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Realistic evaluation of the Coulomb potential in spherical nuclei
and a test of the traditional approach
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A realistic evaluation of the Coulomb potential has been conducted for a few selected nuclei using available
model-independent data for the charge density and the recent development of the Coulomb energy-density
functional. Employing the Woods-Saxon potential as a nuclear component, we can quantify the differences in
proton single-particle energies caused by deviations from the model-independent data of the uniform distribution,
the two-parameter Fermi function, and the charge density obtained from a microscopic Hartree-Fock calculation
using the effective Skyrme interaction. The obtained energy differences are generally small in magnitude,
typically around 100 keV or less, given that the parameters of the charge density models are appropriately
determined. However, considerably larger differences arise when the last occupied state is highly filled and, at
the same time, has a small orbital angular momentum. A notable example of such nuclei is the sulfur isotopes
(Z = 16). Unfortunately, the uniform distribution cannot be used to evaluate the Coulomb exchange term within
a well-established method due to its lack of differentiability at the surface of a nucleus. Traditionally, the missing
exchange term is corrected by excluding the contribution of the last proton to the direct term. Our investigation
of this approach reveals that its effect simply introduces the factor (Z − 1)/Z into the Coulomb direct term. For
medium to heavy nuclei (typically beyond the sd shell), the resulting proton levels are 300–800 keV higher than
those obtained with the exact Fock term. Conversely, the results for lighter nuclei tend to be the opposite, as the
factor (Z − 1)/Z decreases rapidly as the atomic number approaches 1. Hence, this traditional approach should
be avoided for precise nuclear structure calculations based on Woods-Saxon radial wave functions, particularly
for shell-model calculations of the isospin-symmetry breaking correction to β-decay rates for electroweak
interaction studies [J. C. Hardy and I. S. Towner, Phys. Rev. C 102, 045501 (2020), and references therein].
The present study also suggests that the Coulomb exchange term should be included within the Woods-Saxon
potential, using the Slater approximation or beyond, along with a realistic model of charge density.
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I. INTRODUCTION

The Coulomb repulsion between protons is the most well-
known component of the nuclear Hamiltonian. Its action
results in a large class of nuclear properties, including the
deviation from the N = Z line of the stability valley or the
fission phenomenon which yields a clean-cut limitation to the
nuclear size. It also affects specific properties of β, proton,
and α radioactivities. As the main actor in the violation of
isospin symmetry, the Coulomb interaction also plays a signif-
icant role in various nuclear structure phenomena. Notably, it
induces isospin mixing in nuclear states,leads to displacement
energy between members of isobaric multiplets, and con-
tributes to isospin forbidden transitions [1–4]. Furthermore,
the correction for isospin-symmetry breaking has become a
critical factor in low-energy precision tests of the electroweak
sector of the standard model via nuclear β decays [5–7]. As
such, properly accounting for the Coulomb interaction in a
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microscopic model of nuclear structure is of paramount im-
portance.

Within the independent-particle framework, the A-nucleon
problem is simplified to A single-nucleon problems, which
start with an effective nucleon-nucleon interaction [8,9] or
an effective potential [10,11]. Therefore, the resulting nuclear
wave function is simply an antisymmetric product of individ-
ual wave functions, also known as the Slater determinant. As
is well known, this simplified model itself has limited applica-
tions. In principle, the self-consistent spherical Hartree-Fock
(HF) mean field is only appropriate for closed-shell systems.
On the other hand, the phenomenological approach is typi-
cally optimized for single-particle or single-hole states, such
as the low-lying states of nuclei near a closed-shell core.
Nevertheless, the independent-particle potential serves as the
fundamental component of the complete nuclear Hamilto-
nian and, therefore, is crucial for the success of all nuclear
many-body approaches. In certain specific applications, it be-
comes necessary to include the Coulomb contribution in the
one-body component, particularly in the shell model where
the valence spaces are too small to account for all sig-
nificant configurations induced by the Coulomb interaction.
For instance, the shell-model description of the superallowed
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0+ → 0+ Fermi β decay would not align with the predic-
tions of the standard model, unless the harmonic oscillator
basis is substituted with realistic Woods-Saxon (WS) radial
wave functions that properly incorporate the Coulomb and
nuclear isovector effects [12–14]. Interestingly, the correc-
tion for isospin-symmetry breaking in this weak semileptonic
process is primarily dominated by the difference between the
radial wave functions of the proton and neutron. In particular,
the radial mismatch between the initial and final states is
significantly amplified when the proton-rich mother nuclei
are weakly bound. On the other hand, the self-consistent HF
eigenfunctions, while more realistic in many aspects, may
suffer from a number of potential deficiencies, as discussed in
Ref. [14], making them unsuitable for the precise description
of isospin-symmetry breaking. Additionally, the HF mean
field is fundamentally incompatible with the parentage ex-
pansion shell-model formalism described in Ref. [12], due to
the requirement of adjusting a free parameter to reproduce
separation energies relative to excited states of intermediate
nuclei.

Due to the high precision achieved in experimental stud-
ies of superallowed 0+ → 0+ Fermi β decay, the dominant
source of uncertainties in the extracted Vud element of the
Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix
currently arises due to the correction for isospin-symmetry
breaking. As a result, there is a pressing need for further
refinement of the WS potential, especially concerning the
Coulomb term. This term is primarily responsible for the
mismatch between the radial wave functions of protons and
neutrons.

In nearly all calculations within the phenomenological WS
potential [10,11,15–17], the Coulomb repulsion is accounted
for using the approximation of a uniformly distributed charge
sphere of radius RC :

VC (r) = (Z − 1)e2

{
1
r , r > RC
1

RC

(
3
2 − r2

2R2
C

)
, otherwise, (1)

where RC is usually taken as RC = r0(A − 1)
1
3 with r0 ≈ 1.26

fm [11]. Alternatively RC can be extracted from the charge
radius Rch via [18]

R2
C = 5

3
R2

ch − 5

2

3∑
i=1

θir
2
i − 5

4

(
h̄

mc

)2

+ 5

2

b2

A
, (2)

where the nuclear oscillator length parameter is given by
b2 ≈ A

1
3 fm2. An improved parametrization of b2 can be found

in Ref. [19]. The last three terms on the right-hand side of
Eq. (2) accounts for the internal structure of a proton, where∑

i θir2
i = 0.518 fm2 [20], Darwin-Foldy term (h̄/mc = 0.21

fm), and center-of-mass (c.m.) motion, respectively. It is im-
portant to note that an additional modification was made in the
construction of Eq. (1). Specifically, the contribution of the
last proton was excluded, resulting in the potential in Eq. (1)
being proportional to Z − 1 instead of Z , as expected in clas-
sical electromagnetism. This exclusion of the last proton can
also be interpreted as a correction for the missing Coulomb
exchange potential in the uniform charge approximation.

The primary objective of this study is twofold: to examine
the expression (1) and to explore alternative or more realistic
approaches. The ultimate aim is to reduce or systematically
quantify the uncertainty on Vud stemming from the Coulomb
term in the WS potential.

In general, the Coulomb potential can be derived from the
two-body Coulomb interaction using the variational princi-
ple. Its direct part is a well-known functional of the charge
density, while its exchange counterpart can be treated with
high precision using a local density approximation [21,22].
Consequently, the Coulomb potential can be determined
in a self-consistent manner by minimizing the total en-
ergy, as demonstrated in the HF theory [8]. Alternatively,
it can be independently evaluated from the nuclear com-
ponent using charge density data obtained from external
sources.

In this study, we conduct a comprehensive investigation
of Eq. (1) from various perspectives. We closely examine the
foundation of this expression, the uniform charge distribution,
within the framework of the phenomenological WS mean
field, utilizing model-independent data obtained from electron
scattering experiments [23,24]. We also explore the impact
of the self-interaction correction method, which reduces the
magnitude of the Coulomb direct term. This correction is then
compared against realistic functionals derived using a local
density approximation, with or without the correction for the
effect of charge density gradient [21,22]. Additionally, we
compare the results with an exact treatment of the Coulomb
exchange term, making reasonable assumptions. Furthermore,
we address the challenges associated with evaluating the
Coulomb exchange term when assuming a uniform distribu-
tion or when utilizing model-independent data. To expand
our investigation beyond the scope of expression (1), we con-
sider two realistic models for the charge-density distribution:
the two-parameter Fermi (2pF) function and the microscopic
Skyrme-HF calculation. Our calculations encompass a wide
variety of nuclei, covering a mass range from A = 16 to 209.
This diverse set includes two N = Z closed-shell nuclei (16O
and 40Ca), two N �= Z closed-shell nuclei (48Ca and 208Pb),
two closed-subshell nuclei (28Si and 32S), and four open-shell
nuclei (58Ni, 205Tl, 206Pb, and 209Bi).

The paper is organized as follows. In Sec. II, the standard
parametrization structure of the WS potential is described.
Section III reviews the density functional forms of the
Coulomb direct and exchange terms as employed in the
self-consistent mean-field theory. Section IV outlines the se-
lection of input charge densities and discusses their properties.
In Sec. V, a comparative test of the Coulomb potential is
conducted for various charge density models and functional
forms. Lastly, the summary and conclusion are given in
Sec. VI.

II. NUCLEAR POTENTIAL

In this work, we employ the phenomenological WS
potential as the nuclear component of our independent-
particle Hamiltonian. This potential follows a standard
parametrization structure, comprising central, spin-orbit,
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isospin-dependent, and Coulomb terms, namely,

V (r) = V0 f0(r) − Vs

( rs

h̄

)2 1

r

d

dr
fs(r) 〈�l · �σ 〉

+ Vsym(r) +
(

1

2
− tz

)
VC (r), (3)

where tz represents the isospin projection of the nucleon,
following the convention of tz = 1

2 for neutrons and − 1
2 for

protons. The functions fi(r) are defined as

fi(r) = 1

1 + exp
( r−Ri

ai

) , (4)

where i = 0 or s denote either the central or spin-orbit terms.
The restriction of a0 = as is commonly adopted due to a
lack of experimental constraints. However, contrary to this
assumption, a smaller spin-orbit radius (Rs < R0) has been
suggested, as the two-body spin-orbit interaction has a shorter
range [17]. For example, the Seminole parametrization pro-
vided in Ref. [11] obtained Rs/R0 = 0.921 as a more suitable
value.

The expectation value 〈�l · �σ 〉 appearing in the spin-orbit
term can be written as

〈�l · �σ 〉 =
{

l if j = l + 1
2

−(l + 1) if j = l − 1
2 .

(5)

In order to preserve the fundamental symmetries, phe-
nomenological effective potentials such as WS are typically
treated as nuclear mean fields created by the core of (A − 1)
nucleons. The exclusion of the last nucleon’s contribution also
serves as a self-interaction correction due to the absence of
exchange terms, as discussed for the Coulomb potential in
the introduction. For these reasons, the WS radii are usually
parametrized as a function of (A − 1) instead of A, namely
Ri = ri(A − 1)

1
3 . Furthermore, if we neglect the internal struc-

ture of the core of (A − 1) nucleons, the nucleus can be
regarded as a system of two point-like particles. Within this
simplified picture, the c.m. correction for the WS Hamiltonian
can be easily implemented by replacing the nucleon mass m
in the kinetic energy term of the radial Schrödinger’s equa-
tion with the reduced mass μ, defined as

μ = m
(A − 1)

A
. (6)

This c.m. correction is fully validated at large separations,
where the contribution of the core structure is negligible.
A further discussion of the c.m. corrections is given in
Refs. [14,25].

Most nuclei have a different number of protons and neu-
trons. Apart from the Coulomb repulsion, the difference in the
number of neutrons and protons in nuclei causes an additional
shift in the potential depth between neutrons and protons. As
experimental evidence, nuclei with N = Z tend to have the
greatest binding energy compared to other configurations of
protons and neutrons. In practice, this effect is commonly
accounted for by adding the symmetry term expressed as

Vsym(r) = 2tzV1
(N − Z )

A
f0(r). (7)

In this work, we simplify our analysis by neglecting the
contribution of the symmetry term to the spin-orbit coupling
[26]. It is important to note that some additional terms or
slightly different parametrization structures can also be found
in the literature. For example, a more fundamental form of the
isospin-dependent term was proposed by Lane in Ref. [27].
However, the investigation of such variations in the nuclear
component is beyond the scope of this work.

The Coulomb potential VC (r) can be evaluated using var-
ious methods, which will be described separately in the
following sections.

The WS potential is not suitable for calculating the total
binding energy, as it is not based on a specific effective two-
body interaction. Typically, the WS parameters (V0, Vs, r0, rs,
a0, as, V1, RC) are determined through a best fit of nuclear
single-particle energies and charge radii. For this study, we
will use the set of WS parameter values named BMm, which
is listed in Table I of Ref. [13].

III. COULOMB POTENTIAL AS A CHARGE
DENSITY FUNCTIONAL

Before delving into the specifics of our study, it is essential
to describe the fundamental formulas and general properties
of the Coulomb potential in this section. According to the
self-consistent HF theory [8], the Coulomb contribution to the
mean field consists of a direct and an exchange term, which
can be symbolically written as

VC (r) = Vdir (r) + Vexc(r). (8)

Throughout this paper, we assume spherical symmetry. The
Coulomb direct term for a spherically symmetric nucleus,
after integrating out the angular variables, is reduced to

Vdir (r) = 4πe2

[
1

r

∫ r

0
x2ρch(x) dx +

∫ ∞

r
xρch(x) dx

]
. (9)

One can observe here that if the charge density ρch(r) is
constant inside the radius RC and vanishes elsewhere, the
expression (9) will return the potential in Eq. (1) except that
it would be proportional to Z instead of Z − 1 as explained
in the introduction. Further details on the uniform charge
distribution are given in Sec. IV B.

Since the Coulomb force has an infinite range, the
Coulomb exchange term becomes nonlocal in coordinate
space, posing a challenge for its calculation, particularly
within the self-consistent mean-field framework. To circum-
vent this issue, a common approach is to use a local density
approximation. One widely used approximation is the one
proposed by Slater [22], in which the Coulomb exchange term
is expressed as a function of the charge density

V Sla
exc (r) = −e2

[
3

π
ρch(r)

] 1
3

. (10)

The accuracy of this approximation was tested against exact
calculations [28] for various spherical nuclei ranging from 16O
to 310

126Ubh. The proton energy levels obtained using the Slater
approximation were found to be underbound by 100 to 550
keV for occupied states and overbound by 100 to 200 keV
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for unoccupied states, compared with those obtained using the
exact Fock term.

Recently, it was demonstrated that the Coulomb energy
density functional built using the generalized gradient ap-
proximation (GGA) [21] achieves nearly the same level of
accuracy for the total energy as the exact treatment of the
Fock term, while maintaining the same numerical efficiency
as the Slater approximation. The Coulomb exchange term
derived from the GGA depends not only on the charge density
but also on its gradient with respect to radial distance. The
GGA-exchange term is given by

V GGA
exc (r) = V Sla

exc (r)

{
F (s) −

[
s + 3

4kF r

]
F ′(s)

+
[

s2 − 3ρ ′′
ch(r)

8ρch(r)k2
F

]
F ′′(s)

}
, (11)

where ρ ′′
ch(r) denotes the second derivative of ρch(r) with

respect to r, and F ′(s) and F ′′(s) represents the first and
second derivatives of F (s) with respect to s, respectively.
Note that F (s) is the enhancement factor introduced for the
Coulomb exchange potential in GGA. Following Perdew-
Burke-Ernzerhof [29], F (s) is parametrized as

F (s) = 1 + κ − κ

1 + μs2/κ
, (12)

where the two parameters κ and μ have been recently revised
for nuclear physics applications by Naito et al. [21] and the
best-fit values were determined to be 0.804 and 0.274, respec-
tively. The function s represents the dimensionless density
gradient defined as

s = |∇ρch(r)|
2kF ρch(r)

, (13)

where |∇ρch(r)| is the norm of ∇ρch(r), and the Fermi mo-
mentum is given by kF = [3π2ρch(r)]

1
3 . It is worth noting that

if ρch(r) is a slowly varying function of r, its gradient will
vanish (s = 0), and therefore F (0) = 1, then the Coulomb
exchange term in Eq. (11) will be reduced to the Slater ap-
proximation (10). Considering the overall behavior of charge
density in a nucleus, the Coulomb exchange potential from the
GGA is mostly affected in the nuclear surface region, where
the charge density gradient is peaked.

The contribution of higher-order electromagnetic effects,
such as vacuum polarization and Coulomb spin-orbit can also
be included. However, both of them were found to be com-
pletely negligible [14].

IV. INPUT CHARGE DENSITIES

According to the formalism reviewed in the previous sec-
tion, the charge density serves as the fundamental ingredient
for determining the Coulomb potential. In the following list,
we provide a brief description of the conventional methods
used to deduce charge density from electron scattering, also
known as model-independent analyses. The data obtained
from this source is used as a reference for our comparative
study. Additionally, we discuss frequently used hypothetical
and phenomenological models, as well as the microscopic

self-consistent mean-field calculation of the charge den-
sity. The validity of these theoretical models as input for
the Coulomb potential is further investigated in the next
section.

A. Model-independent analyses

The charge form factors for several stable nuclei have
been accurately measured through electron scattering. These
data are commonly analyzed using two model-independent
approaches to obtain numerical values for the charge density
as a function of r. The first approach is the Fourier-Bessel
(FB) expansion [30], and the second is the sum-of-Gaussians
(SOG) expansion [24]. In the FB approach, the charge density
is expanded in terms of the spherical Bessel function of order
zero ( j0), given by

ρFB(r) =
{∑nmax

ν=1 aν j0
(

νπr
Rcut

)
, r � Rcut

0, otherwise,
(14)

where aν are the expansion coefficients and Rcut is a cut-off
radius beyond which the charge density is sufficiently small
and is equated to zero. The first nmax coefficients of this series
expansion are obtained directly from the experimental data
[23]. Here, nmax = Rcutqmax/π , where qmax is the maximum
momentum transfer up to which the charge form factor data
are determined. For the normalization, the integral of ρFB(r)
over all spaces must be equal to the total nuclear charge +Ze.

In the SOG approach, the charge density is expressed as

ρSOG(r) =
mmax∑
i=1

Ai{exp[−xi(r)2] + exp[−yi(r)2]}, (15)

where yi(r) = (r + Ri )/γ and xi(r) = (r − Ri )/γ . The ex-
pansion coefficients Ai are given by

Ai = ZeQi

2π
3
2 γ 3

(
1 + 2R2

i

/
γ 2

) , (16)

where γ is the width of the Gaussians and is related to the
root-mean-square (rms) radius through Rg = γ

√
3/2. Accord-

ing to Sick [24], γ is chosen equal to the smallest width of the
peaks in the nuclear radial wave functions calculated using the
HF method. The author reported that the γ values extracted
from the harmonic oscillator and WS radial wave functions
yield almost identical results. The charge fraction Qi must be
normalized such that

∑
i Qi = 1.

In practice, a few terms are included within the sum in
Eqs. (14) and (15). For example, a truncation with nmax � 17
and mmax � 12 was imposed for the analyses carried out in
Ref. [23]. The parameters of ρFB(r) and ρSOG(r) deduced
from experiments are given in the data compilation [23].

We note that the charge density obtained from the FB
approach exhibits an undesirable property—it contains an
oscillatory component and, in some cases, even acquires neg-
ative values near the cut-off radius Rcut, as illustrated in the
right panel of Fig. 1. Although these oscillations are of ex-
tremely small magnitude, they can be greatly amplified by the
first and second derivatives, leading to significant errors when
the GGA is employed to calculate the Coulomb exchange
term. On the other hand, oscillations in the asymptotics of
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FIG. 1. Illustration of oscillations in the charge densities deduced from electron scattering experiments using the FB (right) and SOG (left)
analyses [23].

the charge density obtained from the SOG approach are also
visible for some nuclei, but their magnitude is generally much
smaller (with a larger width), as shown in the left panel of
Fig. 1. This unphysical property arises from the incomplete-
ness of the expansions and the use of a cut-off radius that is
too small in the FB analysis. In reality, the tail of the charge
density should decrease monotonically since the asymptotic
radial wave functions decay exponentially.

In order to avoid this problem, we replace both FB and
SOG data from a point just before the oscillations occur
(denoted as Rx) towards infinity with the 2pF function (see
Sec. IV C for the definition of 2pF). For both data sets, we
select Rx = 4.5 fm for nuclei with A � 58 and Rx = 8.5 fm
for heavier nuclei. Instead of performing a global fit, we
determine the parameters of the 2pF function by matching it,
as well as its first and second derivatives, with those of the
data at Rx. The resulting 2pF function might not be optimal for
the entire range of available data in the domain of [Rx,+∞];
however, this approach ensures the continuity of the charge
density at Rx. It is important to note that this replacement does
not introduce a significant error since the charge density in this
domain is small. By employing this technique, we overcome
the unphysical oscillations present in the original FB and SOG
data, obtaining a smooth charge density representation for
further calculations.

B. Uniform charge distribution

For a sphere of radius RC containing a total charge of
+Ze uniformly distributed throughout its volume, the charge
density is given by

ρUnif(r) =
{
ρ0, r � RC

0, otherwise,
(17)

and the normalization condition implies that

ρ0 = 3Ze

4πR3
C

. (18)

In this work, we follow the approach in Ref. [31], where
ρUnif(r) is considered as a pointed proton distribution and is
normalized to Z instead of +Ze. Therefore, its rms radius
(denoted as RUnif) can be calculated analytically as

RUnif = RC

√
3

5
. (19)

In this uniform distribution, corrections for finite size,
Darwin-Foldy term, and c.m. motion must be introduced in
order to convert RUnif into the charge radius. Equation (19)
provides an experimental constraint for RC , at least for the
cases where the experimental data are available. Otherwise,
it can be parameterized as usual, namely RC = rC (A − 1)

1
3

where rC ≈ 1.26 fm [11]. The validity of various methods for
determining RC can also be tested within the framework of
the present study. Further discussions on this point are given
in the next section.

Because of its simplicity, the uniform charge distribution is
widely used in nuclear physics, particularly in the context of
the nuclear optical model. However, it should be noted that it
is an assumption of classical electromagnetism and does not
have quantum mechanical equivalent. This is because wave
functions, which are the building blocks of charge density,
must be continuous in coordinate space. Furthermore, the
two aforementioned approaches to the Coulomb exchange
term (Slater and GGA) are evidently inapplicable for this dis-
tribution due to its discontinuity and lack of differentiability
at the surface of a nucleus.
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C. Two-parameter Fermi function

We also consider a realistic phenomenological model for
the charge density distribution, namely the two-parameter
Fermi function,

ρ2pF (r) = ρ̃0

1 + exp
(

r−c
z

) . (20)

Unlike the previous models, the 2pF is continuous and dif-
ferentiable. Moreover, it decays monotonically towards large
distances. Although, the 2pF function may appear similar to
the fi(r) functions of the WS potential in Eq. (4), in general,
the parameters c and z are smaller than the length and surface
diffuseness parameters of the WS potential. It is also evident
from the Skyrme HF theory that the mean field potential
is not a linear function of densities. Thus, their geometrical
characterizing parameters do not necessarily have to be the
same as the WS potential parameters. More details on this
point are given in Ref. [32].

As its name indicates, the 2pF is determined by two param-
eters because ρ̃0 is obtained via the normalization condition,

ρ̃0 = Ze

4πz3F2(c/z)
, (21)

where F2(c/z) is the second-order Fermi integral (see
Appendix C of Ref. [18]). Similar to the previous subsection,
we employ the convention that ρ2pF (r) is normalized to Z .
Therefore, the parameter c can be extracted from the charge
radius by solving the following equation [18]:

R2
ch = 4πρ̃0z5

Z
F4

(
c

z

)
+ 3

2

3∑
i=1

θir
2
i + 3

4

(
h̄

mc

)2

− 3

2

b2

A
.

(22)
As before, the last three terms account for the finite size
of the proton, the Darwin-Foldy term, and the c.m. motion,
respectively. F4(c/z) is the fourth-order Fermi integral (see
Appendix C of Ref. [18]).

Recently, Horiuchi [33] proposed a new method for deter-
mining the surface thickness of charge density. Implementing
the Taylor expansion of ρ2pF (r) at r = c and retaining up to
the first-order term, the following relation was derived:

z = − ρ̃0

4
[ρ ′

2pF (c)]−1, (23)

where ρ ′
2pF (c) denotes the first derivative of ρ2pF (r) at r = c.

By matching ρ2pF on the right-hand side of Eq. (23) with
the charge density constructed from eigenfunctions of the WS
potential whose Coulomb term is, in turn, a function of ρ2pF ,
Eq. (23) can be solved in a self-consistent manner. This offers
an alternative means for constraining z in the case where
experimental data are not available.

Although this distribution nicely represents the diffuseness
at the nuclear surface region, it is unable to describe the
oscillations of the charge density observed in the nucleus
interior. It has been shown that this difficulty can be overcome
by extending Eq. (20) to the three-parameter Fermi (3pF)
function [34]. However, the 3pF is not a good choice for a
general application due to the lack of experimental data to
constrain the third parameter.

D. Hartree-Fock calculations

Within a microscopic nuclear structure model, the charge
density is essentially decomposed into three components:

ρch(r) = ρ
p
ch(r) + ρn

ch(r) + ρ ls
ch(r), (24)

where ρ
p
ch(r)/ρn

ch(r) comes from the finite charge distri-
bution of the proton/neutron folded with the point-like
proton/neutron density. Additionally, ρ ls

ch(r) represents the
relativistic electromagnetic correction that depends on the
spin-orbit coupling. However, the shape of the charge density
distribution is primarily determined by the shape of the point-
like proton density. The contributions ρn

ch(r) and ρ ls
ch(r) were

found to be negligibly small [14]. Furthermore, they tend to
cancel each other out, so they will not be considered here.

By definition ρ
p
ch(r) is given by

ρ
p
ch(r) =

∫
dr′ρp(r′)Gp(r − r′), (25)

where r is the position vector in R3. The effective electro-
magnetic form factor Gp is taken as a sum of three Gaussians
as described in Ref. [20]. The point-like proton density ρp(r)
can be defined in terms of proton radial wave functions Rα (r),
namely,

ρp(r) = 1

4π

∑
α

nα|Rα (r)|2, (26)

where α stands for the spherical quantum numbers nl j and the
sum is taken over over all occupied states. The proton occu-
pation number nα is obtained with the so-called equal-filling
approximation. Therefore, for a closed-shell configuration,
nα = (2 j + 1) for the occupied orbits and 0 for the unoccu-
pied orbits.

The radial wave functions Rα (r) are obtained as the
eigenfunctions of the Skyrme-HF mean field. We utilize
the SLY5 parameter set [35] for the Skyrme Hamiltonian,
which is invariant under rotation in the isospin space. For
treating the Coulomb exchange term, we employ the Slater
approximation. To simplify the analysis, we neglect the
charge-symmetry and charge-independence breaking forces
[36]. The HFBRAD program [9] is employed to solve the
spherical Skyrme-HF equation, and we calculate the Coulomb
terms using a point-like proton density. To account for the
finite size effect, we apply Eq. (25) within an external program
after the HF variation has terminated.

It should be noted that this HF calculation is used solely
as an alternative model for the charge density, specifically for
evaluating the Coulomb terms of the WS potential. No further
self-consistent calculations are conducted in the present study.

V. COMPARATIVE STUDY OF COULOMB POTENTIAL

As a reminder, the Coulomb potential can be expressed
as a functional of the charge density within a local density
approximation. In Eq. (1), this behavior is also evident, with
the charge density specified as the uniform charge distribution.
Without self-consistency, the charge density and the func-
tional can be considered as separate entities, each serving
as a fundamental building block for the Coulomb potential.
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Therefore, it is more appropriate to assess the quality of
each individual entity separately, rather than evaluating the
Coulomb potential within a given approach as a whole. This
section begins by examining the uncertainties in the experi-
mental charge density data and their impact on proton energy
levels. The next step involves checking the charge density
models listed in Sec. IV against the model-independent data
by studying the proton single-particle energies. Finally, vari-
ous approaches to the Coulomb functional, including Eq. (1)
and those reviewed in Sec. III, will be tested against a realistic
functional or an exact treatment based on existing calculations
carried out within the Skyrme-HF framework [28,37].

A. Inspection of experimental charge density data

Before conducting a comparative study of the Coulomb
potential, it is crucial to assess the influence of differences
between the FB and SOG data for charge density on proton
single-particle energies. For simplicity, we will neglect the un-
certainties on the coefficients of the FB and SOG expansions,
even though they are available from the data compilations. It
is important to note that the focus of this section is on the
proton single-particle energies. Other observables, such as the
rms radii and neutron skin thicknesses, were found to be much
less sensitive to small variations in the Coulomb terms.

Furthermore, instead of conducting a point-by-point com-
parison, we introduce the following radial mismatch factor,
denoted as �, as an effective measure for the charge density
differences:

� = �̄ − �

�̄
, (27)

where � represents the overlap integral between the FB and
SOG data,

� = 4π

∫ ∞

0
ρFB(r)ρSOG(r)r2dr. (28)

Meanwhile, �̄ corresponds to the integral of their average
squared:

�̄ = 4π

∫ ∞

0

[
ρFB(r) + ρSOG(r)

2

]2

r2dr. (29)

The resulting � values in % are as follows: 3.441 ×
10−3 (16O), 5.659 × 10−3 (28Si), 0.209 (32S), 2.601 × 10−2

(40Ca), 4.126 × 10−2 (48Ca), 3.866 × 10−3 (58Ni), 3.641 ×
10−4 (205Tl), 5.048 × 10−4 (206Pb), and 1.459 × 10−2 (208Pb).

We recall that the exact Coulomb exchange term is nonlo-
cal in coordinate space and cannot be expressed as a function
of charge density. Therefore, it is not suitable for the present
study, where the self-consistent HF mean field is replaced with
the phenomenological WS potential. To investigate whether
the choice of the Coulomb exchange functional influences
the impact of the FB-SOG charge density differences on
proton single-particle energies, we consider three different
approximations for the Coulomb potential. One of them con-
sists purely of the direct term, while the other two include
an exchange term employing either the Slater approxima-
tion or the GGA. By combining these approximations with
the nuclear component described in Eq. (3), we obtain the

single-particle energies and wave functions by solving the
radial Schrödinger’s equation. The splits in proton energies
due to the differences in the charge density data are listed
in Table I. A negative sign indicates that the FB data yield a
lower proton energy level relative to that yielded by the SOG
data, i.e., 
EFB

SOG = EFB − ESOG. Conversely, a positive sign
indicates the opposite. For completeness, the averaged proton
energies between the FB and SOG results calculated using
the GGA functional [denoted as ĒFB

SOG = (EFB + ESOG)/2] are
graphically illustrated in Fig. 2. It is evident from Table I that
the splits in proton energies induced by the charge density
differences are insensitive to the Coulomb exchange term.
This indicates that any existing Coulomb functionals can be
employed for our test of the charge density models, which will
be discussed in the following subsection.

We note that the magnitude of energy splits is primarily de-
termined by the size of �, but it can be significantly amplified
by the shell-structure effect. As a general feature, the solution
of the radial Schrödinger equation for protons is particularly
sensitive to the Coulomb terms when the last occupied orbit
is highly filled and has a low centrifugal barrier (low orbital
angular momentum). We will refer to this phenomenon as the
“weakly bound effect” throughout the remainder of this paper.
This effect is the main reason behind the large energy split of
approximately −500 keV for 32S, which is comparable to the
energy splits resulting from the use of the Slater approxima-
tion within the Skyrme HF framework, as studied in Ref. [28].
Therefore, special attention must be paid to the inclusion of
this nucleus for our analyses in the following subsection. The
impact on the two calcium isotopes (40Ca, 48Ca) is also quite
significant, approximately −100 keV, while the impact for the
other cases is less than 50 keV in magnitude.

B. Test of charge density models

Due to its discontinuity and nondifferentiability, the uni-
form distribution is not suitable for calculating the Coulomb
exchange term within any existing approximations. To ensure
an equal footing for evaluating the Coulomb potential for this
hypothetical distribution, as well as the other charge density
models listed in Sec. IV, the Coulomb exchange term will be
omitted from our study in this subsection. As shown in the
previous subsection, the absence of the Coulomb exchange
term does not significantly affect the energy splits induced by
the differences in the charge density data (
EFB

SOG), even for
32S, where � is as large as 0.209%.

Here, we use the averaged proton energies between
the FB and SOG values as a reference (denoted as ĒR),
against which the results obtained for a given charge density
model are compared. As an exception, only the FB data
are used for 209Bi, as a SOG analysis has not been carried
out for this isotope. The proton energies evaluated with the
uniform distribution, the 2pF function, and the microscopic
Skyrme-HF charge density are denoted as EUnif , E2pF ,
and EHF , respectively.1 Our results for the proton energy

1EHF denotes the proton single-particle energies evaluated with the
WS potential as a nuclear component and the charge density obtained
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TABLE I. Differences in proton single-particle energies induced by discrepancies between the FB and SOG charge density data, (
EFB
SOG =

EFB − ESOG). The calculation without the Coulomb exchange term is labeled as ‘Direct’, while those performed using the GGA and the Slater
approximation are labeled as ‘GGA’ and ‘Slater’, respectively. All values are given in keV units.

Orbital Direct Slater GGA Direct Slater GGA Direct Slater GGA Direct Slater GGA Direct Slater GGA

16O 28Si 32S 40Ca 48Ca
2p3/2 −78 −80 −71
1 f7/2 −59 −58 −53 −74 −73 −66
1d3/2 −25 −26 −20 −452 −452 −452 −75 −72 −70 −94 −91 −86
2s1/2 −28 −28 −20 −462 −462 −462 −82 −81 −76 −102 −100 −95
1d5/2 2 3 0 −28 −27 −23 −460 −460 −460 −75 −73 −70 −92 −88 −84
1p1/2 4 3 3 −36 −34 −33 −514 −514 −514 −96 −91 −91 −115 −110 −108
1p3/2 4 4 3 −36 −34 −32 −511 −511 −511 −94 −90 −89 −112 −107 −105
1s1/2 8 7 6 −46 −43 −42 −570 −570 −570 −118 −112 −111 −138 −130 −130

54Ni 205Tl 206Pb 208Pb 209Bi

2 f5/2 −13 −14 −14 −16 −18 −16 −18 −19
2 f7/2 −13 −14 −13 −17 −19 −19 −18 −19 −19
1h9/2 −12 −13 −12 −16 −17 −18 −16 −17 −17
3s1/2 −17 −17 −18 −21 −22 −23 −21 −22 −22
2d3/2 −16 −16 −16 −20 −21 −21 −20 −21 −21
1g7/2 −13 −14 −13 −18 −19 −19 −18 −18 −19
2d5/2 −16 −15 −16 −20 −21 −21 −20 −21 −21
1h11/2 −11 −11 −12 −15 −16 −17 −16 −16 −16
1g9/2 −12 −12 −13 −17 −17 −18 −17 −18 −18
1 f5/2 −14 −14 −15 −20 −20 −21 −20 −20 −21
2p1/2 29 30 27 −18 −18 −19 −23 −23 −24 −22 −23 −24
2p3/2 31 32 29 −18 −18 −18 −22 −24 −24 −23 −24 −23
1 f7/2 30 29 27 −13 −14 −14 −19 −19 −27 −23 −19 −19
1d3/2 37 35 34 −16 −16 −16 −22 −22 −23 −22 −22 −22
2s1/2 40 39 38 −20 −20 −20 −25 −26 −27 −25 −25 −27
1d5/2 36 34 34 −16 −15 −16 −21 −21 −22 −21 −21 −21
1p1/2 44 42 42 −17 −18 −18 −24 −25 −25 −23 −24 −24
1p3/2 43 41 41 −18 −17 −17 −23 −24 −24 −23 −23 −24
1s1/2 52 50 49 −20 −20 −20 −26 −27 −27 −27 −26 −27

differences, including 
EUnif
R = EUnif − ĒR, 
E2pF

R =
E2pF − ĒR, and 
EHF

R = EHF − ĒR, are given in Table II.
We note that the energy differences obtained in this sub-

section for all charge-density models are generally small in
magnitude. In most cases, their magnitude is only a few tens of
keV larger than those induced by the experimental uncertain-
ties obtained in the previous subsection (
EFB

SOG). The values
obtained for 32S are somewhat larger compared to the other
nuclei and are positive for all bound orbitals due to the large
uncertainties in the model-independent data for charge density
and an additional enhancement caused by the weakly bound
effect. However, it is evident that all selected charge density
models provide similar accuracy for proton single-particle
energies. Notably, the microscopic Skyrme-HF calculation
of charge density performs adequately, despite the various
deficiencies related to isospin-symmetry breaking discussed
in Ref. [14]. Generally, calculations using the uniform distri-
bution or the 2pF function are strongly parameter-dependent.

from the microscopic Skyrme-HF calculation as an input for the
Coulomb potential. It should not be confused with the eigenvalues
of the HF mean field.

For instance, if the Coulomb radius is parametrized as RC ≈
1.26 fm × (A − 1)

1
3 , as is typical, considerably larger pro-

ton single-particle energy differences are obtained in many
cases. Similarly, problems were also observed within the 2pF
function. Consequently, it is necessary to constrain their pa-
rameters using relevant experimental data if these distribution
functions are chosen as charge density models.

C. Test of Coulomb functionals

The present subsection is primarily focused on compensat-
ing for the omission of the Coulomb exchange term, which
is unavoidable when using the uniform distribution for the
charge density. We are specifically interested in the method
employed in Eq. (1), where the last proton’s contribution to
the Coulomb direct term is excluded. To verify this traditional
idea of the self-interaction correction, it is instructive to per-
form an analytic analysis of its impact before discussing the
numerical results.

Since the Coulomb direct term (9) is linear in charge den-
sity, it can be written as follows:

Vdir
[
ρZ

ch

] = Vdir
[
ρZ−1

ch

] + Vdir
[
ρ1

ch

]
. (30)
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FIG. 2. Averaged proton single-particle energies between the refined FB and SOG data for the charge density. The Coulomb exchange
term is evaluated with the GGA, and the spin-orbit interaction is included in the calculation.

Here, ρZ
ch represents the total charge density, which can be

decomposed into

ρZ
ch = ρZ−1

ch + ρ1
ch, (31)

where ρ1
ch is the contribution of the last proton and ρZ−1

ch is the
contribution of the remaining Z − 1 protons. To gain a better
insight into the functional structure of the Coulomb direct
term, we make the additional assumption that ρZ

ch and ρZ−1
ch

have identical radial forms and differ from each other only by
the normalization condition. Specifically, ρZ

ch is normalized to
Z , whereas ρZ−1

ch is normalized to Z − 1. This assumption is
equivalent to considering that each proton has an equal contri-
bution to the total charge density. Subsequently, the following
relations can be derived:

ρZ−1
ch =

(
Z − 1

Z

)
ρZ

ch = (Z − 1)ρ1
ch. (32)

Because of the linearity, the corresponding Coulomb direct
terms can be evaluated as

Vdir
[
ρZ−1

ch

] =
(

Z − 1

Z

)
Vdir

[
ρZ

ch

] = (Z − 1)Vdir
[
ρ1

ch

]
. (33)

Based on this assumption, the self-interaction correction
discussed above can be implemented simply by replacing
Vdir[ρZ

ch] with Vdir[ρZ
ch] × (Z − 1)/Z . Notably, the Coulomb

potential in Eq. (1) fully satisfies these properties with ρZ
ch be-

ing the uniform distribution. An interesting observation is that
the factor (Z − 1)/Z approaches 1 as Z approaches infinity,
indicating that this correction has the greatest effect in light
nuclei. We found that this replacement leads to lower proton
energy levels, by about 500 keV in 16O and 200 keV in 208Pb,
relative to the levels obtained with the pure Coulomb direct
term Vdir[ρZ

ch].
Throughout this subsection, the Coulomb functional ob-

tained in this way will be referred to as “traditional
functional”. To numerically test this traditional approach, it is
useful to decompose the proton energy difference for a given
orbital as follows:


ET
F = 
ET

G + 
EG
S + 
ES

F , (34)

where 
ET
F is defined as the single-particle energy difference

between the traditional functional and the exact Fock term.
On the right-hand side, 
ET

G , 
EG
S , and 
ES

F are, respec-
tively, the single-particle energy differences of the traditional
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TABLE II. Proton single-particle energy differences induced by the deviations of the charge-density models relative to the model-
independent data. 
EUnif

R , 
E 2pF
R , and 
EHF

R correspond to the uniform distribution, the 2pF function, and the Skyrme-HF calculation of
charge density, respectively (see Sec. V B for a detailed description). The Coulomb exchange potential is excluded in these calculations. All
values are given in keV units.

Orbital 
EUnif
R 
E 2pF

R 
EHF
R 
EUnif

R 
E 2pF
R 
EHF

R 
EUnif
R 
E 2pF

R 
EHF
R 
EUnif

R 
E 2pF
R 
EHF

R 
EUnif
R 
E 2pF

R 
EHF
R

16O 28Si 32S 40Ca 48Ca
2p3/2 −4 7 11
1 f7/2 73 6 46 113 13 13
1d3/2 29 −18 23 667 631 693 35 8 47 85 24 5
2s1/2 −69 −34 3 540 599 694 −72 −17 48 −6 19 8
1d5/2 −1 −22 −10 33 −16 24 689 651 712 42 8 47 93 22 5
1p1/2 −40 −21 −30 −38 −22 13 682 726 804 −41 3 47 34 34 −5
1p3/2 −42 −20 −32 −32 −21 15 689 725 801 −31 4 47 43 32 −3
1s1/2 −144 −17 −60 −159 −37 −8 618 783 894 −158 −12 48 −50 40 −10

54Ni 205Tl 206Pb 208Pb 209Bi
2 f5/2 −70 −48 −15 −37 −72 −9 −55 −42 20

2 f7/2 −78 −50 −18 −62 −46 2 −46 −74 −11 −64 −44 18
1h9/2 41 −46 −8 63 −39 3 84 −59 −9 58 −38 15
3s1/2 −122 −31 −33 −120 −40 5 −109 −74 −9 −116 −33 30
2d3/2 −83 −42 −23 −69 −42 1 −56 −72 −12 −70 −38 20
1g7/2 20 −47 −15 41 −39 −2 59 −63 −15 35 −40 10
2d5/2 −91 −44 −25 −78 −41 −1 −63 −73 −13 −78 −39 20
1h11/2 59 −45 −2 81 −38 8 105 −56 −3 76 −38 18
1g9/2 41 −46 −9 63 −39 3 84 −60 −10 57 −39 14
1 f5/2 −10 −47 −23 10 −41 −7 26 −68 −21 5 −40 9
2p1/2 −36 −8 37 −104 −34 −32 −94 −36 0 −84 −73 −16 −92 −31 24
2p3/2 −42 −6 36 −108 −35 −33 −99 −37 −1 −88 −73 −15 −97 −32 24
1 f7/2 90 5 49 14 −46 −16 38 −35 2 53 −64 −17 29 −40 10
1d3/2 45 9 47 −48 −48 −30 −28 −41 −11 −16 −73 −27 −34 −42 6
2s1/2 −52 3 40 −130 −24 −43 −128 −32 0 −122 −73 −17 −124 −25 29
1d5/2 57 9 46 −26 −47 −26 −6 −41 −8 9 −70 −23 −11 −40 8
1p1/2 −23 11 41 −97 −47 −40 −79 −41 −14 −70 −79 −31 −82 −40 7
1p3/2 −9 11 43 −79 −46 −35 −62 −41 −12 −52 −77 −29 −66 −40 7
1s1/2 −120 11 35 −152 −40 −49 −141 −39 −14 −136 −84 −32 −141 −37 11

treatment relative to GGA, GGA relative to the Slater approx-
imation, and the Slater approximation relative to the exact
Fock term. Explicitly, 
ET

F = ET − EF , 
ET
G = ET − EG,


EG
S = EG − ES , and 
ES

F = ES − EF . As the uniform dis-
tribution is inappropriate for the evaluation of the Coulomb
exchange term, the 2pF function will be selected instead for
this test.

We notice that no exact treatment of the Coulomb exchange
term is performed in the present work, so the data of 
ES

F for
16O, 40Ca, 48Ni, and 208Pb are taken from Ref. [28]. Since
the mass dependence of 
ES

F is not strong, it is reasonable
to use the values obtained for 40Ca for 28Si, 32S, and 48Ca
which were not considered in Ref. [28] as they reside in the
neighboring region in the nuclear chart. Similarly, we use
the 
ES

F values obtained for 208Pb for the remaining nuclei.
One may argue here that 
ES

F may depend on the nuclear
component as well as the method for solving the Schrödinger
equation, or they may vary significantly when transferring
from a self-consistent to a phenomenological mean field.
We have checked such a dependence by examining the term

EG

S , which can be evaluated within either the self-consistent

mean-field framework or the phenomenological one with an
externally supplied charge density. Our findings indicate that
the values of 
EG

S obtained for 208Pb within the WS potential
as a nuclear component fall within the range between −1
and 19 keV (see Table III). These numbers show excellent
agreement with those calculated within the self-consistent
Skyrme-HF method discussed in Ref. [21]. Therefore, a simi-
lar level of agreement can be expected for the term 
ES

F .
Our numerical results for 
ET

F , 
ET
G , and 
EG

S are pre-
sented in Table III. It can be observed that in light nuclei
(around Z = 8), negative 
ET

G values are obtained, indicating
that the traditional self-interaction correction is stronger than
the GGA exchange term. As the atomic number increases
beyond Z = 8, 
ET

G gradually raises and eventually satu-
rates around 300 keV at approximately Z = 80. Interestingly,
the functional-driven energy differences show insensitivity
to weakly bound effects, as the values obtained for 32S do
not differ significantly from those of neighboring nuclei,
as observed in the two previous subsections. By combining
these values with those of 
ES

F obtained from the above-
cited self-consistent calculations, we find that the total energy
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TABLE III. Numerical results for 
ET
G , 
EG

S , and 
ET
F (see Sec. V C for a detailed description). The total energy difference, 
ET

F , is
deduced via Eq. (34) using the data for 
ES

F taken from Ref. [28]. All these calculations employ the 2pF function for the charge density. All
values are given in keV.

Orbital 
ET
G 
EG

S 
ET
F 
ET

G 
EG
S 
ET

F 
ET
G 
EG

S 
ET
F 
ET

G 
EG
S 
ET

F 
ET
G 
EG

S 
ET
F

16O 28Si 32S 40Ca 48Ca
2p3/2 22 14 −128
1 f7/2 87 −13 −84 95 −14 −77
1d3/2 34 −11 225 70 −16 256 119 −20 301 126 −23 305
2s1/2 −14 8 188 20 4 218 71 −3 262 79 −5 268
1d5/2 −82 2 −254 52 −16 242 83 −20 269 125 −22 309 126 −23 309
1p1/2 −35 −17 178 81 −24 432 106 −25 456 141 −23 493 141 −23 493
1p3/2 −26 −21 193 84 −25 437 107 −25 460 141 −24 495 142 −25 495
1s1/2 −5 −31 395 86 −23 561 105 −21 582 135 −17 616 137 −18 617

48Ni 205Tl 206Pb 208Pb 209Bi
1h9/2 278 −18 136 280 −18 138 280 −19 137 281 −18 139
3s1/2 228 −1 366 231 −1 369 231 −2 368 232 −1 370
2d3/2 247 −7 382 248 −6 384 249 −7 384 250 −7 385
1g7/2 289 −18 427 290 −18 428 290 −18 428 291 −18 429
2d5/2 244 −5 395 245 −5 396 246 −6 396 247 −6 397
1h11/2 271 −19 393 273 −19 395 273 −19 395 275 −20 396
1g9/2 283 −20 530 284 −19 532 284 −19 532 286 −20 533
1 f5/2 294 −17 572 295 −16 574 294 −16 573 296 −16 575
2p1/2 263 −11 528 265 −10 531 265 −11 530 267 −11 532
2p3/2 74 12 228 261 −10 537 262 −9 539 262 −10 538 264 −10 540
1 f7/2 148 −14 309 290 −18 625 291 −18 626 291 −18 626 292 −18 627
1d3/2 177 −20 355 294 −14 675 296 −14 677 295 −14 676 296 −14 677
2s1/2 133 −6 330 272 −11 643 273 −11 644 272 −11 643 274 −11 645
1d5/2 176 −21 479 293 −15 699 295 −16 700 294 −15 700 296 −16 701
1p1/2 189 −20 554 291 −10 750 293 −10 752 292 −10 751 294 −10 753
1p3/2 188 −21 594 292 −12 757 294 −12 759 292 −11 758 293 −11 759
1s1/2 183 −14 676 285 −8 797 287 −8 799 286 −7 799 287 −7 800

differences between the traditional correction and the exact
treatment range from −130 to 620 keV for light nuclei, and
from 136 to 800 keV for heavier nuclei. If the energy dif-
ferences induced by the charge density differences are added
together, a larger overall discrepancy is expected. Conse-
quently, the expression Eq. (1) for the Coulomb potential
should not be used for high precision calculations, such as the
shell-model description of isospin-symmetry breaking.

VI. CONCLUSION

As part of our endeavor to improve the shell-model de-
scription of the isospin-symmetry breaking correction to
superallowed 0+ → 0+ Fermi β-decay rates [5], we con-
ducted a comprehensive and detailed investigation of the
Coulomb term within the phenomenological Woods-Saxon
(WS) potential. This study is divided into two main parts,
each focusing on a different aspect of the Coulomb poten-
tial. The first part involves the selection of an appropriate
input charge density, while the second part is dedicated to
the examination of the Coulomb functional. In the first part,
we performed a comparative test of the Coulomb term us-
ing various charge density models. These models include the
conventional uniform distribution, the 2pF function, and the
microscopic self-consistent Skyrme-Hartree-Fock (HF) calcu-

lation of the proton density, folded with the electromagnetic
form factors of the proton. We observed that the differences
between the proton single-particle energies obtained with
these charge-density models and those resulting from the
model-independent data are relatively small. In most cases,
these differences are less than 100 keV. However, there is a
notable exception for 32S, which exhibits a high sensitivity to
even small variations in the potential when the last occupied
state is fully filled and lacks a centrifugal barrier. While the
Coulomb-induced components in proton single-particle ener-
gies obtained using the uniform distribution and the 2pF func-
tion demonstrate remarkable accuracy, it is important to note
that these quantities are generally strongly dependent on the
chosen parameters. As a result, it is highly advisable to care-
fully constrain the parameters of these charge density models
case by case by utilizing available experimental data on charge
radii, as exemplified in this study. Alternatively, for more
reliable and consistent results, the microscopic self-consistent
Skyrme-HF calculation of charge density should be employed.

In the second part of our investigation, we thoroughly
examined the traditional approach used to compensate for the
exclusion of the Coulomb exchange term when the uniform
distribution is chosen as a charge density model. We found
that this compensation can be achieved simply by multi-
plying the Coulomb direct term with the factor (Z − 1)/Z ,
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making it effectively a variation of the Coulomb functional.
By combining our numerical results with data from the self-
consistent Skyrme-HF calculation in Ref. [28], we discovered
that the proton energy levels obtained with this traditional
functional are underbound by 100–800 keV for nuclei with
Z � 28, relative to those obtained with an exact treatment of
the Coulomb exchange term. Conversely, the opposite pat-
tern tends to appear in the lighter Z region, where the factor
(Z − 1)/Z reduces significantly from unity. For example, the
1d5/2 level in 16O obtained with the traditional functional is
overbound by 254 keV. We were aware that making a direct
comparison of single-particle energies between WS and HF
calculations is not recommended, especially when examin-
ing small effects such as Coulomb repulsion. In this paper,
we adopted an indirect approach for comparison, where we
focused solely on the energy differences between the Slater
functional and the exact Coulomb exchange. These energy
differences are expected to be free from nuclear effects and
were extracted from an existing Skyrme-HF calculation. By
using this method, we were able to analyze the impact of the
Coulomb exchange term in the context of the WS potential
and its accuracy for describing nuclear structure phenomena.
Furthermore, our results indicate that the functional-driven

energy differences are relatively insensitive to the weakly-
bound effect. Even in the case of 32S, where this effect is
expected to be strongest, the values obtained do not differ
significantly from those of its neighboring nuclei.

In conclusion, the use of Eq. (1) for precision calculations
is not recommended due to the significant discrepancies it
introduces in the proton energy levels. Instead, a more reliable
approach involves evaluating the Coulomb term of the Woods-
Saxon potential using a realistic charge density model, such
as the 2pF function or a self-consistent Skyrme-HF calcula-
tion. Additionally, a fundamental approach for the Coulomb
exchange functional, such as the Slater approximation or the
GGA, should be incorporated to ensure accurate results. By
adopting these methods, more precise and reliable calcula-
tions can be achieved for nuclear structure studies, particularly
when dealing with the isospin-symmetry breaking correction
to superallowed 0+ → 0+ Fermi β-decay rates.
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