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Background: The structure and dynamics of many-body systems are the result of a delicate interplay between
underlying interactions. Fermionic pairing, for example, plays a central role in various physical systems, ranging
from condensed matter to nuclear systems, where it can lead to collective phenomena such as superconductivity
and superfluidity. In atomic nuclei, the interplay between pairing and particle-hole interactions leads to a high
degree of complexity and intricate entanglement structures. Despite this apparent complexity, symmetries emerge
and manifest themselves in observable regular patterns. These symmetries and their breakings have long been
used to determine relevant degrees of freedom and simplify classical descriptions of many-body systems.
Purpose: This work explores the potential utility of quantum computers with arrays of qudits in simulating
interacting fermionic systems, when the qudits can naturally map the relevant degrees of freedom determined by
an underlying symmetry group.
Method: The Agassi model of fermions interacting via particle-hole and pairing interactions is based on an
underlying so(5) algebra. Such systems can intuitively be partitioned into pairs of modes with five basis states,
which thus naturally map to arrays of d = 5 qudits (qu5its). Classical noiseless simulations of the time evolution
of systems with up to twelve qu5its are performed, by implementing quantum circuits that are developed herein,
using PYTHON codes invoking Google’s CIRQ software. The resource requirements of the qu5it circuits are
analyzed and compared with two different mappings to qubit systems: a physics-aware Jordan-Wigner mapping
requiring four qubits per mode pair and a state-to-state mapping requiring three qubits per mode pair.
Results: While the dimensionality of Hilbert spaces in mappings to qu5it systems are less than those for the
corresponding qubit systems, the number of entangling operations, depending on the available hardware, can
either be greater or smaller than for the physics-aware Jordan-Wigner mapping. The state-to-state mapping, while
having a smaller Hilbert space than Jordan-Wigner mappings, appears to be the least efficient in gate counts.
Further, a previously unknown sign problem has been identified from Trotterization errors in time evolving
high-energy excitations.
Conclusions: There appear to be advantages in employing quantum computers with arrays of qudits to perform
simulations of many-body dynamics that exploit the role of underlying symmetries, specifically in lowering the
required quantum resources and in reducing anticipated errors that take the simulation out of the physical space.
If the necessary entangling gates are not directly supported by the hardware, physics-aware mappings to qubits
may, however, be advantageous for other aspects.
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I. INTRODUCTION

Pairing of fermionic particles plays a special role in the
structure and dynamics of quantum many-body systems of
physical importance in our everyday lives. This phenomenon
provides the underlying mechanism responsible for super-
conductivity and superfluidity [1–3], and it is crucial to the
description of exotic materials [4–7], structure, reaction, and
decay properties of nuclei [8], and matter at extreme densi-
ties [9]. Such systems are typically challenging to simulate
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with classical computers due to their fundamentally quantum
nature, and the role that entanglement and quantum corre-
lations play in their structure; see, for example, Ref. [10].
From a nuclear physics perspective, there is growing interest
in better understanding the entanglement structure of hadrons
and nuclei [11–40], with the potential to advance our ability
to compute the properties and dynamics of nuclear many-
body systems through entanglement reorganization [25,38].
This is driven, in part, by the emergence of early quantum
computers and simulators, and their accessibility to domain
scientists who, in co-design partnership with quantum infor-
mation scientists, are progressing toward understanding the
capabilities, algorithms, and software required to establish a
quantum advantage for scientific applications. The capabili-
ties that quantum computers offer beyond classical computing
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are the control of entanglement and coherence, the same ele-
ments that limit classical simulations of quantum many-body
systems, including those involving fermionic pairing.

Various quantum algorithms aiming at solving fermionic
pairing Hamiltonians have been proposed in symmetry-
breaking plus restoration frameworks and particle-number
preserving approaches at zero [41–45] and finite temperature
[46]. In addition to pairing phenomena, nuclei also display
important particle-hole correlations. The Agassi model [47],
which we have chosen to study in this work, is an exactly solv-
able model which, in part, reveals the interplay between the
pairing force and particle-hole interactions of the monopole-
monopole type. This model constitutes an extension of the
Lipkin-Meshkov-Glick (LMG) model [48], which was ini-
tially formulated in the context of nuclear physics studies. The
LMG model can be considered to be a system of spin- 1

2 parti-
cles distributed on a simplex in the presence of a background
magnetic field and with equal strength interactions that create
and annihilate even numbers of particle-hole pairs. The occu-
pation of each mode is fixed, and particles can be promoted
or demoted within a mode by the action of the interactions.
The LMG model has also been the subject of a large number
of studies in condensed matter, as it was subsequently found
to be relevant for describing the Josephson effect [49] and
two-mode Bose-Einstein condensates [50]. Further, a more
general class of LMG models are known to provide a means
to prepare spin-squeezed states [51] through time evolution
away from a tensor-product state, of utility in quantum sensing
[52–54]. These many features have motivated intense work
aiming at investigating the entanglement properties of the
LMG model, in particular the entanglement and quantum
correlations of the ground state near the phase transitions (see,
e.g., Refs. [35,55–61]), as well as the dynamics of entangle-
ment measures [50]. Given that the building blocks of the
model are SU(2) spins, it has been the focus of recent studies
using currently available simulators and quantum computers
to determine ground-state energies using the variational quan-
tum eigensolver (VQE) [62,63], or ADAPT-VQE [64] with
different wave-function Ansätze. Recently, we have shown
[38] that the LMG model can be efficiently implemented
throughout much of the Hilbert space via rearrangement of
entanglement induced by global SU(2) rotations. The rotation
angle can be learned in the VQE process of determining the
ground state, with the Hamiltonian learning VQE (HL-VQE)
that we introduced in Ref. [38], for a given truncation of
the model space. Exponential convergence was demonstrated
throughout large fractions of the Hilbert space [38]. Further,
recent work used the quantum equation of motion (qEOM)
algorithm [65], a modification of VQE, to determine excited
states in the LMG model [66].

The importance of pairing in nuclear physics, and other
areas, motivated an extension to the LMG model by the in-
clusion of a pairing term, known as the Agassi model. In
this model, pairs of particles from mode pairs can scatter
by changing both their states within the mode pair, or can
scatter into pairs of unoccupied states in other mode pairs.
As a result, this model has a more interesting phase diagram
than the LMG model. Specifically, with two dimensionless
parameters, this model has a phase diagram that exhibits a

spherical phase, a deformed phase, and a superfluid Bardeen-
Cooper-Schrieffer (BCS) phase [67,68]. The nature of the
pairing interaction is such that the number of particles is
preserved throughout time evolution, and a five-dimensional
Hilbert space is required for an even number of particles in
two modes, forming the fundamental representation of an
SO(5) symmetry in the absence of interactions. Generally
speaking, models exhibiting an SO(5) symmetry are ubiqui-
tous in quantum many-body physics; see, e.g., Refs. [5,69].

Having recognized the potential role of future quantum
simulations in advancing our understanding of such pairing
models and establishing their predictive capabilities, the first
pioneering works on simulating the dynamics of the Agassi
model for small systems were recently performed [70,71].
In those works, a Jordan-Wigner (JW) mapping was used to
simulate systems with two and four modes using one qubit
per site to define its occupation, without appealing to their
inherent SO(5) symmetries. In the present work, we find
advantages in making use of the SO(5) symmetry in map-
ping pairs of modes (four sites) to five-dimensional qudits
(which we call qu5its), to enable more efficient quantum
simulations of such systems. While qubits form the quan-
tum registers of many digital quantum computers that are
presently available, significant progress is being made toward
qudit quantum registers, particularly using superconducting
radio frequency (SRF) cavities [72,73], superconducting qudit
devices [74–81], nitrogen vacancy (NV) centers in diamond
[82–84], and most recently trapped ion quantum computers
[85–88]. There are well-known motivations for advancing
beyond qubits to qudits, including in computation [89–94],
cryptography [95,96], and error correction [97–99]. We ex-
pect that early arrays of qu5its will become available in the
near future, at which point simulations of the Agassi model
can be performed using qu5its. In another arena, the utility
of qudit systems in simulating (non-)Abelian lattice gauge
theories, including lattice QCD, is being explored (see, e.g.,
Refs. [100–104]), where the qudits provide a commensurate
Hilbert space for each truncated gauge link space. Further,
the LMG model, which described the dynamics of systems
of coupled spin- 1

2 particles or spins, simulated with arrays
of qubits, has been generalized to systems of coupled spin-d
particles or spins simulated with arrays of qudits [105].

We note that the Agassi model, or pairing-plus-monopole
model, is one physical interpretation of the so(5) [sp(4)]
algebra. As is well known, there are at least two other interpre-
tations of this algebra, which lead to other models of interest
for nuclear physics; see, e.g., Refs. [69,106,107]. These
include the charge-independent pairing model [108,109] de-
scribing like-particle and proton-neutron pairing coupled to
total isospin T = 1, and the vibration-rotation model in two
dimensions. In each of these models the Hamiltonian is de-
scribed by a subset of the generators of SO(5), and different
subalgebras correspond to the limits of the model. Although
in this work we restrict ourselves to the Agassi model, the
techniques developed here can also be applied to these other
interpretations of the SO(5) symmetry group.

This paper is organized as follows. In Sec. II, the main
aspects of the Agassi model are reviewed. In Sec. III, quan-
tum circuits for preparing initial states on a qu5it register,
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FIG. 1. The lowest-energy noninteracting (0p-0h) configuration
of a system of � particles in the LMG model.

and for a subsequent Trotterized time evolution [110], are
constructed. Results obtained from classical simulations of the
time evolution of systems up to 24 modes, using Mathematica,
JULIA, and PYTHON code built on CIRQ’s qudit capabilities, are
presented. In Sec. IV, the complexity of the quantum circuits
for qu5its are compared to those of circuits using mappings
onto qubits.

II. THE AGASSI MODEL: LIPKIN-MESHKOV-GLICK
HAMILTONIAN, PAIRING INTERACTIONS,

AND SO(5) SYMMETRY

In this section, we review the Agassi model, starting from
the limit without pairing, which constitutes the LMG model.
The low-lying energy spectra of the Agassi model are ex-
amined for selected sets of Hamiltonian couplings, given in
Table IV, to establish the inputs for quantum simulations with
both qubits and qu5its.

A. The Lipkin-Meshkov-Glick model

In its original formulation, the LMG model [48] describes
a system of N = � fermions, each distributed on two lev-
els with energy ±ε/2, as shown in Fig. 1. We denote the
single-particle states (“sites”) by (k, σ ), where σ = ↑,↓
refers to the upper and lower levels, respectively, and k =
±1,±2, . . . ,±�/2 denotes the modes. The Hamiltonian1

governing the system is

Ĥ = ε

2

∑
k

(ĉ†
k,↑ĉk,↑ − ĉ†

k,↓ĉk,↓)

− V

2

∑
k,k′

(ĉ†
k,↑ĉ†

k′,↑ĉk′,↓ĉk,↓ + ĉ†
k,↓ĉ†

k′,↓ĉk′,↑ĉk,↑), (1)

where the operators ĉ†
k,σ

and ĉk,σ create and destroy a particle
in level σ of state k, respectively. The first term accounts for
the single-particle energies, while the interaction term scatters
particles from the lower to the upper level, or vice versa,
within the same modes. Each of the particles interact with
equal strength with the others [50,56]. This is illustrated in
Fig. 1, which shows the lowest-energy, or “zero-particle–zero-
hole” (0p-0h), non-interacting configuration of the system.

The LMG model can be mapped into a system of N inter-
acting spins in a background magnetic field by introducing the

1The LMG Hamiltonian in principle also contains a “swap” term
that can lower a particle from (k, ↑) to (k, ↓) while exciting another
from (k′, ↓) to (k′,↑). We do not include this term as it does not
appear in the Agassi model [47].

collective spin operators

Ŝz = 1

2

�/2∑
k=−�/2

(ĉ†
k,↑ĉk,↑ − ĉ†

k,↓ĉk,↓) =
�/2∑

k=−�/2

Ŝk,z,

Ŝ+ =
�/2∑

k=−�/2

ĉ†
k,↑ĉk,↓ =

�/2∑
k=−�/2

Ŝk,+, (2)

Ŝ− = (Ŝ+)†,

transforming in the adjoint representation of SU(2). The
Hamiltonian in Eq. (1) can then be written as

Ĥ = εŜz − V

2
(Ŝ2

+ + Ŝ2
−). (3)

B. The Agassi model and SO(5) Symmetry

The Agassi model [47] adds a pairing interaction to the
previous LMG model, with a Hamiltonian of the form

Ĥ = εŜz − V

2
(Ŝ2

+ + Ŝ2
−) − gB̂†B̂. (4)

It is convenient to write the collective operators in Eq. (4) in
terms of operators acting on pairs of modes (k,−k),

Ŝα =
�/2∑
k=1

T̂k,α, B̂ =
�/2∑
k=1

(b̂k,↑ + b̂k,↓), (5)

with

T̂k,+ = ĉ†
k,↑ĉk,↓ + ĉ†

−k,↑ĉ−k,↓, T̂k,− = T̂ †
k,+,

T̂k,z = 1

2
(ĉ†

k,↑ĉk,↑ + ĉ†
−k,↑ĉ−k,↑ − ĉ†

k,↓ĉk,↓ − ĉ†
−k,↓ĉ−k,↓),

b̂k,↑ = ĉ−k,↑ĉk,↑, b̂k,↓ = ĉ−k,↓ĉk,↓, (6)

b̂k,z = 1√
2

(ĉ−k,↑ĉk,↓ + ĉ−k,↓ĉk,↑),

N̂k = ĉ†
k,↑ĉk,↑ + ĉ†

−k,↑ĉ−k,↑ + ĉ†
k,↓ĉk,↓ + ĉ†

−k,↓ĉ−k,↓,

which, along with b̂†
k,↑, b̂†

k,↓ and b̂†
k,z, constitute a set of ten

generators of SO(5) (see Appendix A). The additional pairing
term, with coupling constant g, furnishes interactions such as
ĉk,↓ĉ−k,↓(ĉq,↓ĉ−q,↓)† and ĉk,↑ĉ−k,↑(ĉk′,↓ĉ−k′,↓)†, which, unlike
the LMG model, can change the occupation number of a given
mode. As in the LMG model, the Agassi model has all modes
interacting with equal strength, and hence there is no intrinsic
concept of distance.

A five-dimensional set of basis states supporting a wave
function on one pair of modes (k,−k) can be defined in terms
of single-particle occupation numbers as

|nk↓, nk↑, n−k↓, n−k↑〉

∈
{
|0000〉, |1010〉, 1√

2
(|0110〉 + |1001〉),

|0101〉, |1111〉
}

= {|0〉, |1〉, |2〉, |3〉, |4〉}, (7)
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FIG. 2. Basis states for a wave function of one pair of modes
(k, −k), as defined in Eq. (7).

which form a fundamental representation of SO(5) gener-
ated by the operators in Eq. (6). The basis states in Eq. (7)
are schematically represented in Fig. 2. Each of them has
a well defined particle number (0,2,2,2,4), pair number
(0,1,0,1,2), third component of spin (0,−1, 0, 1, 0), and par-
ity (1, 1,−1, 1, 1).

The phase diagram of the Agassi model is interesting, and
has been previously investigated via mean-field calculations
of the ground state in the N = � sector; see, for example,
Refs. [67,68]. The hierarchies in the parameters ε, V , and g
define the three phases of the system: a symmetric phase, for
which a spherical mean-field description is adapted, and two
symmetry-broken phases, a deformed phase (parity-broken)
and a superfluid BCS phase. It has been found helpful to form
dimensionless parameters when discussing the structure of the
theory:

v̄ = (� − 1)V

ε
,

ḡ = (� − 1)g

ε
, ḡ0 = ḡ + V

ε
. (8)

In the large-� limit, the mean-field analysis has shown [67]
that, for v̄ < 1 and ḡ0 < 1, the system is in the symmet-
ric phase (spherical nonsuperfluid), and the ground state is
gapped below the excited states. For v̄ > 1 and ḡ0 < v̄, the
system is in a deformed phase, with a doubly degenerate
ground state of mixed parity, which is gapped to the excited
states. Finally, for v̄ < ḡ0, ḡ0 > 1, the system is in a BCS
phase, with degenerate states (having different particle num-
bers) that are gapped to excited states.

For the small- and modest-� systems that are solved ex-
actly in this work, the structures of the systems are found to
approach those of the large-� limit, modified by finite-size
effects. For v̄, ḡ0 � 1, as is the case in the large-� limit, the
system has an isolated even-parity ground state that is gapped
below excited states, with the wave function dominated by
a single configuration with all N particles in the lower spin
state, |1〉. For v̄ � ḡ0 � 1, there are two low-lying states of
opposite parity that are gapped to higher excited states, with
wave functions dominated by configurations where the par-
ticles occupy states |1〉, |2〉, |3〉. Finally, for v̄ � ḡ0, ḡ0 � 1,
there are two low-lying states of even parity that are gapped

to excited states, with wave functions dominated by configura-
tions with different particle numbers, where particles occupy
states |0〉, |1〉, |3〉, and |4〉. This phase structure has also been
investigated in terms of the quantum discord in Ref. [60].

In the quantum simulations performed in the next sections,
we select, for demonstrative purposes, the following numeri-
cal values of the couplings:

(ε,V, g) : set-0 = (1.0, 0.0, 0.0),

: set-1 = (1.0, 0.5, 0.5),

: set-2 = (1.0, 1.5, 0.5),

: set-3 = (1.0, 0.5, 1.5),

: set-4 = (1.0, 1.5, 1.5). (9)

Set-0 corresponds the noninteracting symmetric case. Set-1,
set-3 and set-4, lead to a superfluid phase for N = � > 2,
while set-2 corresponds to a deformed phase for N = � > 2.
As mentioned in, e.g., Ref. [70], the case � = 2 has only
one symmetry-broken phase (see also Sec. III A). In that case,
the system is in the symmetry-broken phase with parameters
set-2, set-3, and set-4, and at the critical point with set-1. In
Table IV of Appendix B we show the lowest-lying energies
of systems (specifically, the average energy per mode, Ei =
Ei/�) obtained with the aforementioned sets of couplings, for
� = 2, 4, 6, 8, in different particle-number sectors.

III. QUANTUM SIMULATIONS USING QU5ITS
(d = 5 QUDITS)

In the first pioneering quantum simulation of the Agassi
model [70], a JW mapping to qubits was employed to define
the occupation of each site in the Hilbert space of a four-site
(one-mode-pair) system. This simulation was able to describe
a two-particle system evolving throughout the 24 dimensional
Hilbert space, and was later expanded to four particles using
eight qubits [71]. With such a mapping, systems with 2�

sites, i.e., �/2 mode pairs, would be embedded into a 22�

dimensional space.
The basis for each pair of modes in Eq. (7) naturally em-

beds into a five-dimensional (d = 5) qudit—a “qu5it.” With
the expectation that qudit quantum computers become ac-
cessible in the near future, particularly, those that support
qu5its, we develop the quantum circuits required for qu5it
simulations and compare with equivalent circuits for qubit
systems. In developing quantum circuits for state preparation
and time evolution, it is most convenient to work with Givens
rotations between states within a qu5it, and tensor-products of
Givens rotations for entangling operations between qu5its. As
the Hamiltonian in Eq. (4) is quadratic in operations between
SO(5) irreps, establishing the quantum circuits for systems
of one- and two-mode-pair (qu5its) systems is sufficient for
generalizing to systems with arbitrary numbers of mode pairs.

Consequently, in this section we present qu5it circuits for
the preparation of arbitrary initial states and implementation
of their time evolution, for one- and two-mode-pair systems.
The generalization to higher number of mode pairs is dis-
cussed and implemented in simulators of arrays of qu5its,
with comparison to exact time evolution. For the numerical
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simulations performed using a qu5it simulator, as well as
exact matrix exponentiations, two tensor-product initial states
(that can be straightforwardly prepared) are employed. These
are

|ψ (0)〉A = |1〉⊗�/2,

|ψ (0)〉B = |4〉⊗�/4 ⊗ |0〉⊗�/4. (10)

Both of these states correspond to half-filled configurations,
meaning that the number of particles N equals the number of
modes �, which equals twice the number of qu5its Nq5. State
|ψ (0)〉A is the ground state of the noninteracting systems,
where all of the particles are in the spin-↓ single-particle
state. State |ψ (0)〉B, on the other hand, is the state in which
all of the particles are concentrated into half of the mode
pairs only, i.e., they occupy single-particle states (k, σ ) with
|k| = {1, . . . , �/4} and σ = {↑,↓}. |ψ (0)〉B energetically lies
far above the noninteracting ground state.

A. One mode pair (one qu5it)

The Hamiltonian for a single mode pair (� = 2) in the
basis in Eq. (7) is given by

Ĥ1 = εT̂z − (V + g)X̂13 − gN̂pairs, (11)

where T̂z is

Tz =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 −1 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (12)

N̂pairs is the operator that counts the number of pairs
[(1, σ ), (−1, σ )],

Npairs =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎠

, (13)

and the Givens operator X̂13 is

X13 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (14)

The indices of Xi j are defined by the labels of the states in
Eq. (7), i, j,∈ {0, 1, 2, 3, 4}.

1. State preparation of one qu5it

Preparing an initial state on a single qu5it is straightfor-
ward. Arbitrary transformations among the states of a qu5it
can be accomplished with SU(5) unitary operations, with the

associated 24 generators. For the SO(5) transformations rele-
vant for the LMG and Agassi models, this number is reduced
to 10. However, to prepare a real wave function from a given
initial state of a qu5it, only four parameters are required to
establish the five real numbers, one for each state in the
Hilbert space, subject to the probability constraint. Therefore,
the transformation matrices produced by the Givens operators
X̂01, X̂12, X̂23, X̂34, given in Appendix C, or any other span-
ning set, are sufficient to prepare any real initial state of a qu5it
from, say, |1〉:

|ψ〉 = e−iθ3X̂34 e−iθ2X̂23 e−iθ1X̂12 e−iθ0X̂01 |1〉. (15)

This same wave function parametrization of the single qu5it
can be used in finding the ground-state wave function, using,
for instance, VQE [111,112] or variants thereof [65,113–120],
by minimizing the ground-state energy with respect to the
θ0,1,2,3. The expression in Eq. (15) is a general form for initial-
izing a state, and it can be simplified by utilizing symmetries.
The number of particles is preserved in the time evolution of
the system, and, as such, if the device can be prepared in a
state of the target particle number, then the number of required
rotation angles can be reduced. For example, the states |0〉 and
|4〉 are the ground states of the N = 0 and N = 4 sectors of
one qu5it.

2. Time evolution of one qu5it

As is well known, the time evolution of a state prepared
on a qu5it can be evolved forward in time by application
of the evolution operator Û (t ) = e−it Ĥ . For the system we
are considering, the Hamiltonian is given in Eq. (11), and
involves contributions from two diagonal phase operators and
one Givens operator, X̂13. This evolution operator can be
determined exactly,

U (t ) =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 eigt (a(t ) + ib(t )) 0 ieigt c(t ) 0

0 0 1 0 0

0 ieigt c(t ) 0 eigt (a(t ) − ib(t )) 0

0 0 0 0 ei2gt

⎞
⎟⎟⎟⎟⎟⎠,

(16)

with

a(t ) = cos αt, b(t ) = β sin αt, c(t ) = γ sin αt,

α =
√

ε2 + (g + V )2, β = ε

α
, γ = g + V

α
. (17)

The exact time evolution of 〈Ŝz〉 and the amplitude for survival
of the ground state of one qu5it, prepared initially in state |1〉
[corresponding to |ψ (0)〉A in Eq. (10)], and obtained with the
parameter sets defined in Eq. (9), are shown in Fig. 3. The
Hamiltonian is such that state |1〉 only couples to state |3〉
under time evolution, causing the number of pairs to be time
independent in the � = 2 system. It is clear from Eqs. (11)
and (16) that the structure and dynamics of systems on a
single mode pair are governed by one dimensionless parame-
ter (g + V )/ε. Such systems thus only present two phases: a
symmetric phase for g + V < ε and a symmetry-broken phase
for g + V > ε. The sets of parameters set-2 and set-3 are thus
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FIG. 3. The exact time dependence of (a) |〈ψ (t )|ψ (0)〉|2 and
(b) 〈Ŝz〉 for a system with � = 2 starting in the initial state |ψ (0)〉A =
|1〉, for four sets of couplings, set-1 to set-4, given in Eq. (9).

equivalent, and the set-1 corresponds to the critical point of
phase transition.

Trotterization [110] of the evolution operator does not ex-
actly recover the form given in Eq. (16) because, although
[X̂13, N̂pairs] = [T̂z, N̂pairs] = 0, the operators X̂13 and T̂z do not
commute. More precisely,

[εT̂z − gN̂pairs,−(g + V )X̂13] = i2(g + V )ε Ŷ13,

Y13 = i

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 −1 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠.

(18)

As such, there will be Trotter errors in digitized time evolution
performed using quantum circuits, for which a leading-order
(LO) Trotterization can take the form

Û (t ) 
 [Û (
t )]nTrot ,

Û (
t ) 
 ei
t (g+V )X̂13 e−i
tεT̂z ei
tgN̂pairs , (19)

where 
t is the Trotter time step and nTrot = t/
t is the
number of steps.

B. Two mode pairs (two qu5its)

Systems with two or more mode pairs allow for the pos-
sibility of moving pairs of particles between modes, and for
the possibility of breaking pairs (through the monopole in-
teraction V ) while conserving the total number of particles.
This introduces a richness that is not present for a single mode
pair. Because there is an even number of fermions per mode
pair, mappings to systems with more that one qu5it are ef-
fectively bosonic, without potential negative signs associated
with operators acting on separated qu5its. For two mode pairs
(� = 4), the Hamiltonian in Eq. (4) reduces to

Ĥ2 = ε(T̂1,z + T̂2,z ) − V
(
T̂ 2

1,+ + T̂ 2
2,+ + T̂ 2

1,− + T̂ 2
2,−

+ {T̂1,+, T̂2,+} + {T̂1,−, T̂2,−})
− g[(b̂1,↑ + b̂1,↓)†(b̂1,↑ + b̂1,↓)

+ (b̂2,↑ + b̂2,↓)†(b̂2,↑ + b̂2,↓)

+ (b̂1,↑ + b̂1,↓)†(b̂2,↑ + b̂2,↓)

+ (b̂2,↑ + b̂2,↓)†(b̂1,↑ + b̂1,↓)], (20)

FIG. 4. A quantum circuit that prepares an arbitrary real wave
function on two qu5its from an initial state |0〉 ⊗ |0〉. Four angles,
θ

(0,0)
l are required to define the wave function on the first qu5it, and

20 angles, θ
(1,m)
l , are required in the controlled rotation operator to

define the four states of the second qu5it for each of the five states
of the first qu5it (where m = 0, 1, 2, 3, 4 and l = 0, 1, 2, 3). The
decomposition of the controlled-rotation operator is given in Fig. 5.

which, after reduction to Givens operators, becomes2

Ĥ2 = [εT̂z − (V + g)X̂13 − gN̂pairs] ⊗ Î5

+ Î5 ⊗ [εT̂z − (V + g)X̂13 − gN̂pairs]

− V
∑

r,s∈{(12),(23)}
(X̂r ⊗ X̂s − Ŷr ⊗ Ŷs)

− g

2

∑
r,s∈{(01),(03),
−(14),−(34)}

(X̂r ⊗ X̂s + Ŷr ⊗ Ŷs), (22)

where the negative signs in the second summation indices
mean that the operator with the corresponding index has an
additional minus sign. The energy densities of the two-qu5it
systems, for the parameter sets defined in Eq. (9), are given in
Table IV. While the ground state energy density is somewhat
larger for N = 4 compared with N = 2, the energy densities
of the excited states are substantially different.

The extreme case V � g approaches the LMG model, in
which the particles are distributed on mode pairs in states
{|1〉, |2〉, |3〉}. In contrast, the case V � g approaches the
result of the two-level pairing model with particles being dis-
tributed among the states {|0〉, |1〉, |3〉, |4〉} (states with paired
spins).

1. State preparation on two qu5its

Preparing an arbitrary real wave function on the two-qu5it
system is a straightforward extension of preparing such a state
on two qubits, as can be found, e.g., in Ref. [121]. A quantum
circuit for preparing a state on two qu5its is shown in Fig. 4,
and is given in terms of single-qu5it rotations V̂5(θ (0,0)

l ) ⊗ Î5

and controlled rotations �̂(m) ⊗ V̂5(θ (1,m)
l ), where �̂(m) are

projectors onto the mth state in the qu5it Hilbert space. The
form of the controlled rotation operator in terms of projectors
on the first qu5it is given in Fig. 5. With 25 states in the Hilbert
space, 24 angles are required to prepare a real wave function
from some default state. With the quantum circuit shown in
Fig. 4, we see that qu5it-0 (top qu5it in the figure) can be
prepared with four angles (defining the corresponding five

2The notation of the summations is such that, for example,∑
r,s∈{(12),(23)}

fr,s = f12,12 + f12,23 + f23,12 + f23,23. (21)
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FIG. 5. The explicit construction of the controlled rotation oper-
ator shown in Fig. 4 in terms of projectors on the first qu5it.

amplitudes), while preparing qu5it-1 (bottom qu5it in Fig. 4)
requires four angles per qu5it-0 state, hence a total of 20 an-
gles, which provides the requisite 24 angles. Correspondingly,
variational algorithms employed to establish the ground state
(or excited states) of this system will, in the absence of further
assumptions, require 24 angles.

The qu5it rotation operators V̂5 have the same form as
Eq. (15). For example,

V̂5
(
θ

(1,3)
l

) = e−iθ (1,3)
3 X̂34 e−iθ (1,3)

2 X̂23 e−iθ (1,3)
1 X̂12 e−iθ (1,3)

0 X̂01 ,

(23)

that enables the preparation of arbitrary real amplitudes on
qu5it-1 from an initial state |0〉 (and with angles associated
with a projection onto state |3〉 of qu5it-0).

2. Time evolution of two qu5its

The time evolution of the two-qu5it system is determined
by the Hamiltonian in Eq. (22). As in the case of one qu5it, it
contains noncommuting terms so that Trotterization will only
approximate the time evolution. The resulting errors can, how-
ever, be systematically reduced by decreasing the time step

t , or by using higher-order formulas. Considering the LO
Trotterization of the evolution operator Û (
t ), with one- and
two-body contributions from the different interaction terms,
gives

Û (
t ) = Û2(
t ) Û1(
t ), (24)

where

Û1(
t ) = Û (T̂z )
1 (
t ) Û (X̂13 )

1 (
t ) Û
(N̂pair )
1 (
t ),

Û (T̂z )
1 (
t ) =

∏
j=1,2

e−i
tεT̂z, j ,

Û (X̂13 )
1 (
t ) =

∏
j=1,2

e+i
t (V +g)X̂13, j ,

Û
(N̂pair )
1 (
t ) =

∏
j=1,2

e+i
tgN̂pair,j , (25)

and

Û2(
t ) = Û (g)
2 (
t ) Û (V )

2 (
t ),

Û (V )
2 (
t ) =

∏
r,s∈{(12),(23)}

e+iV 
tX̂r,1⊗X̂s,2 e−iV 
tŶr,1⊗Ŷs,2 ,

Û (g)
2 (
t ) =

∏
r,s∈{(01),(03),
−(14),−(34)}

e+i 1
2 g
tX̂r,1⊗X̂s,2 e+i 1

2 g
tŶr,1⊗Ŷs,2 .

(26)

As these expressions are LO in the Trotter expansion, the
presented order of operators in Eqs. (24), (25), and (26) has
been chosen at random. In principle, all possible sequences
of operator products could be explored in order to minimize
Trotter errors in observables of interest for a given Trotter time
step.

While the one-body terms can be implemented with phase
operators and Givens rotations as discussed previously, the
two-body entangling interactions are more complex. We dis-
cuss two possible implementations, based on gates that are
available on current devices. One possibility is that qudit sys-
tems are able to perform two-qudit Givens rotation gates, as,
for example, Mølmer-Sørensen gates in trapped-ion systems
[86]. The other possibility is that generalized CNOT gates are
available, such as in transmon-qudit systems [122,123]. This
latter approach was studied in Ref. [100] for a qutrit-based
system, and here we generalize it to higher-dimension qudits.

The quantum circuits require rotations on one of the qu5its
controlled by the state of the other qu5it. These can be imple-
mented via controlled X̂ab and Ŷab gates, with

X̂ab = |a〉〈b| + |b〉〈a| +
∑

c ={a,b}
|c〉〈c|, (27a)

Ŷab = i(|a〉〈b| − |b〉〈a|) +
∑

c ={a,b}
|c〉〈c|. (27b)

To be concrete, consider the action of an X̂14 gate acting on
qu5it-1 controlled by qu5it-0, which is implemented when
qu5it-0 is in the state |2〉. This operation takes the form

[CX̂ ]2
14 = �̂(2) ⊗ X̂14 +

∑
l =2

�̂(l ) ⊗ Î5. (28)

The generalization to multiple control states is straightfor-
ward. For example, X̂23 controlled by the states |0〉, |1〉, |4〉
reads

[CX̂ ]0,1,4
23 =

∑
l={0,1,4}

�̂(l ) ⊗ X̂23 +
∑

l ={0,1,4}
�̂(l ) ⊗ Î5

= [CX̂ ]0
23[CX̂ ]1

23[CX̂ ]4
23. (29)

The two types of required two-qu5it gates are e−iαX̂ab⊗X̂mn and
e−iαŶab⊗Ŷmn , which can be implemented using the quantum
circuits shown in Fig. 6. Additional simplifications, as shown
in Fig. 7, can be made to reduce the number of controlled
gates (this further reduces the number of controlled gates as
the dimension of the qudit increases). After including these
simplifications, and explicitly including the basis change, the
circuits in Fig. 6 can be reduced to those in Fig. 8. While the
circuits that are shown in Fig. 6 involve two G gates, eight
CX̂ or CŶ gates, and four single qu5it gates, those in Fig. 8
contain two G gates and six CX̂ or CŶ gates. In the resource
estimates that follow, we use the circuits in Fig. 8. These one-
and two-body operators are sufficient to evolve a prepared
state forward in time.

C. Arbitrary numbers of mode pairs

State preparation requires quantum circuits with a number
of control operators that scales with the number of qu5its.

064306-7



ILLA, ROBIN, AND SAVAGE PHYSICAL REVIEW C 108, 064306 (2023)

FIG. 6. Circuits for the two-qu5it entangling gates, with
(a) implementing GX̂ X̂

abmn(α) = e−iαX̂ab⊗X̂mn , and (b) implementing
GŶŶ

abmn(α) = e−iαŶab⊗Ŷmn . The index c on the controlled gates runs
over the complement states of a and b (in a similar fashion to Fig. 5,
but here c = {a, b}), and the Givens rotation GX̂

ab( α

2 ) is defined as

e−i α
2 X̂ab [similarly for GŶ

ab( α

2 )].

Without the concept of a distance between qu5its in this
model, i.e., the all-to-all nature of the interactions, designs of
localized circuits [124] with exponentially converging circuit
truncations are not obvious. The high degree of symmetry in
the Hamiltonian and the fact that the model is exactly solvable
suggests, however, that simplifications in the state-preparation
circuit and relations between the angles of the controlled
operators seem likely. Reorganization of entanglement struc-
tures via application of, for example, the HL-VQE algorithm
[38] could also potentially allow for efficient simulations of
truncated systems, with exponential convergence towards the
exact solution, as was obtained in the case of the LMG model.
On the other hand, due to the quadratic form of the Agassi
model Hamiltonian, only one- and two-body interactions are
required in evolving the quantum state of an arbitrary number
of modes forward in time. Thus, if the entangled states of
interest can be reached from a tensor-product initial state, the
one- and two-body circuits used to evolve two mode-pair sys-
tems forward, when implemented between all pairs of modes,
are sufficient.

The required number of circuit elements per Trotter step
can be determined for a system with �/2 mode pairs. The
number of one-body operators, assuming that the phase gates
and Givens rotation can be implemented as fundamental gates,
is n1 mode pair = 3. Counting gates in the quantum circuits
shown in Fig. 8 (to implement the two-body operators) reveals
that the total number of gates required is

n �
2 mode pairs = �

2
[1 GX̂ , 2 Phase] + 1

2

�

2

(
�

2
− 1

)

× [120 CX̂ , 120 CŶ , 40 GX̂ , 40 GŶ ], (30)

FIG. 7. Simplification for the multicontrolled CX̂ gates in Fig. 6,
where the three controlled rotations (c runs over c = {a, b}) are
replaced by two controlled rotations plus a single qu5it gate. The
same simplification can be applied to the CŶ gates.

FIG. 8. Improved circuits for the two-qu5it entangling gates
derived from those in Fig. 6, with (a) implementing GX̂ X̂

abmn(α) =
e−iαX̂ab⊗X̂mn , and (b) implementing GŶŶ

abmn(α) = e−iαŶab⊗Ŷmn .

scaling, as expected, quadratically with the number of qu5its,
and with sizable coefficients. This equation should be read
as 20�(� − 2) controlled-X̂ gates, 10�(� − 2) single-qu5it
Givens rotations, etc. The requirements are reduced signifi-
cantly if two-qu5it Givens rotations are available, becoming

n �
2 mode pairs = �

2
[1 GX̂ , 2 Phase] + 1

2

�

2

(
�

2
− 1

)

× [20 GX̂ X̂ , 20 GŶŶ ]. (31)

For modest-size systems, the time dependence of an initial
state can be determined exactly by matrix exponentiation.
As an example, in Fig. 9, the exact time dependence of
vacuum-to-vacuum survival amplitude, number of pairs, and
〈Ŝz〉 from four sets of couplings, set-1 to set-4,3 are displayed
in the � = 8 system, for quenches from the two different
tensor-product initial states given in Eq. (10): |ψ (0)〉A = |1〉⊗4

and |ψ (0)〉B = |4〉⊗2 ⊗ |0〉⊗2. However, exact time evolution
soon becomes unwieldy with increasing system size, and
quantum simulations are required to extend to larger systems.
A quantum simulation of this system can be accomplished
with �/2 = 4 qu5its (corresponding to a 625 dimensional
Hilbert space) with quantum circuits implementing Trotter
evolution, or variants thereof. If performed with previous JW
qubit mappings [70,71], the analogous quantum simulation
would require 4�/2 = 16 qubits (corresponding to a 65 536
dimensional Hilbert space).

It is informative to consider the exact time evolution over
longer time intervals, beyond those shown in Fig. 9, as dis-
played in Appendix D. Observables evolving from |ψ (0)〉A

are found to continue to rapidly oscillate at later times, while
those from |ψ (0)〉B tend to fall more slowly toward their
average long-time values, about which they slowly oscil-
late with amplitudes that decrease with increasing interaction
strength. This behavior is consistent with |ψ (0)〉A being a
spin-stretched ground state of the non-interacting Hamilto-
nian, with dominant overlap only onto a small number of
states, as shown in Fig. 10(a). These are effectively scar states
for this quenched system [125]. In contrast, the evolution from
|ψ (0)〉B, the initial state with energy that is in the middle of

3The set-0 is not displayed since it leads to a trivial time evolution.
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FIG. 9. The exact time dependence of (a), (d) |〈ψ (t )|ψ (0)〉|2, (b),
(e) number of pairs, and (c), (f) 〈Ŝz〉 for a system with N = � = 8
particles for four sets of couplings, set-1 to set-4, given in Eq. (9).
The left column is associated with the initial state |ψ (0)〉A, while the
right column is associated with |ψ (0)〉B, as given in Eq. (10).

the excitation spectrum, is consistent with comparable over-
lap onto a large number of states, as shown in Fig. 10(b),
giving multiple coherent contributions in time evolution. The
exact wave functions for both initial configurations confirm
these described structures. Interestingly, these different over-
lap structures suggest that they will incur different systematic
errors in Trotterized time evolution when simulated with
quantum computers and simulators. With multiple states con-
tributing to time evolution, the errors from the system initially
in |ψ (0)〉B are expected to be significantly larger than from
starting in |ψ (0)〉A, because of a “sign problem” in the form
of incomplete cancellations between multiple amplitudes, as
opposed to a few, in the unitary evolution. As we will show in
subsequent sections, this is indeed the situation.

D. Quantum simulations using CIRQ-based classical simulation

With the developments presented in the previous sections,
quantum simulations of these fundamentally five-dimensional
systems can be implemented on quantum simulators of arrays

FIG. 10. Sorted nonzero overlaps between the initial state
|ψ (0)〉A/B and the eigenstates of the Hamiltonian |ψ (i)

H 〉 for a system
with N = � = 8 particles and for the four sets of couplings. Top
panel (a) shows |ψ (0)〉A, and bottom panel (b) shows |ψ (0)〉B.

of qu5its.4 Without access to a qu5it quantum computer at
present, we used Google’s CIRQ software [126] to perform
classical noiseless simulations for a selection of parameter
sets and system sizes. The qudit capabilities of CIRQ form
the foundation of a PYTHON-based [127] simulation code that
furnishes single-thread5 single-CPU-node instances for qudit
systems.

For the purposes of demonstration, we present results for
the observables discussed above in a selection of system sizes
for a range of LO Trotterizations of the evolution operators.
In the simulations, we employed 1000 shots per run using the
set-3 Hamiltonian couplings given in Eq. (9) and the two dif-
ferent initial states from Eq. (10), for systems of size {Nq5 =
8, N = � = 16}, {Nq5 = 10, N = � = 20}, corresponding to
16 and 20 particles distributed among eight and ten qu5its,
respectively. These are compared with the time evolution of
the full state-vector computed via exact exponentiation of
the Hamiltonian, using the EXPOKIT [129] package in JU-
LIA [130].6 The results obtained for the � = 16 system are
shown in Figs. 11 and 12, and those for � = 20 are shown in
Figs. 13 and 14. We have also performed the simulation for the
{Nq5 = 12,� = 24} system, shown in Figs. 15 and 16. For
this case, a comparison with the exact time evolution could not
be accomplished using a single node, as it requires exponenti-
ating 108×108 matrices. Simulations of larger systems (� >

24) were not possible using the CIRQ-based PYTHON code on a
single compute node of the University of Washington cluster
Hyak (mox) due to memory limitations.

As expected, the Trotterized evolution curves for observ-
ables converge to the expected values as the number of Trotter
steps becomes large over the explored time intervals. How-
ever, the convergence is faster for the initial state in which
all the spin-↓ states are occupied, |ψ (0)〉A. This can be un-
derstood to arise from Trotter errors being larger for the
systems starting in |ψ (0)〉B than |ψ (0)〉A due to the larger
number of comparable contributions to the unitary evolution
(see Fig. 10), because of being higher in the energy spec-
trum, and the more substantial sign problem in forming their
sum, as mentioned above. This is discussed in more detail in
Appendix F. A potential way to improve the convergence of
the Trotterization may be found by examining the breaking of
symmetries. One of those is the exchange symmetry, since, for
the original Hamiltonian Ĥ , [e−it Ĥ , P̂i j] = 0, with P̂i j being
the exchange operator of mode pairs i and j, but with the
LO Trotterized operator Û (t ), as in Eq. (24), [Û (t ), P̂i j] = 0.
Similar issues have been found in other systems. For example,
the Hamiltonian governing the evolution of dense coherent
neutrino systems exhibits a similar exchange symmetry, and
while Trotterization might break the symmetry, it can be

4In principle, they can also be straightforwardly implemented on
devices with qudits with d > 5.

5The multithreaded high-performance version of CIRQ, QSIM [128],
is still a qubit-based simulator, and does not support qudits (as of this
writing).

6For the � = 20 system, the Hamiltonian was projected to the
N = 20 sector before exact exponentiation, reducing the dimension
of the Hamiltonian matrix from 9 765 625 to 1 936 881.
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FIG. 11. The time dependence of (a) |〈ψ (t )|ψ (0)〉|2, (b) number
of pairs, and (c) 〈Ŝz〉, for set-3 of couplings [given in Eq. (9)] in a sys-
tem with N = 16 particles initially in the state |ψ (0)〉A = |1〉⊗8. The
different colors indicate different numbers of Trotter steps (nTrot).
The points are the results of noiseless classical simulation of the qu5it
system with 103 shots. The icon denoting classical computation is
defined in Ref. [121].

recovered [131]. A similar situation arises in simulations of
1 + 1-dimensional SU(3) lattice gauge theory [132] with n f

flavors of quarks, where Trotterization breaks global SU(3)
symmetry.

Regarding the performance of the qudit simulator, Table I
shows the time-to-solution (TtS) values for the different sys-
tem sizes and number of Trotter steps considered in this
work. The TtS is found to scale linearly with the num-
ber of Trotter steps, as expected, since the circuit depth
increases linearly with nTrot. For a fixed number of Trot-
ter steps, when the system size is changed, we observe
two different behaviors. For � � 16, the TtS scales bet-
ter than 5�/2, while for � � 16 it scales approximately as
5�/2. As the Hilbert space dimensionality of a 22-qu5it
system is approximately that of a 50-qubit system, one an-
ticipates that a quantum advantage may become accessible
in systems with more than approximately 22 qu5its for cer-
tain observables. Gate-based classical simulations of systems

FIG. 12. The time dependence of (a) |〈ψ (t )|ψ (0)〉|2, (b) number
of pairs, and (c) 〈Ŝz〉, for set-3 of couplings [given in Eq. (9)] in a
system with N = 16 particles initially in the state |ψ (0)〉B = |4〉⊗4 ⊗
|0〉⊗4. The different colors indicate different numbers of Trotter steps
(nTrot). The points are the results of noiseless classical simulation of
the qu5it system with 103 shots.

approaching this size are beyond the capability of a single-
node simulation code, and will require large-scale parallel
computation, as has already been accomplished in classi-
cal simulations of gate-based qubit systems [128,133–145].
The next step toward large-system simulations of qu5it

TABLE I. Time-to-solution (TtS) values (in seconds) for the
qudit simulator for different system sizes (�) and Trotter steps (nTrot).
The code was executed on the University of Washington cluster Hyak
(mox) on a single node and a single thread.

nTrot � = 8 � = 12 � = 16 � = 20 � = 24

1 2 7 58 1921 66255
2 4 14 135 4803 166384
4 9 28 285 10448 364871
8 18 56 657 24005 759583
16 36 113 1347 43953 1539031
32 71 228 2683 89047
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FIG. 13. The time dependence of (a) |〈ψ (t )|ψ (0)〉|2, (b) number
of pairs, and (c) 〈Ŝz〉, for set-3 of couplings [given in Eq. (9)] in a sys-
tem with N = 20 particles initially in the state |ψ (0)〉A = |1〉⊗10. The
different colors indicate different numbers of Trotter steps (nTrot).
The points are the results of noiseless classical simulation of the qu5it
system with 103 shots.

systems is multinode parallelization that utilizes multiple
GPUs per node.

IV. COMPARISON WITH QUBITS

As mentioned in the previous sections, the Agassi model
was first mapped to qubits in Refs. [70,71]. In those works, a
particular JW mapping assignment to qubits was considered.
In order to compare the resource requirements for qubits with
the requirements for qu5its, given in Sec. III C, two different
mappings are considered here: (i) a physics-aware JW map-
ping (paJW) (that differs from that used in Refs. [70,71]) and
(ii) a mapping using five levels of three qubits as a qu5it.
In the paJW mapping, we have utilized the bosonic nature
of mode pairs from the occupation involving only an even
number of fermions to minimize JW strings of Ẑ operators
between spins.

FIG. 14. The time dependence of (a) |〈ψ (t )|ψ (0)〉|2, (b) number
of pairs, and (c) 〈Ŝz〉, for set-3 of couplings [given in Eq. (9)] in a
system with N = 20 particles initially in the state |ψ (0)〉B = |4〉⊗5 ⊗
|0〉⊗5. The different colors indicate different numbers of Trotter steps
(nTrot). The points are the results of noiseless classical simulation of
the qu5it system with 103 shots.

A. Physics-aware Jordan-Wigner mapping to qubits

A system of � modes can be simulated with 2� qubits us-
ing a JW mapping, in which an unoccupied state corresponds
to a spin-down qubit, while an occupied state corresponds to
a spin-up qubit. Such a mapping was used in the works of
Refs. [70,71] to explore the one-mode-pair and two-mode-
pair systems. We have found it convenient to implement a
different ordering of states than used in those works, where we
localize states in the same mode pair to be adjacent, in order
to take better advantage of the approximate SO(5) symmetry.
As the number of particles per mode pair is always even,
there are no fermionic phases from operators moving across
the lattice. The paJW mapping we have employed naturally
encodes this feature, thereby minimizing the length of Pauli
strings between operators.

For the one mode-pair system, requiring four qubits, the
five states of the qu5it are mapped to the four qubits in the
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FIG. 15. The time dependence of (a) |〈ψ (t )|ψ (0)〉|2, (b) number
of pairs, and (c) 〈Ŝz〉, for set-3 of couplings [given in Eq. (9)] in a sys-
tem with N = 24 particles initially in the state |ψ (0)〉A = |1〉⊗12. The
different colors indicate different numbers of Trotter steps (nTrot).
The points are the results of noiseless classical simulation of the qu5it
system with 103 shots.

paJW mapping as7

|0〉 → |1111〉, |1〉 → |0101〉,

|2〉 → 1√
2

[|0110〉 + |1001〉],

|3〉 → |1010〉, |4〉 → |0000〉. (32)

Figure 19 in Appendix E 1 a shows the quantum circuits for
one step of LO Trotterized time evolution for one mode pair,
which are well known from quantum chemistry and elsewhere
[132,146]. The resource requirements of one Trotter step, in
terms of number of Hadamard-gates, RZ gates and CNOT gates,
are

n1 mode pair = [2 H, 14 RZ , 14 CNOT]. (33)

7In this mapping, an unoccupied state corresponds to spin-down
which is identified as |1〉, while an occupied state is denoted by spin-
up, denoted by |0〉.

FIG. 16. The time dependence of (a) |〈ψ (t )|ψ (0)〉|2, (b) number
of pairs, and (c) 〈Ŝz〉, for set-3 of couplings [given in Eq. (9)] in a
system with N = 24 particles initially in the state |ψ (0)〉B = |4〉⊗6 ⊗
|0〉⊗6. The different colors indicate different numbers of Trotter steps
(nTrot). The points are the results of noiseless classical simulation of
the qu5it system with 103 shots.

The time-evolution circuits for two mode pairs are given in
Appendix E 1 b. The resources required to implement Trot-
terized time evolution from the terms in the Hamiltonian in
Eq. (22) that act only on one mode pair are the same as given
in the previous paragraph, and those required to implement
the fundamentally two-mode-pair evolution are

n2 mode pairs = [16 H, 64 RZ , 128 CNOT]. (34)

The resources for an arbitrary number, �/2, of mode pairs
follows straightforwardly,

n �
2 mode pairs = �

2
[2 H, 14 RZ , 14 CNOT]

+ 1

2

�

2

(
�

2
− 1

)
[16 H, 64 RZ , 128 CNOT],

(35)

which will be distributed across a quantum register with 2�

qubits (four qubits per mode pair).
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B. State-to-state mapping to qubits

The Hilbert space of a qudit can be mapped to the space of
multiple qubits, as is well known, in a state-to-state (StS) map.
In our case, specifically for d = 5, the five states of a qu5it
can be mapped onto five of the eight states of three qubits. We
have chosen the binary mapping

|0〉 = |000〉, |1〉 = |001〉, |2〉 = |010〉,
|3〉 = |011〉, |4〉 = |100〉, (36)

which best suits our physical system (other mappings are
discussed in Appendix E 2).

The circuits required to perform time evolution of a single
mode pair are given in Appendix E 2 a, with the following
number of Hadamard gates, RZ gates, and CNOT gates:

n1 mode pair = [2 H, 9 RZ , 10 CNOT]. (37)

These gate requirements correspond to implementing one
Givens rotation and two phase rotations for a single qu5it.

In the case of two mode pairs, the time-evolution circuits
are given in Appendix E 2 b. The resource requirements in
Table V show that this qubit mapping of two mode-pairs
requires a substantial number of CNOT gates per Trotter step,
in addition to comparable numbers of single qubit gates and
rotations. From the discussions above, particularly the need
for only two mode-pair interactions in a many-body system,
the number of gates is found to be

n2 mode pairs = [32 H, 512 RZ , 688 CNOT], (38)

which is approximately a factor of five greater in the number
of entangling gates than the paJW mapping. The total resource
requirements to simulate �/2 pairs of modes with this map-
ping are

n �
2 mode pair = �

2
[2 H, 9 RZ , 10 CNOT]

+ 1

2

�

2

(
�

2
− 1

)
[32 H, 512 RZ , 688 CNOT].

(39)

C. Comparison between qu5it and qubit mappings

It is interesting to further compare the three mappings
considered in this work, especially the size of the Hilbert
space and number of entangling gates. Although we have not
considered the effect of noisy hardware, these comparisons
indicate how prone the different mappings are to errors.

Figure 17 shows the dimension of Hilbert space of different
mappings as a function of the number of mode-pairs �/2, as
well as the total number of entangling gates, with CNOTs for
qubits and CX̂ + CŶ or GX̂ X̂ + GŶŶ for qu5its. The reduced
dimensionality of the Hilbert space for qu5its compared to
qubits, as clearly shown in Fig. 17(a), means that qu5its are
much less susceptible than qubits to errors taking the system
to unwanted regions of the Hilbert space. Importantly, all of
the states in the qu5its are physically allowed states (state-
changing errors, the equivalent of bit-flip errors, could move
the state to a different particle number sector, which is still

FIG. 17. A comparison of different mappings: qu5its (q5), qubits
with paJW (q2paJW), and qubits with StS (q2StS). (a) Dimension of
the Hilbert space as a function of the number of mode pairs. (b) Total
number of entangling gates (for a single Trotter step) as a function
of the number of mode pairs, with CX̂ type or GX̂ X̂ type for qu5its,
and CNOTs for qubits.

physically allowed, but prohibited due to the symmetries of
the Hamiltonian), while the number of unphysical states in
both qubit mappings grows exponentially with system size.
Figure 17(b) displays the number of entangling gates required
for the simulation of systems with increasing system size.
If two-qu5it Givens rotations of the type GX̂ X̂ are directly
implemented on the quantum device (plain yellow circles), the
mapping to qu5its is the most advantageous in all aspects. In-
terestingly, if the two-qu5it Givens rotations are implemented
via generalized CX̂ -type gates, the paJW mapping requires
fewer entangling gates than the mapping to qu5its. In that
case, there would be a tradeoff to be made between the errors
due to noise that take the system to unwanted parts of the
Hilbert space, and those due to entangling gates of limited
fidelity.

To quantify the impact of noise in the different simula-
tion configurations, a realistic noisy simulator of qudit arrays
[93,102], in addition to the existing ones for qubit systems, is
required.

V. SUMMARY AND CONCLUSIONS

Pairing interactions between fermions in quantum many-
body systems play a central role in important physical
phenomena, ranging from structure of materials to the stabil-
ity and decay of nuclei. Building upon our previous work, and
pioneering studies by other authors, we have considered the
quantum simulation of the Agassi model, which is a model of
quantum systems with pairing and particle-hole interactions
that extends the Lipkin-Meshkov-Glick model. The nature of
the interactions is such that systems involving even numbers
of particles are naturally embedded in an array of d = 5 qudits
(qu5its) that make manifest the underlying SO(5) symmetry.
The quantum circuits required to prepare entangled states
and for time evolution of these systems are developed. They
have been classically simulated using a code that we have
developed on top of Google’s CIRQ to examine the time depen-
dence of spin, pairing, and persistence probabilities, starting
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from two distinct initial tensor-product states: one that is the
noninteracting ground state, and the other a highly excited
configuration. The time evolutions of these states were found
to exhibit quite different behaviors, originating from distinct
decompositions onto eigenstates of the full Hamiltonian.

A comparison between resource requirements for simu-
lations with qu5its and qubits is revealing. For the Agassi
model, and for the mappings we have identified, there are
advantages and disadvantages in choosing one over the other.
The nature of the pairing is such that each mode pair can be
mapped to a qu5it, and, with an even number of fermions oc-
cupying each qu5it at all times, the system can be considered
to be a lattice simulation of a collection of bosons. While the
qu5it array has a significantly smaller Hilbert space than for
corresponding systems of qubits, depending on the available
entangling gates, the number of such gates required for time
evolution can be larger than for our paJW mapping onto four
qubits per mode pair, but less than for a StS mapping onto
three qubits per mode pair.

A simulation of the Agassi model with 20 mode pairs
(for a single Trotter step) requires either 10 qu5its and 45.6k
(where k denotes ×103) entangling gates (or 7.6k two-qu5it
Givens rotations), or 80 qubits and 24.6k entangling gates
(paJW), or 60 qubits and 130.9k entangling gates (StS). These
resource requirements indicate that there is no “clear winner”
between qu5its and qubits for simulating the Agassi model. If
both types of quantum computers were available, the choice
of which to utilize depends on the overall performance of
the hardware, which could be assessed with a series of tests
and benchmarks [147]. There have been impressive recent
advances in developing qudit systems across a number of plat-
forms, e.g., trapped-ion, NV centers, superconducting, and
SRF-cavity systems. It will be interesting to assess the perfor-
mance of emerging qudit systems in simulations of the types
of systems considered in this work. The advantages gained
through a greatly reduced Hilbert space in qu5it systems will
be partially offset by the increased number of entangling gates
required for time evolution. Benchmarking such devices with
the Agassi model will establish another codesign vector for
improving available qudit hardware (which is anticipated to
mostly consist of improving the qudit entangling gates), to
evolve and eventually outperform available qubit systems.

There is a clear need for improving classical simulation ca-
pabilities of qudit systems, including in the number of qudits
that can be addressed, in the speed at which Trotter evolu-
tion can be executed, and in the quality of the noise models.
With groups developing classical simulation codes for qubit
systems, the analogous capabilities for qudit arrays is lagging,
largely because the quantum devices are not readily accessi-
ble, but this is expected to change in the future. We intend
to extend the performance of our code to heterogeneous-node
parallelization.

There is a more general lesson that can be learned from
our analysis of the time evolution starting from a low-lying
state compared to a high-lying one. The Trotter errors as-
sociated with the high-lying state are larger because of the
larger number of states making comparable contributions to
the evolution. In particular, at any given time, there are contri-
butions from multiple amplitudes, with cancellations that are

disturbed by the Trotter errors. The more amplitudes there are
with cancellations, the more significant are such errors. More
generally, such sign problems will also manifest themselves as
signal-to-noise problems due to device noise. These sign prob-
lems will be important in studies of, for example, high-energy
fragmentation [148–151] in QCD, for which there are many
energetically accessible states, or coupled channels, that will
contribute with comparable amplitudes to the time evolution.

Finally, while the present work has focused on the use
of symmetry considerations to guide mappings to qudits,
we have not attempted to investigate and optimize the en-
tanglement structures of the systems under study. While a
quantitative understanding of entanglement between systems
of qubits is now well advanced and studies of entanglement
between systems of qutrits continues to develop, our work
motivates further studies related to the entanglement of qudit
systems. Early pioneering work on entanglement in fermionic
paired systems [10] has shown that pairing is not equivalent to
entanglement of the whole state, nor its two-particle reduced
density matrix, but manifests as a different type of quantum
correlation. The model we have studied here and mapped to
systems of qu5its provides an explicit quantum system to fur-
ther study such quantum correlations. An optimization of the
entanglement structure between mode pairs could potentially
be achieved by developing entanglement-driven algorithms,
such as the HL-VQE algorithm [38] which we plan to extend
to qudit systems in the near future. Such entanglement rear-
rangement, combined with the symmetry-informed mappings
developed in this work, could further improve the efficiency
of the quantum simulations.

The results shown in figures can be found in a Github
repository [152].
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made by an anonymous referee, regarding a simplification of
controlled-qu5it gates. The circuit compression resulting from

this observation is shown in Figs. 7 and 8, and led to a modest
reduction in quantum resources required for time evolution.

APPENDIX A: MATRIX REPRESENTATION OF THE SO(5) GENERATORS

The basis states defined in Eq. (7),{
|0000〉, |1010〉, 1√

2
(|0110〉 + |1001〉), |0101〉, |1111〉

}
= { |0〉, |1〉, |2〉, |3〉, |4〉 }, (A1)

are given in terms of the occupation of the two states per mode encapsulated in one qu5it, |nk↓, nk↑, n−k↓, n−k↑〉. When written
in terms of the action of fermionic creation operators, they have the form

|0〉 = |φ〉, |1〉 = c†
k,↓c†

−k,↓|φ〉, |2〉 = 1√
2

(c†
k,↑c†

−k,↓ + c†
k,↓c†

−k,↑)|φ〉,
(A2)

|3〉 = c†
k,↑c†

−k,↑|φ〉, |4〉 = c†
k,↓c†

k,↑c†
−k,↓c†

−k,↑|φ〉,

where |φ〉 denotes the vacuum state of the qu5it (all states are unoccupied). In this basis, the matrix representations of the
operators defined in Eq. (6) are (omitting the k label)

T+ =
√

2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, T− =
√

2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, Tz =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 −1 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

b↑ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0

0 0 0 0 −1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, b↓ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 −1

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, bz =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

b†
↑ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 −1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, b†
↓ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, b†
z =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

N =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 2 0 0 0

0 0 2 0 0

0 0 0 2 0

0 0 0 0 4

⎞
⎟⎟⎟⎟⎟⎟⎠

, (A3)

which constitute a set of ten generators of SO(5). The commutation relations between these operators are given in Table II.
Some of the entries in Table II make use of the operators given in Eq. (A4),

N̂↑ = N̂

2
+ T̂z, N̂↓ = N̂

2
− T̂z,

Ñ↑ = N̂↑ − �̂5

2
, Ñ↓ = N̂↓ − �̂5

2
, Ñ = 1

2
(Ñ↑ + Ñ↓) = 1

2
(N̂ − �̂5),

�̂5 = 1

5
Tr(N̂ )Î5. (A4)
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TABLE II. The commutation relations between the ten SO(5) generators with matrix representations given in Eq. (A3). The commutator
at the intersection of row (a) and column (b) is ordered as [row (a), column (b)].

T+ T− Tz b↑ b↓ bz b†
↑ b†

↓ b†
z N

T+ 0 2Tz −T+ −√
2bz 0 −√

2b↓ 0
√

2b†
z

√
2b†

↑ 0

T− 0 T− 0 −√
2bz −√

2b↑
√

2b†
z 0

√
2b†

↓ 0

Tz 0 −b↑ b↓ 0 b†
↑ −b†

↓ 0 0

b↑ 0 0 0 −Ñ↑ 0 −T−/
√

2 2b↑
b↓ 0 0 0 −Ñ↓ −T+/

√
2 2b↓

bz 0 −T+/
√

2 −T−/
√

2 −Ñ 2bz

b†
↑ 0 0 0 −2b†

↑
b†

↓ 0 0 −2b†
↓

b†
z 0 −2b†

z

N 0

Generators in their standard form, normalized to Tr(TaTb) = 2δab, are defined through linear combinations of the generators
in Eq. (A3),

T1 = 1

2
(T+ + T−) = 1√

2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 1 0 0

0 1 0 1 0

0 0 1 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, T2 = 1

2i
(T+ − T−) = i√

2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 1 0 0

0 −1 0 1 0

0 0 −1 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

T3 = Tz =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 −1 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, T4 = 1√
2

(b†
↓ + b↓) = 1√

2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 −1

0 0 0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

T5 = 1

i
√

2
(b†

↓ − b↓) = i√
2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0

−1 0 0 0 0

0 0 0 0 0

0 0 0 0 −1

0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, T6 = 1√
2

(b†
↑ + b↑) = 1√

2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0

0 0 0 0 −1

0 0 0 0 0

1 0 0 0 0

0 −1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

T7 = 1

i
√

2
(b†

↑ − b↑) = i√
2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0

0 0 0 0 −1

0 0 0 0 0

−1 0 0 0 0

0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, T8 = 1√
2

(b†
z + bz ) = 1√

2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0

0 0 0 0 0

1 0 0 0 1

0 0 0 0 0

0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

T9 = 1

i
√

2
(b†

z − bz ) = i√
2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0

0 0 0 0 0

−1 0 0 0 1

0 0 0 0 0

0 0 −1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, T10 = 1

2
[N − �5] =

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (A5)

with their commutators given in Table III.
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TABLE III. The commutation relations between the ten SO(5) generators with matrix representations given in Eq. (A5). The commutator
at the intersection of row (a) and column (b) is ordered as [row (a), column (b)].

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

T1 0 iT3 −iT2 iT9/
√

2 −iT8/
√

2 iT9/
√

2 −iT8/
√

2 i(T7 + T5)/
√

2 −i(T6 + T4)/
√

2 0
T2 0 iT1 −iT8/

√
2 −iT9/

√
2 iT8/

√
2 iT9/

√
2 i(T4 − T6)/

√
2 i(T5 − T7)/

√
2 0

T3 0 −iT5 iT4 iT7 −iT6 0 0 0
T4 0 iÑ↓ 0 0 −iT2/

√
2 iT1/

√
2 −iT5

T5 0 0 0 −iT1/
√

2 −iT2/
√

2 iT4

T6 0 iÑ↑ iT2/
√

2 iT1/
√

2 −iT7

T7 0 −iT1/
√

2 iT2/
√

2 iT6

T8 0 iT10 −iT9

T9 0 iT8

T10 0

Further, a set of Li j’s can be defined as linear combinations of the Ti’s,

T1 = L12, T2 = L23, T3 = L31, T4 = − 1√
2

(L15 + L34), T5 = 1√
2

(L14 − L35),

T6 = 1√
2

(L34 − L15), T7 = 1√
2

(L14 + L35), T8 = L24, T9 = L25, T10 = L54, (A6)

such that (with Li j = −Lji)

[Li j, Lkl ] = i(δ jkLil + δil L jk − δ jlLik − δikL jl ). (A7)

APPENDIX B: SPECTRUM OF THE AGASSI MODEL

The energies of the lowest-lying states in the Agassi model for the sets of couplings in Eq. (9) and for a selection of mode-pair
number and occupancy are given in Table IV.

APPENDIX C: MATRIX REPRESENTATION OF SINGLE-QU5IT GIVENS OPERATORS

The matrix representations of selected Xi j Givens operators for a single qu5it are

X01 =

⎛
⎜⎜⎜⎜⎝

0 1 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠, X03 =

⎛
⎜⎜⎜⎜⎝

0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠, X12 =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠,

X14 =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0

⎞
⎟⎟⎟⎟⎠, X23 =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠, X34 =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0

⎞
⎟⎟⎟⎟⎠, (C1)

and selected Yi j Givens operators are

Y01 = i

⎛
⎜⎜⎜⎜⎝

0 −1 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠, Y03 = i

⎛
⎜⎜⎜⎜⎝

0 0 0 −1 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠, Y12 = i

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 −1 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠,

Y14 = i

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 −1
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0

⎞
⎟⎟⎟⎟⎠, Y23 = i

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 1 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠, Y34 = i

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 −1
0 0 0 1 0

⎞
⎟⎟⎟⎟⎠. (C2)
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TABLE IV. The energy density, Ei = Ei/� (average energy per mode), of the ground state and the first- and second-excited states of the
Agassi model for the sets of parameters defined in the text, (ε,V, g): set-0 = (1.0, 0.0, 0.0), set-1 = (1.0, 0.5, 0.5), set-2 = (1.0, 1.5, 0.5),
set-3 = (1.0, 0.5, 1.5), set-4 = (1.0, 1.5, 1.5).

� N Quantity set-0 set-1 set-2 set-3 set-4

2 0 E0 0.000 0.000 0.000 0.000 0.000

2 2 E0 −0.500 −0.957 −1.368 −1.868 −2.331
2 2 E1 0.000 0.000 0.000 0.000 0.000
2 2 E2 0.500 0.457 0.868 0.368 0.831

2 4 E0 0.000 −0.500 −0.500 −1.500 −1.500

4 0 E0 0.000 0.000 0.000 0.000 0.000

4 2 E0 −0.250 −0.701 −0.923 −1.660 −1.902
4 2 E1 −0.250 −0.280 −0.451 −0.280 −0.451
4 2 E2 0.000 0.000 0.000 0.000 0.000

4 4 E0 −0.500 −1.125 −1.797 −2.495 −3.007
4 4 E1 −0.250 −0.684 −1.400 −1.166 −1.896
4 4 E2 −0.250 −0.376 −0.480 −0.858 −0.855

4 6 E0 −0.250 −0.951 −1.173 −2.410 −2.652
4 6 E1 −0.250 −0.530 −0.701 −1.030 −1.201
4 6 E2 0.000 −0.250 −0.250 −0.750 −0.750

4 8 E0 0.000 −0.500 −0.500 −1.500 −1.500

6 0 E0 0.000 0.000 0.000 0.000 0.000

6 2 E0 −0.167 −0.623 −0.777 −1.600 −1.764
6 2 E1 −0.167 −0.186 −0.300 −0.186 −0.300
6 2 E2 −0.167 −0.186 −0.300 −0.186 −0.300

6 4 E0 −0.333 −1.068 −1.492 −2.672 −3.012
6 4 E1 −0.333 −0.615 −1.098 −1.268 −1.761
6 4 E2 −0.333 −0.607 −1.060 −1.183 −1.500

6 6 E0 −0.500 −1.325 −2.363 −3.201 −3.723
6 6 E1 −0.333 −1.052 −2.257 −1.934 −2.991
6 6 E2 −0.333 −0.766 −1.100 −1.607 −2.049

6 8 E0 −0.333 −1.234 −1.659 −3.171 −3.512
6 8 E1 −0.333 −0.782 −1.265 −1.768 −2.261
6 8 E2 −0.333 −0.773 −1.227 −1.683 −2.000

6 10 E0 −0.167 −0.956 −1.110 −2.600 −2.764
6 10 E1 −0.167 −0.520 −0.634 −1.186 −1.300

6 10 E2 −0.167 −0.520 −0.634 −1.186 −1.300

6 12 E0 0.000 −0.500 −0.500 −1.500 −1.500

8 0 E0 0.000 0.000 0.000 0.000 0.000

8 2 E0 −0.125 −0.587 −0.705 −1.572 −1.696
8 2 E1 −0.125 −0.140 −0.225 −0.140 −0.225
8 2 E2 −0.125 −0.140 −0.225 −0.140 −0.225

8 4 E0 −0.250 −1.042 −1.350 −2.755 −3.010
8 4 E1 −0.250 −0.583 −0.948 −1.323 −1.694
8 4 E2 −0.250 −0.580 −0.901 −1.285 −1.515

8 6 E0 −0.375 −1.365 −2.057 −3.543 −3.936
8 6 E1 −0.375 −1.034 −1.919 −2.222 −3.000
8 6 E2 −0.375 −0.878 −1.688 −2.028 −2.400

8 8 E0 −0.500 −1.547 −3.041 −3.933 −4.456
8 8 E1 −0.375 −1.349 −3.017 −2.669 −3.900
8 8 E2 −0.375 −1.104 −1.735 −2.379 −3.168

8 10 E0 −0.375 −1.490 −2.182 −3.918 −4.311
8 10 E1 −0.375 −1.159 −2.044 −2.597 −3.375
8 10 E2 −0.375 −1.003 −1.813 −2.403 −2.775

8 12 E0 −0.250 −1.292 −1.600 −3.505 −3.760

064306-18



QUANTUM SIMULATIONS OF SO(5) MANY-FERMION … PHYSICAL REVIEW C 108, 064306 (2023)

TABLE IV. (Continued.)

� N Quantity set-0 set-1 set-2 set-3 set-4

8 12 E1 −0.250 −0.833 −1.198 −2.073 −2.444
8 12 E2 −0.250 −0.830 −1.151 −2.035 −2.265

8 14 E0 −0.125 −0.962 −1.080 −2.697 −2.821
8 14 E1 −0.125 −0.515 −0.600 −1.265 −1.350
8 14 E2 −0.125 −0.515 −0.600 −1.265 −1.350

8 16 E0 0.000 −0.500 −0.500 −1.500 −1.500

APPENDIX D: LONG-TIME EVOLUTION

In this section, time evolutions of modest-size systems are performed over longer time intervals, shown in Fig. 18. This
is to look for behaviors and periodicities that are not made apparent over shorter time intervals. Starting from |ψ (0)〉A, the
observables continue to oscillate at long times, even as the interaction terms increase in strength. In contrast, starting from
|ψ (0)〉B, the observables rapidly converge to their average late time values, with fluctuations that decrease with increasing
strength of interactions.

APPENDIX E: CIRCUITS FOR THE QUBIT-BASED MAPPINGS

1. A physics-aware Jordan-Wigner mapping

In this pppendix, we present a physics-aware JW mapping of the Agassi model to qubits, which requires four qubits per
mode pair. The sz = ± 1

2 (σ = ↑,↓) states of a given mode are arranged to be adjacent to minimize the length of JW Z strings.
Specifically, for one mode, we set

ĉ0 = ĉ1,↓, ĉ1 = ĉ1,↑, ĉ2 = ĉ−1,↓, ĉ3 = ĉ−1,↑, (E1)

and the operators defined in Eq. (6) can be written in terms of spin operators via the JW transformation,

ĉn =
⊗
l<n

(−Ẑl )σ̂
−
n , ĉ†

n =
⊗
l<n

(−Ẑl )σ̂
+
n , (E2)

with σ̂± = (X̂ ± iŶ )/2. Therefore,

T̂1,+ = σ̂−
0 σ̂+

1 + σ̂−
2 σ̂+

3 , T̂1,− = σ̂+
0 σ̂−

1 + σ̂+
2 σ̂−

3 , T̂1,z = 1

2

(
�̂

(0)
1 + �̂

(0)
3 − �̂

(0)
0 − �̂

(0)
2

)
,

b̂1,↑ = −σ̂−
1 Ẑ2σ̂

−
3 , b̂1,↓ = −σ̂−

0 Ẑ1σ̂
−
2 , b̂1,z = 1√

2
(σ̂−

0 Ẑ1Ẑ2σ̂
−
3 + σ̂−

1 σ̂−
2 ), (E3)

with �̂(0)/(1)
n = (1 ± Ẑn)/2. Throughout this Appendix, subscripts are used to denote the target qubit, for example σ̂−

0 σ̂+
1 means

σ̂− ⊗ σ̂+ ⊗ Î ⊗ Î .

a. One mode pair

The Hamiltonian for a single mode pair is given by

Ĥ1 = ε

2

(
�̂

(0)
1 + �̂

(0)
3 − �̂

(0)
0 − �̂

(0)
2

) − (V + g)(σ̂−
0 σ̂+

1 σ̂−
2 σ̂+

3 + H.c.) − g
(
�̂

(0)
0 �̂

(0)
2 + �̂

(0)
1 �̂

(0)
3

)
. (E4)

In order to implement the (Trotterized) time evolution operator for this Hamiltonian, the strategies from Refs. [132,146] will be
followed, which introduce the G operator that diagonalizes the (σ̂−

0 σ̂+
1 σ̂−

2 σ̂+
3 + H.c.) operators. For our present purposes,

(E5)

which leads to

G†(σ̂−
0 σ̂+

1 σ̂−
2 σ̂+

3 + H.c.)G

= 1
8 G†(X̂0X̂1X̂2X̂3 + X̂0X̂1Ŷ2Ŷ3 − X̂0Ŷ1X̂2Ŷ3 + X̂0Ŷ1Ŷ2X̂3 + Ŷ0X̂1X̂2Ŷ3 − Ŷ0X̂1Ŷ2X̂3 + Ŷ0Ŷ1X̂2X̂3 + Ŷ0Ŷ1Ŷ2Ŷ3)G

= 1
8 (Î0Ẑ1 Î2 Î3 − Î0Ẑ1Ẑ2 Î3 + Î0Ẑ1 Î2Ẑ3 − Î0Ẑ1Ẑ2Ẑ3 − Ẑ0Ẑ1Ẑ2 Î3 + Ẑ0Ẑ1 Î2 Î3 − Ẑ0Ẑ1Ẑ2Ẑ3 + Ẑ0Ẑ1 Î2Ẑ3). (E6)
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FIG. 18. The exact time dependence of (a), (d) |〈ψ (t )|ψ (0)〉|2, (b), (e) number of pairs, and (c), (f) 〈Ŝz〉 for a system with N = � = 8
particles (rows 1–2), N = � = 12 particles (rows 3–4), and N = � = 16 particles (rows 5–6), for four sets of couplings, set-1 to set-4, given
in Eq. (9). For the different panels, (a)–(c) are associated with the initial state |ψ (0)〉A, while (d)–(f) are associated with |ψ (0)〉B, as given in
Eq. (10).
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FIG. 19. A quantum circuit required for one LO Trotter step of time evolution for a single mode pair using the paJW mapping to four
qubits, from the Hamiltonian given in Eq. (E4), with {α = tε/2, β = −t (V + g)/4, γ = −tg/2}.

Also, the ẐẐ terms in (�̂(0)
0 �̂

(0)
2 + �̂

(0)
1 �̂

(0)
3 ) become a single Ẑ operator,

G†(Ẑ0 Î1Ẑ2 Î3 + Î0Ẑ1 Î2Ẑ3)G = Ẑ0 Î1 Î2 Î3 + Î0 Î1 Î2Ẑ3. (E7)

The quantum circuit required for one LO Trotter step is shown in Fig. 19. This circuit reproduces the desired evolution up to an
overall phase, e−igt/2.

b. Two mode pairs

The paJW mapping that we have chosen, and the nature of the system, means that the required operator structure of the
Hamiltonian does not have any “dangling” Pauli strings between and across sites. For example, the operator c4, in terms of
spin operators, is σ̂−

4 and not Ẑ0Ẑ1Ẑ2Ẑ3σ̂
−
4 (the spins between positions 0 to 3 will always be up or down in even numbers).

This greatly simplifies the form of the Hamiltonian. The terms of the Hamiltonian acting within one mode pair are simply
tensor-product operators, while the interactions acting across mode pairs can be compactly written, leading to

Ĥ2 = Ĥ1 ⊗ Î⊗4 + Î⊗4 ⊗ Ĥ1 − 2V [(σ̂−
0 σ̂+

1 + σ̂−
2 σ̂+

3 )(σ̂−
4 σ̂+

5 + σ̂−
6 σ̂+

7 ) + H.c.]

− g[(σ̂+
0 Ẑ1σ̂

+
2 + σ̂+

1 Ẑ2σ̂
+
3 )(σ̂−

4 Ẑ5σ̂
−
6 + σ̂−

5 Ẑ6σ̂
−
7 ) + H.c.]. (E8)

There are eight multiqubit operators (and Hermitian conjugates) required to time evolve the wave function beyond the circuits
required to evolve one mode pair. The terms with coefficient 2V (four-qubit terms) use the same circuit as the one shown in
Fig. 19 with {α = 0, β = −tV/2, γ = 0}, and for the ones with coefficient g (six-qubit terms), an example is shown in Fig. 20,
where an operator similar to the one in Eq. (E5) is introduced to diagonalize the (σ̂+

0 Ẑ1σ̂
+
2 σ̂−

4 Ẑ5σ̂
−
6 + H.c.)-type operators. In

this case,

(E9)

where the “idling qubits” (lines with no gates applied) have to match with the index n of the operator Ẑn. This leads to

G̃†(σ̂+
0 Ẑ1σ̂

+
2 σ̂−

4 Ẑ5σ̂
−
6 + H.c.)G̃

= 1
8 G̃†(X̂0Ẑ1X̂2X̂3Ẑ4X̂5 − X̂0Ẑ1X̂2Ŷ3Ẑ4Ŷ5 + X̂0Ẑ1Ŷ2X̂3Ẑ4Ŷ5 + X̂0Ẑ1Ŷ2Ŷ3Ẑ4X̂5 + Ŷ0Ẑ1X̂2X̂3Ẑ4Ŷ5

+ Ŷ0Ẑ1X̂2Ŷ3Ẑ4X̂5 − Ŷ0Ẑ1Ŷ2X̂3Ẑ4X̂5 + Ŷ0Ẑ1Ŷ2Ŷ3Ẑ4Ŷ5)G̃

= 1
8 (Ẑ0Ẑ1 Î2 Î3Ẑ4 Î5 + Ẑ0Ẑ1Ẑ2Ẑ3Ẑ4 Î5 − Ẑ0Ẑ1Ẑ2 Î3Ẑ4 Î5 − Ẑ0Ẑ1 Î2Ẑ3Ẑ4 Î5 − Ẑ0Ẑ1 Î2 Î3Ẑ4Ẑ5

− Ẑ0Ẑ1Ẑ2Ẑ3Ẑ4Ẑ5 + Ẑ0Ẑ1Ẑ2 Î3Ẑ4Ẑ5 + Ẑ0Ẑ1 Î2Ẑ3Ẑ4Ẑ5). (E10)

FIG. 20. A quantum circuit required for one Trotter step of time evolution for two mode pairs using the paJW mapping to four qubits per
mode, from the term exp [itg(σ̂+

0 Ẑ1σ̂
+
2 σ̂−

4 Ẑ5σ̂
−
6 + H.c.)] in the Hamiltonian given in Eq. (E8), with λ = −tg/4 (the lines representing qubits 3

and 7 are omitted for clarity).
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2. State-to-state qubit-qu5it mapping

In this Appendix, we present the mapping of the Agassi model to qubits, with three qubits per mode pair containing the five
dimensional Hilbert space. Using the basis defined in the main text in Eq. (36),

|0〉 = |000〉, |1〉 = |001〉, |2〉 = |010〉, |3〉 = |011〉, |4〉 = |100〉, (E11)

the Hamiltonian and corresponding circuits to perform time evolution can be constructed. While other mappings have also
been pursued, the number of entangling gates is found to be minimized with this choice. For example, if instead of its binary
representation, identifying |4〉 = |101〉 leads to a reduced number (by 2) of CNOT gates for the single-mode-pair terms, but an
increase for the two-mode-pair terms (by 32). Another explored mapping is the Gray encoding, which leads an increase in CNOT

gates for both the single- and two-mode-pair terms.
The states in Eq. (E11) constitute the physical space, mapping to the five states of a mode pair, while states |101〉, |110〉, |111〉

are unphysical and only populated through errors in simulation. In this basis, the operators in Eq. (6) take the following form

T̂1,+ = �̂
(0)
0

(
σ̂−

1 σ̂+
2 + �̂

(1)
1 σ̂−

2

)
, T̂1,− = �̂

(0)
0

(
σ̂+

1 σ̂−
2 + �̂

(1)
1 σ̂+

2

)
, T̂z = �̂

(0)
0 Ẑ1�̂

(1)
2 ,

b̂1,↑ = �̂
(0)
0 σ̂+

1 σ̂+
2 − σ̂+

0 �̂
(0)
1 σ̂−

2 , b̂1,↓ = �̂
(0)
0 �̂

(0)
1 σ̂+

2 − σ̂+
0 σ̂−

1 σ̂−
2 . (E12)

a. One mode pair

The single mode-pair Hamiltonian in Eq. (11) is reproduced by

Ĥ1 = ε �̂
(0)
0 Ẑ1�̂

(1)
2 − (V + g) �̂

(0)
0 X̂1�̂

(1)
2 − g

(
�̂

(0)
0 Î1�̂

(1)
2 + 2�̂

(1)
0 �̂

(0)
1 �̂

(0)
2

)
= ε �̂

(0)
0 Ẑ1�̂

(1)
2 − (V + g) �̂

(0)
0 X̂1�̂

(1)
2 − g

2

(
Î0 Î1Î2 − Ẑ0 Î1Ẑ2 + 2�̂

(1)
0 Ẑ1�̂

(0)
2

)
, (E13)

and the (LO Trotterized) time evolution can be accomplished by

Û2(t ) ≈ e−it (ε�̂(0)
0 Ẑ1�̂

(1)
2 −g�̂(1)

0 Ẑ1�̂
(0)
2 ) eit (V +g)�̂(0)

0 X̂1�̂
(1)
2 eit g

2 Ẑ0 Î1Ẑ2 . (E14)

These terms can be implemented with the quantum circuits

(E15a)

(E15b)

(E15c)

where the global phase from the last term in Eq. (E13), Î0 Î1 Î2, is not included.

b. Two mode pairs

For two mode pairs, the Hamiltonian becomes

Ĥ2 = Ĥ1 ⊗ Î⊗4 + Î⊗4 ⊗ Ĥ1 − 2V
[
�̂

(0)
0

(
σ̂+

1 σ̂−
2 + �̂

(1)
1 σ̂+

2

)
�̂

(0)
3

(
σ̂+

4 σ̂−
5 + �̂

(1)
4 σ̂+

5

) + H.c.
]

− g
{[

�̂
(0)
0

(
σ̂−

1 + �̂
(0)
1

)
σ̂−

2 − σ̂−
0

(
�̂

(0)
1 + σ̂+

1

)
σ̂+

2

][
�̂

(0)
3

(
σ̂+

4 + �̂
(0)
4

)
σ̂+

5 − σ̂+
3

(
�̂

(0)
4 + σ̂−

4

)
σ̂−

5

] + H.c.
}
. (E16)

Upon inspection, there are found to be four contributions from the 2V terms,

(a) �̂
(0)
0 σ̂+

1 σ̂−
2 �̂

(0)
3 σ̂+

4 σ̂−
5 + H.c., (b) �̂

(0)
0 σ̂+

1 σ̂−
2 �̂

(0)
3 �̂

(1)
4 σ̂+

5 + H.c.,

(c) �̂
(0)
0 �̂

(1)
1 σ̂+

2 �̂
(0)
3 σ̂+

4 σ̂−
5 + H.c., (d) �̂

(0)
0 �̂

(1)
1 σ̂+

2 �̂
(0)
3 �̂

(1)
4 σ̂+

5 + H.c., (E17)

with each term diagonalized by a different Gi operator,

(E18)
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The circuits that implement the time evolution induced by each term are the following:

(E19a)

(E19b)

(E19c)

(E19d)

with δ = −tV/8. The resources required to execute these circuits are shown in Table V, where the g terms are also included, as
they have a similar structure. There are two exceptions, since there are terms with five and six σ̂±. For example,
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TABLE V. Resource requirements to perform one Trotter step of time evolution for each two-
mode-pair term in the Hamiltonian given in Eq. (E16). The “(*)” items from the g terms have the
same structure as those from the 2V terms, and therefore can be grouped together.

H RZ CNOT

�̂
(0)
0 σ̂+

1 σ̂−
2 �̂

(0)
3 σ̂+

4 σ̂−
5 + H.c. 2 32 42

�̂
(0)
0 σ̂+

1 σ̂−
2 �̂

(0)
3 �̂

(1)
4 σ̂+

5 + H.c. 2 32 44

�̂
(0)
0 �̂

(1)
1 σ̂+

2 �̂
(0)
3 σ̂+

4 σ̂−
5 + H.c. 2 32 44

�̂
(0)
0 �̂

(1)
1 σ̂+

2 �̂
(0)
3 �̂

(1)
4 σ̂+

5 + H.c. 2 32 50

(*) �̂
(0)
0 σ̂−

1 σ̂−
2 �̂

(0)
3 σ̂+

4 σ̂+
5 + H.c. 2 32 42

(*) �̂
(0)
0 σ̂−

1 σ̂−
2 �̂

(0)
3 �̂

(0)
4 σ̂+

5 + H.c. 2 32 44

�̂
(0)
0 σ̂−

1 σ̂−
2 σ̂+

3 �̂
(0)
4 σ̂−

5 + H.c. 2 32 42

�̂
(0)
0 σ̂−

1 σ̂−
2 σ̂+

3 σ̂−
4 σ̂−

5 + H.c. 2 32 42

(*) �̂
(0)
0 �̂

(0)
1 σ̂−

2 �̂
(0)
3 σ̂+

4 σ̂+
5 + H.c. 2 32 44

(*) �̂
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0 �̂
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3 �̂
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5 + H.c. 2 32 50

�̂
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�̂
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0 �̂
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1 σ̂−

2 σ̂+
3 σ̂−

4 σ̂−
5 + H.c. 2 32 42

σ̂−
0 �̂

(0)
1 σ̂+

2 �̂
(0)
3 σ̂+

4 σ̂+
5 + H.c. 2 32 42

σ̂−
0 �̂
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2 �̂
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4 σ̂+

5 + H.c. 2 32 44

σ̂−
0 �̂

(0)
1 σ̂+

2 σ̂+
3 �̂

(0)
4 σ̂−

5 + H.c. 2 32 42

σ̂−
0 �̂

(0)
1 σ̂+

2 σ̂+
3 σ̂−

4 σ̂−
5 + H.c. 2 32 42

σ̂−
0 σ̂+
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3 σ̂+
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5 + H.c. 2 32 42

σ̂−
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3 �̂
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5 + H.c. 2 32 42

σ̂−
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2 σ̂+

3 �̂
(0)
4 σ̂−

5 + H.c. 2 32 42

σ̂−
0 σ̂+

1 σ̂+
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3 σ̂−
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5 + H.c. 2 32 42

Total 32 512 688

(E20a)

064306-24



QUANTUM SIMULATIONS OF SO(5) MANY-FERMION … PHYSICAL REVIEW C 108, 064306 (2023)

(E20b)

with ζ = −tg/16. Note that these decompositions are not unique, as different definitions of the G operators are possible, and
other forms may be more efficient depending on the connectivity of the quantum computer.

APPENDIX F: A SIGN PROBLEM IN QUANTUM
SIMULATIONS: TROTTERIZED TIME EVOLUTION

AND DEVICE NOISE

By considering Trotterized time evolution, we have iden-
tified a potential sign problem in quantum simulations of
observables determined from many contributing states. Dis-
turbances to cancellations between contributing amplitudes
result from a combination of device errors, which can be Pauli
twirled towards incoherence (contributing statistical noise)
[157], and systematic algorithmic errors, such as from Trot-
terization. In the case of statistical noise, this sign problem
will manifest as a signal-to-noise (StN) problem. Sign and
StN problems plague classical lattice gauge theory calcula-
tions of systems at finite density or with finite baryon number
[158–168]. The hope continues to be that some or all of these
types of problems will be absent or mitigated in quantum
simulations that will allow for progress to be made that is
not possible for classical lattice QCD, including ground- and
excited-state preparation, as well as time evolution, of nuclei
(even modestly sized nuclei). A similar hope is present for
simulation of high-energy fragmentation of hadrons and nu-
clei, as created experimentally in high-energy colliders, where
a large number of interfering coupled channels limits robust
classical simulation capabilities.

In this Appendix, the sign problem we have identified
in Trotter evolution, which can be seen, for example, in
Fig. 14(c), is dissected further in the system with � = N = 8
modes, and for the set-4 couplings. The panels (a) and (b)
of Fig. 21 show the sorted nonzero probability densities,
|〈i|ψ〉|2 (with |i〉 being all the states in the computational
basis, which, in base 10, are {0, . . . , 5�/2 − 1}), associated
with time-evolved states to t = 0.4, starting from |ψ (0)〉A and
|ψ (0)〉B. While they are somewhat different, as expected, the
ranges of values are similar. The panels (c) and (d) show
the sorted nonzero z-component spin densities, 〈ψ |i〉〈i|Ŝz|ψ〉,
which are markedly different for the two initial states. There
is a single large contribution when starting from |ψ (0)〉A that
is not present when starting from |ψ (0)〉B. The mean value
and standard deviation of each element of 〈ψ |i〉〈i|Ŝz|ψ〉 are
x̄A = −0.03 and σA = 0.13, providing an expectation value

of 〈Ŝz〉A = −1.4, and x̄B = −0.004 and σB = 0.011, giving
〈Ŝz〉B = −0.17.

Given that the range and magnitude of the probability
densities in the wave function are comparable between the
two initial condition, systematic errors introduced by Trotter
evolution, or whatever algorithm is used for time evolution,
and by the fidelity of the quantum device, in the probability
distributions will be comparable. The same is true for the
z-component spin density. However, the order-of-magnitude
difference between the two spin densities, and particularly
cancellations among contributions, means that spin densities
from |ψ (0)〉B will be significantly more impacted than those
from |ψ (0)〉A by time-evolution inaccuracies. The differing
relative impacts of Trotter errors on the spin densities can
be seen clearly in the lower panels in Fig. 21, in particular
in the contrast between the lower-left (c) and lower-right (d)
panels. This effect is responsible for the differing convergence
of the spin density (and other observables) between |ψ (0)〉B

and |ψ (0)〉A with decreasing Trotter step size that is seen in
Fig. 14 and other such figures.

The behavior of Trotter errors in simulations starting from
different initial states was previously considered in the context
of complexity bounds [169–172]. It was found that the general
error bounds can be improved for time evolution from states
in the low-energy sector.

The identified sign problem is different in its nature to the
StN problem in classical lattice QCD calculations at finite
baryon number. There, the spectrum resulting from sponta-
neous breaking of the global chiral symmetries furnishes light
pseudo-Goldstone bosons that contribute low-lying states to
variance correlation functions associated with (multi)baryon
correlation functions. In the present case, the cancellations
between (small) amplitudes that produce small expectation
values are disturbed by simulation errors, either systematic
algorithm errors or device errors. Improving the StN problem
at late times in baryon correlation functions determined with
lattice QCD calculations requires exponentially large classical
resources with increasing time. In contrast, the sign problem
we have identified here originating from Trotterized time evo-
lution can be systematically reduced by using smaller Trotter
time intervals, which requires resources that scale with the
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FIG. 21. (a), (b) Sorted nonzero values of probability density, |〈i|ψ〉|2, for each basis state in the wave function evolved to t = 0.4 with
set-4 couplings (not all states |i〉 are shown, only those with non-zero contribution, labeled as ˜|i〉). (c), (d) Sorted nonzero values of z component
of spin density, 〈ψ |i〉〈i|Ŝz|ψ〉. The left panels (a), (c) correspond to the |ψ (0)〉A initial state, while the right panels (b), (d) correspond to the
|ψ (0)〉B initial state.

number of Trotter steps. In the context of quantum simu-
lations, this sign problem requires more extensive study to

estimate its impact on observables of interest, including the
impact of transitions to chaotic evolution [173].
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