs. [12,17,18,66], which also predict �c binding over
the full range of A, with a maximum of order 10 MeV. The
differences with other works [14–16] can be attributed to
the use of very different �cN interactions, see Ref. [18].
In particular the lattice QCD results [14] were obtained
with an unphysical pion mass mπ = 410 MeV and grossly
underestimate the �c binding in nuclear matter.

The figure comprises various spherical or deformed nuclei,
denoted by full or open markers, respectively. The effect of
deformation on the 1s separation energies (reduction) is fairly
small and only visible for the light nuclei and large K , where
it might amount to some 100 keV’s, see also Table I.

D. p-state hypernuclei

The situation is different for higher-l states, which we
analyze in Fig. 5 that compares the hyperon 1 s, p, d, f , g
levels of � and �c (K = 1) hypernuclei, i.e., with the same
Y N interaction strength. Apart from the qualitatively different
behavior due to the Coulomb interaction, �c hypernuclei fea-
ture a much smaller level spacing due to the large �c mass,
i.e., the p, etc., states are relatively much stronger bound than
in � hypernuclei. This can clearly be seen in the figure for

FIG. 6. The hyperon s.p. levels as functions of the core
quadrupole deformation β

(N )
2 for 13

�C and 13
�c N (K = 0.8, 1.0). The

deformed quantum numbers [Nnzml �] label the curves. The physi-
cal deformation minima for the various occupied states are indicated
by markers.

A � 23, where the 1p state is stronger bound in �c than in �

hypernuclei, in spite of the additional Coulomb repulsion. In
fact bound 1p states are only obtained for 12

�c
N and 9

�c
B, and

1d states only for 32
�c

Cl and 28
�c

P, but not for the corresponding
� hypernuclei.

Furthermore, in deformed nuclei the l > 0 states with the
same symmetry as the deformed core are energetically pre-
ferred and gain energy compared to the spherical calculation
[29,30,53]. This effect can be substantial and is clearly seen
in the figure for the strongly deformed V, Si, Mg, Ne, C, Be
core nuclei, which gain energies of O(1 MeV) by this effect.

We analyze the mechanism in more detail in Fig. 6, which
shows the hyperon 1s and 1p s.p. levels as functions of β

(N )
2

for 13
�C and 13

�c
N (K = 0.8, 1). Markers indicate the physical

deformation minima in each case. In the current calcula-
tions neglecting the Y N s.o. interaction, the [101 1/2] and
[101 3/2] 1p orbits are degenerate. Their energies are lower
than the [110 1/2] orbits on the oblate side (where the physical
deformation minima are located at β2 ≈ −0.33) and higher
than the [110 1/2] orbits on the prolate side. The matching
deformation characteristics of the embedding core and the
[101] orbitals lead to a substantial gain of binding energy
of these states, as has been analyzed for � hypernuclei in
Refs. [29,30,53]. At the physical deformation β2 ≈ −0.33,
the gain of binding energy by deformation of the [101] states
is about 2 MeV, as also shown in Fig. 5. In particular at large
deformation, this effect amplifies the already stronger bound p
states in �c hypernuclei compared to � hypernuclei, as shown
in Fig. 5, caused by the smaller level spacing for the heavy �c

particle. Even for a reduction K = 0.8, the �c [101] 1p state
is still bound with a s.p. energy of about −3 MeV, together
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with the [000] 1s state at about −9 MeV. For K � 0.6, the
�c 1p states are not bound anymore, however.

IV. SUMMARY

We investigated �c hypernuclei in the framework of the de-
formed SHF mean-field model with a combination of the NN
interaction SLy4 and a scaled version of the �N interaction
SLL4 for the �cN channel.

Deformation has a small weakening effect on the �c 1s
states, but might substantially increase the binding of the 1p
states with the same symmetry as the deformed core. This ef-
fect amplifies the small level spacing for the heavy �c particle.

The existence limit of charmed hypernuclei due to the com-
petition between small hyperon kinetic energy and Coulomb
repulsion was also studied. With an interaction suppression
factor K � 0.8 charmed hypernuclei exist over the full mass
range A < 208, whereas for weaker interaction heavy hy-
pernuclei cease to exist gradually. Even for K = 0.5, some
medium-size �c hypernuclei still exist.

Further quantitative theoretical explorations have to await
the availability of reliable experimental data.
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