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Prediction of the neutron drip line in oxygen isotopes using quantum computation
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In the noisy intermediate-scale quantum era, variational algorithms have become a standard approach to
solving quantum many-body problems. Here, we present variational quantum eigensolver results of selected
oxygen isotopes within the shell-model description. The aim of the present work is to locate the neutron drip
line of the oxygen chain using unitary coupled cluster type Ansätze with different microscopic interactions
(DJ16, JISP16, and N3LO), in addition to a phenomenological USDB interaction. While initially infeasible to
execute on contemporary quantum hardware, the size of the problem is reduced significantly using qubit tapering
techniques in conjunction with custom circuit design and optimization. The optimal values of Ansatz parameters
from classical simulation are taken for the DJ16 interaction, and the tapered circuits are run on IonQ’s Aria,
a trapped-ion quantum computer. After applying gate error mitigation for three isotopes, we reproduced exact
ground-state energies within a few percent error. The postprocessed results from hardware also clearly show 24O
as the drip line nucleus of the oxygen chain. Future improvements in quantum hardware could make it possible
to locate drip lines of heavier nuclei.
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I. INTRODUCTION

Atomic nuclei are complex many-body systems composed
of nucleons interacting via strong nuclear force. Understand-
ing nuclear properties from the nucleon-nucleon force is one
of the main goals of low-energy nuclear physics. Like other
quantum many-body problems, the structure of atomic nu-
clei can be effectively solved using configuration-interaction
methods. One such method that is very successful for solving
many-body problems of nuclear structure is the nuclear shell
model [1–3]. But, the exponential increase in Hilbert space
with increasing nucleon numbers has become a computational
challenge for classical computers. Quantum computers are
emerging as promising tools for solving many-body problems
across the spectrum of physical sciences. These devices are
natural quantum systems in which the principles of quantum
mechanics, like the superposition principle and entanglement,
are embedded.

In the present noisy intermediate-scale quantum (NISQ)
era [4], variational methods like the variational quantum
eigensolver (VQE) [5] are among the most successful quan-
tum algorithms. The VQE is a hybrid classical-quantum
algorithm exploiting the benefits of quantum computing for
state preparation and measurements, and the benefits of classi-
cal computers for optimization. While this approach is widely
used in quantum chemistry, there are comparatively fewer
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applications in nuclear physics [6–18]. Our present work is
based on [12], where some of the nuclei from p and sd shell
are studied, including A = 20, 22 isotopes of oxygen using
unitary coupled cluster (UCC) Ansatz. We are extending the
work to include the whole chain of even-even oxygen isotopes
from N = 10 to 18 to evaluate the ground-state energies using
the UCC Ansatz. By doing so, our intention is to establish 24O
as the neutron drip line nucleus of the oxygen chain. Due to
its semimagic nature, the oxygen isotopic chain has been the
testing ground of different theoretical nuclear approaches for
a long time. More than twenty years ago, 24O was established
to be the heaviest bound nucleus of the oxygen chain [19].
This isotope at the neutron drip line can be understood the-
oretically as single nucleons filling mean-field single-particle
orbitals [20]. Recently, the drip line of fluorine and neon iso-
topic chains was confirmed in the RIKEN Radioactive Isotope
Beam Factory [21]. Tsunoda et al. in Ref. [20] show that
the neutron drip line from fluorine (Z = 9) to magnesium
(Z = 12) can be predicted in terms of deformation mechanism.
The discovery of 39Na, the most neutron-rich sodium nucleus
observed so far, is reported in Ref. [22]. As the drip line
prediction for larger systems becomes computationally and
experimentally intractable, novel approaches, such as quan-
tum computing, must be pursued.

In the present work, quantum computing is used to locate
the drip line nucleus for the oxygen chain. VQE calcula-
tions are applied to a variety of different phenomenological
and microscopic interactions. While straightforward to ver-
ify through simulation, we also run the quantum circuits of
different isotopes on quantum hardware at the variational
minimum. The hardware results for 6Li [14] show that the
error ratio is an important factor to consider while running
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variational algorithms on quantum hardware. Using qubit ta-
pering methods, optimized circuits, and a custom transpilation
tool to significantly reduce running costs and errors, we obtain
ground-state energies of all five even-A oxygen isotopes. Suc-
cessful implementation of quantum hardware results for the
prediction of the oxygen drip line opens the path for other
nuclear isotopic chains. In the long term, the improvement
of quantum hardware and the development of sophisticated
nucleon-nucleon interactions should revolutionize this area of
nuclear structure.

II. THEORETICAL FRAMEWORK

The nuclear shell model is a very successful theory
for nuclear structure. This approach utilizes large-scale di-
agonalization in a many-body harmonic-oscillator basis to
explain several low-energy structural properties of nuclei.
As the nuclear force is rotationally invariant, single-particle
harmonic-oscillator states having well-defined quantum num-
bers, n, l , j, and jz, are very good choices for constructing
many-body states. Furthermore, nuclear force is the same
for both protons and neutrons to a very good approximation
resulting in additional quantum numbers, isospin (t = 1/2),
and the third component of isospin (tz = ±1/2). Although the
number of single-particle states could typically be small, the
total number of many-particle states increases rapidly with
the increase in the number of nucleons. The total angular
momentum J and total isospin T are good quantum numbers
of many-body nuclear states. The third components of (J , T ),
(M, Tz), represent the addition of jz and tz of each nucleon in a
nucleus, and are also good quantum numbers. The M scheme
is one of the preferred ways of constructing many-body states
for the nuclear shell model having a well-defined M, and
some of the prominent shell-model codes like ANTOINE [23],
NUSHELLX [24], KSHELL [25], and BIGSTICK [26] use this
scheme.

A. Hamiltonian

In this work, we considered a shell-model description
of even-A oxygen isotopes having (A−16) valence neutrons
added to the inert 16O core. The neutrons for different O
isotopes lie in the sd-model space comprising 0d5/2, 1s1/2,
and 0d3/2 harmonic-oscillator orbitals. Apart from the phe-
nomenological USDB interaction [27], we also use some
of the recently developed effective microscopic interactions
for this work: JISP16 [28], N3LO [28], and DJ16 [29].
These effective interactions for sd-space are derived from
the original interactions [30–32] using the ab initio no-core
shell model (NCSM) [33–36] wave function and Okubu-Lee-
Suzuki (OLS) [37] technique. These microscopic interactions
are recently applied for upper sd shell nuclei in Refs. [38–40].
The single-particle energies (SPE) used for different interac-
tions are mentioned in Table I.

The shell-model Hamiltonian in the second quantization is
written as

H =
∑

i

εiâ
†
i âi + 1

2

∑
i, j,k,l

Vi jlk â†
i â†

j âk âl . (1)

TABLE I. The single-particle energies of sd orbitals for different
interactions are shown in MeV.

Single-particle states USDB DJ16 JISP16 N3LO

0d5/2 −3.9257 −3.302 −2.270 −3.042
1s1/2 −3.2079 −3.576 −3.068 −3.638
0d3/2 2.1117 6.675 6.262 3.763

Here, â†
i and âi are the creation and annihilation operators of a

nucleon in state |i〉. The coefficients εi and Vi jlk are the single-
particle energies and two-body matrix elements (TBMEs).
The nucleon state can be represented by |i〉 = |n, l, j, jz, tz〉,
where n and l are the radial and angular-momentum quantum
numbers, respectively. Total spin j = 5/2, 3/2, and 1/2 for
sd space and jz and tz are projections of spins and isospins.
For the sd-model space, we need 12 states for protons and
12 states for neutrons. As we are working on oxygen isotopes
having a magic number of protons, we need only 12 states
for valence neutrons. We can represent this problem in the
quantum computation framework using N = 12 qubits. The
qubit representation of neutron states is given in Table II.

The shell-model Hamiltonian is converted into the qubit
Hamiltonian with the Jordan-Wigner (JW) transformation us-
ing the mapping

â†
k = 1

2

⎛
⎝k−1∏

j=0

−Zj

⎞
⎠(Xk − iYk ), (2)

âk = 1

2

⎛
⎝k−1∏

j=0

−Zj

⎞
⎠(Xk + iYk ). (3)

Here, Xk , Yk , and Zk are the Pauli matrices applied to the kth
qubit. Using these relations, the shell-model Hamiltonian is
reexpressed in terms of Pauli strings. The empty and occupied
single-particle states are represented by |0〉 and |1〉, respec-
tively.

All four interactions we are working with are usually avail-
able in the J scheme with 63 two-body matrix elements,
which are difficult to use in quantum computation directly
because angular-momentum couplings between different nu-
cleon states make the problem more complicated. To make
the problem more straightforward, a transformation to the
M scheme is applied, yielding a Hamiltonian in the second-
quantized form as in Eq. (1). The relevant equations for the
transformation are included in Appendix A, as well as in

TABLE II. Qubit representation of the orbitals of sd-model
space. As we are dealing with the neutrons alone, tz = 1/2 for each
qubit.

Qubit 0 1 2 3 4 5 6 7 8 9 10 11

n 0 0 0 0 0 0 1 1 0 0 0 0
l 2 2 2 2 2 2 0 0 2 2 2 2
2 j 5 5 5 5 5 5 1 1 3 3 3 3
2 jz −5 5 −3 3 −1 1 −1 1 −3 3 −1 1
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our code repository [41]. The transformed TBMEs in the
M scheme can be divided into three parts: proton-proton
(pp), neutron-neutron (nn), and proton-neutron (pn). As we
are working on the oxygen chain having valence neutrons
only, we transform the J-scheme matrix elements to the
nn M-Scheme TBMEs. Using the M scheme TBMEs and the
creation and annihilation operators defined in Eqs. (2) and
(3), a second-quantized Hamiltonian is constructed in terms
of Pauli operators. This JW-transformed Hamiltonian contains
1611 Pauli terms, out of which only a limited number are
useful for measurements; in the next sections, we discuss how
the Hamiltonian is further processed to reduce its size.

B. Initial-state preparation

The initial-state preparation is the minimum starting point
in finding out the ground-state energies using VQE ap-
proaches. Unlike other work, which uses the Hartree-Fock
state as the reference state, here we choose the lowest-energy
Slater determinant. In JW mapping, the occupied orbitals of
the reference state are represented by applying a suitable
number of X gates. Consider, for example, the case of the
18O ground state having spin J = 0. The lowest-energy Slater
determinant is |0, 1〉 for all our considered interactions with
M = 0. This state can be represented in a computational basis
as

|110000000000〉 = X0X1|000000000000〉. (4)

Similarly, we can represent the reference states correspond-
ing to the ground state of other oxygen isotopes. Apart from
the ground state, energies of some of the low-lying excited
states can also be calculated using the VQE method. The
initial-state preparation of the excited states is just like that for
the ground states. For example, the first-excited state of 18O
has spin J = 2 which corresponds to M = −2, −1, 0, 1, or 2.
We can ideally select any combination of two qubits that result
in these five values of M. Out of these possible combinations,
we select |1, 4〉 as the reference state having M = 2 which lies
in a subspace orthogonal to the ground state. The details of the
circuit design and ideal simulator results for the first-excited
state of 18O is given in Appendix B.

C. Variational Ansatz

The VQE is a quantum algorithm that can be used to
determine the ground state of a qubit Hamiltonian. It is well
described in many other works (see, e.g., Refs. [5,42,43]), so
it is outlined here only at a high level.

In the VQE, a register of qubits is prepared in an initial
state, e.g., as described in the previous section. A quantum
computer then applies a sequence of operations based on real-
valued parameters (a parametrized circuit, or circuit Ansatz),
and the expectation value of the problem Hamiltonian is mea-
sured. The measurement results are input into an optimization
algorithm running on a classical computer. The optimizer uses
the expectation value as its objective function, and seeks the
set of gate parameters that minimizes it. Assuming a suit-
able Ansatz is used, the ground state will be prepared by the

TABLE III. The M-scheme dimensions of the ground states of
different oxygen isotopes are mentioned along with the number of
Slater determinants (SD) considered in the construction of Ansätze.
The required number of parameters is shown in the bracket.

Isotopes M-scheme dimension No. of SDs in Ansätze

18O 14 6 (5)
20O 81 15 (14)
22O 142 20 (19)
24O 81 15 (14)
26O 14 6 (5)

quantum computer by running the circuit at the optimal pa-
rameter values.

For the successful implementation of quantum computa-
tion methods like the VQE, the construction of an Ansatz is
one of the crucial steps. The unitary coupled cluster Ansatz
(UCC) is the most commonly used Ansatz for finding ground
states in quantum chemistry and nuclear physics. The UCC
involves cluster operators that act on a reference state |ψ0〉,

|ψ (θ )〉 = ei(T̂ (θ )−T̂ †(θ ))|ψ0〉. (5)

These operators can be decomposed into singles, doubles,
etc., and excitation operators that drive occupied orbitals to
unoccupied ones,

T̂ = T̂1 + T̂2 + · · · , (6)

T̂1 =
∑
i,α

θα
i a†

i aα, (7)

T̂2 =
∑
i j,αβ

θ
αβ
i j a†

i a†
j aαaβ, (8)

where α, β are occupied states and i, j are unoccupied states.
In this work, we are using a simple unitary coupled-cluster

doubles (UCCD) type Ansatz for the ground state of even-A
oxygen isotopes given in Ref. [44]. The quantum circuits are
designed using double and controlled-double excitations ex-
pressed in terms of Givens rotation G(2) acting on a reference
state [44]. Only pair-wise excitations within the same orbital,
or from one orbital to the other, are applied, which conserves
jz. The M-scheme dimensions of the ground states of these
oxygen isotopes and the number of Slater determinants (SDs)
in each Ansatz are given in the Table III, along with the
number of parameters needed for each Ansatz inside brackets.

A circuit that constructs the ground state of 18O using
double excitations is shown in the left panel of Fig. 1. Each
double excitation comprises a single variational parameter. To
run this circuit on hardware, the double excitations must be
decomposed into one- and two-qubit gates. Naively applying
the decomposition circuit for a double excitation results in
a very inefficient construction; instead, we design a custom
circuit that leverages the fact that we start with the single
basis state in Eq. (4), and uses controlled RY gates and CNOTs
to achieve a ground state with the desired structure (a linear
combination of six computational basis states, each with two
sequential qubits in the |11〉 state). The same circuit can be
used to construct the ground state of 26O, with the addition of
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FIG. 1. Ground-state construction for 18O. (left) Structure of double excitations required to prepare the ground state. (right) Custom, highly
optimized circuit to prepare the same ground state that leverages the fact that we start in the all-zeros state, composed primarily of RY and
CNOT gates. Further optimization, e.g., removal of initial RZ gates, may be performed as needed with subsequent transpilation and optimization
passes.

a Pauli X gate on each qubit at the end to exchange the role of
0s and 1s. Resource counts are shown in Table IV.

For 20O, 22O, and 24O, the number of and nature of basis
states involved in the ground state is such that singly or even
doubly controlled double excitations are required. 20O and
24O have some symmetry (like 18O and 26O, we can use
the same Ansatz with a terminal layer of Pauli X), and each
require 10 controlled-double excitations in addition to four
double excitations. 22O requires five controlled doubles and
11 doubly controlled doubles. Implementing these circuits
requires a substantial amount of resources when applying
naive decomposition strategies, so similar tricks as the 18O
case were applied. In particular, due to the limited number of
basis states involved in the initial parts of a circuit, a “reduced”
controlled double excitation with a simpler form can be used
in many cases, instead of a full version. It is shown in Fig. 2,
and requires a controlled single excitation, for which we found
a simpler decomposition, shown in Fig. 3.

The first column in Table IV shows the resource counts
for all our Ansätze, following an additional optimization
pass through the Qiskit transpiler with optimization level

TABLE IV. Resource counts for original Ansätze (12 qubits) and
tapered Ansätze (five qubits). All these circuits have been decom-
posed and run through the Qiskit transpiler with optimization level
three and are expressed in terms of RY, RZ, and CNOT gates. 1Q and
2Q represent one- and two-qubit gate counts, and d is the circuit
depth.

Original Tapered

Iso. 1Q 2Q d 1Q 2Q d

18 13 23 15 40 8 24
20 154 158 182 55 26 45
22 1063 787 1036 59 35 55
24 176 158 184 67 36 58
26 37 23 17 39 8 24

three [47]. Some of the 12-qubit circuits possess thousands
of gates, far beyond the current limit of present-day quantum
hardware, despite the design shortcuts and optimization. In
what follows, we discuss the approaches used to simplify the
problem to make hardware execution manageable.

D. Qubit tapering

Out of the 1611 Pauli terms of the JW transformed nn
Hamiltonian, only 199 terms will be necessary due to the sim-
ple circuit design strategy discussed in Sec. II C. So, instead of
using the full Hamiltonian, we can use a reduced Hamiltonian
containing 199 Pauli terms only. All distinct Pauli observables
can be grouped into disjoint sets of commuting terms, which
can be measured simultaneously. There is more than one way
of grouping them, such as by qubit-wise commutation having
13 sets or by commutation of the full observable, leading to six

G(θ)G²(θ)
Special

FIG. 2. Decomposition of a special-purpose controlled double
excitation. It can be used in the construction of Ansätze for 20O, 22O,
and 24O as not all computational basis states are present. It performs a
correct controlled double excitation when the target register is in state
|1100〉, but will adversely affect other basis states. The controlled
single excitation is a fully general one, and its decomposition is
shown in Fig. 3.
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RY
θ/4

RY
-θ/4

RY
θ/4

RY
-θ/4

G(θ)

FIG. 3. Decomposition of a controlled single excitation into CNOT and RY gates. This was discovered by applying gate identities similar to
those described in Ref. [45], followed by further reduction of CNOT count using templates from Ref. [46].

sets. For the 12-qubit quantum circuits discussed in Sec. II C,
we use qubit-wise commutation measurements as the basis
rotations are trivial to execute.

The size of the problem can be reduced using the sym-
metries of the JW transformed Hamiltonian [48,49]. Using
this method, which is implemented as part of PennyLane’s
quantum chemistry functionality [50,51], we can taper down
the initial problem over 12 qubits to an equivalent problem
over five qubits. The associated Hamiltonian has only 52
terms instead of the original 199 terms. The Pauli terms of
the tapered Hamiltonian can be grouped into eight qubit-wise
commuting sets or six general commuting sets. Although the
qubit tapering reduces the size of the problem significantly,
the number of variational parameters in each quantum circuit
remains the same as the 12-qubit counterpart.

PennyLane’s tapering implementation also produces the
set of excitation gates that must be applied to the new system.
However, similar to the 12-qubit case, we were able to further
simplify these by leveraging: the fact that the system starts in
the all-0s state and contains a limited number of basis states;
a decomposition we found for single excitations that uses
only two CNOTs; manual parallelization of some CNOTs; and a

final pass through the Qiskit transpiler with optimization level
three. An example is shown in Fig. 4. The resource counts
of the tapered circuits are presented in the final column of
Table IV. One sees that, with tapering, the problem becomes
tractable on a near-term device.

III. RESULTS AND DISCUSSIONS

The parametrized quantum circuits mentioned in Sec. II D
have been implemented on quantum simulators and trapped-
ion quantum hardware. The classical simulation was imple-
mented in PennyLane [50], augmented by Qiskit’s transpila-
tion tools [47]; for the large 12-qubit circuits, computations
were sped up with the JAX backend and just-in-time com-
pilation [52]. The classical optimization process of the VQE
method is performed using AdamOptimizer, which is a
gradient-descent optimizer with an adaptive learning rate. The
ground-state energies of oxygen isotopes for different inter-
actions are summarized in Table V. For each interaction, the
simulated results for original and tapered quantum circuits are
compared with the shell-model diagonalization results. Our
code and data are available on GitHub [41].

FIG. 4. Circuits for 18O after tapering. Numerical values of parameters are omitted for clarity. (upper) Overarching structure of the circuit
in terms of parametrized single excitations, labeled by G. (lower) The upper circuit decomposed into RZ, RY, and CNOT gates. This circuit is
much more tractable than that of the original 12-qubit problem in Fig. 1.
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TABLE V. The ground-state energies of even-A oxygen isotopes are shown for all four interactions. For each interaction, the shell-model
diagonalization results are compared with the simulator results for the original 12 qubit circuits and the tapered ones with five qubits.

USDB DJ16 JISP16 N3LO

Iso. SM Original Tapered SM Original Tapered SM Original Tapered SM Original Tapered

18 −11.932 −11.932 −11.932 −10.853 −10.853 −10.853 −9.458 −9.455 −9.455 −10.740 −10.740 −10.740
20 −23.632 −23.146 −22.957 −21.865 −21.630 −21.484 −19.228 −19.080 −18.940 −22.271 −22.130 −21.972
22 −34.498 −33.931 −33.926 −33.192 −32.737 −32.722 −29.896 −29.533 −29.480 −34.937 −34.555 −34.465
24 −41.225 −41.022 −41.021 −44.132 −43.906 −43.905 −40.974 −40.772 −40.772 −48.158 −47.918 −47.916
26 −40.869 −40.869 −40.869 −40.102 −40.102 −40.102 −39.789 −39.788 −39.788 −53.779 −53.779 −53.779

A. Results from simulator

The simplest system among the five oxygen isotopes we
considered here is 18O having two neutrons in the sd space.
The ground state of this oxygen isotope is represented to
a good approximation by a five-parameter quantum circuit
representing six two-particle SDs. Without using fourteen SDs
as represented by the M-scheme dimension in Table III, we
are able to reach energy with an error ratio less than 0.03%
for the four interactions, we considered in this work. This
result is comparable to the ground-state energy obtained in
Ref. [15] using a five-layer ADAPT-VQE Ansatz. The case of
26O is comparable, due to similarities in the circuit structure
described in previous sections.

The quantum circuit design for the ground state of the 20O
isotope is more complicated compared with the 18O circuit. It
involves fourteen parameters, and the ground-state energies
obtained for different interactions possess 1.35% to 2.86%
errors compared with the corresponding shell-model results.
This is due to considering only fifteen SD states in the con-
struction of Ansatz instead of 81 SD states to make the circuit
simple enough so that it would be possible to run on quantum
hardware. Our simulator result for 20O ground-state energy
using USDB interaction possesses an error ratio of 2.86%
which is slightly better than the result reported in Ref. [12]
for a ten-parameter Ansatz. The circuit design for 24O isotope
is similar to 20O having the same number of parameters.
However, the error ratios are less than 0.52% for all four in-
teractions, which is much less compared with the 20O results.

The circuit design of 22O isotope is more difficult than the
rest of the oxygen isotopes considered in this work. As it is
a midshell nucleus, the M-scheme dimension is the highest
for the ground state compared with the other four oxygen
isotopes. We considered twenty SD states with 19 trainable
parameters for the 22O ground state. While the error ratios
for this isotope are between 1.35% to 1.66% for different
interactions, the error ratio is only 0.37% for a 35-parameter
circuit reported in Ref. [12].

From the above discussion, we can see that due to the
simple structure of our quantum circuits, the simulated re-
sults are slightly less bound compared with the exact results.
However, the trend of ground-state energies is nicely repro-
duced by those circuits as can be seen in Fig. 5. While the
phenomenological USDB interaction along with microscopic
interactions DJ16 and JISP16 establish 24O as the most bound
nucleus, the N3LO interaction fails to do so. The lack of 3N
force in the N3LO interaction is the main reason for which

there is a significant mismatch between the experimental and
calculated results. One way to improve the results of N3LO
interaction for 24–26O would be to include a 3N contribution
from the next-to-next-to-leading order (N2LO) of the chiral
perturbation series. The other two microscopic interactions,
namely JISP16 and DJ16, have been tuned to fit some selected
properties of a few low-mass nuclei up to A = 16 without
explicitly using the 3N force.

B. Results from hardware

To test the viability of our methods, we executed the cir-
cuits on real quantum hardware for all five isotopes at the
variational minimum for the DJ16 interaction. The optimal
parameters were first obtained through ideal classical simu-
lation. We used IonQ’s Aria, a trapped-ion quantum computer
accessed through Microsoft’s Azure Quantum cloud platform.
A trapped-ion device was chosen because the five-qubit ta-
pered circuits necessitate all-to-all qubit connectivity. At the
time of execution, average gate fidelities were reported on

FIG. 5. Theoretical ground-state energies of oxygen isotopes rel-
ative to the 16O ground state are compared with the experimental data
[53]. The shell-model results for a particular interaction are shown as
“exact” whereas the simulator results are shown as “Ansatz.” For the
USDB interaction, mass dependence [18/(16 + n)]0.3 is considered
in the two-body matrix elements, while it is not considered for the
microscopic interactions. The single-particle energies for different
interactions are mentioned in Table I.
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TABLE VI. Resource counts (one- and two-qubit gate counts
and circuit depth) for tapered Ansätze. All circuits act only on five
qubits. The original circuit is expressed in terms of RZ, RY, and CNOT

gates and was optimized using Qiskit’s transpiler with optimization
level three. The trapped-ion version is obtained by transpiling and
optimized the original circuits into the GPI, GPI2, MS gate set using
our custom transpiler [56]. The final column is the original circuit
but placed and routed on the hardware graph of IBM’s seven-qubit
superconducting (SC) Nairobi device, whose topology is shaped like
an “H.” Placement and routing is done with Qiskit using SABRE
[57]. SC results are provided only to show the effect of restricted
topology.

Orig. Ion SC

Iso. 1Q 2Q d 1Q 2Q d 1Q 2Q d

18 40 8 24 46 8 26 40 8 24
20 55 26 45 87 26 67 53 40 58
22 59 35 55 97 35 83 64 57 90
24 67 36 58 94 36 85 61 55 72
26 39 8 24 46 8 26 39 8 24

the Azure Quantum provider information page as 99.95% for
single-qubit gates, and 99.6% for the two-qubit gate [54].

These gate error rates necessitate the use of error miti-
gation. However, to enable this, it was necessary to bypass
the compiler by submitting circuits to the cloud platform
expressed in IonQ’s native gate set. The set has three elements,
two single-qubit gates [55],

GPI (φ) =
(

0 e−iφ

eiφ 0

)
, (9)

GPI2(φ) = 1√
2

(
1 −ie−iφ

−ieiφ 1

)
, (10)

and the two-qubit gate Mølmer-Sørenson gate,

MS = 1√
2

⎛
⎜⎜⎝

1 0 0 −i
0 1 −i 0
0 −i 1 0

−i 0 0 1

⎞
⎟⎟⎠. (11)

We wrote a tool to perform transpilation and optimization
of PennyLane circuits into this gate set, which we make avail-
able open-source to the community [56]. Prior to transpilation,
the circuits were also passed through the Qiskit transpiler with
optimization level three, in order to minimize the two-qubit
gate count. The resources for the resultant circuits are pre-
sented in Table VI. For comparison, we also provide estimates
for the circuits transpiled to a connectivity-restricted proces-
sor (which requires the addition of many two-qubit SWAP gates

TABLE VII. Numerical results from IonQ Aria machine at vari-
ational minimum for DJ16 interaction. All circuits were executed
using 1000 shots. Zero-noise extrapolation with a single CNOT fold
and linear extrapolation was performed for isotopes 20, 22, and 24.
The percent error is computed from the bold-faced value for all cases.

Iso. Exact HW (raw) HW (+ZNE) Percent error

18 −10.853 −10.546 2.83
20 −21.484 −18.041 −19.516 9.16
22 −32.722 −25.537 −28.611 12.56
24 −43.905 −35.830 −42.001 4.34
26 −40.102 −38.547 3.88

for qubit routing) to further motivate the use of the trapped-ion
device.

The initial hardware results are shown in the “HW (raw)”
column of Table VII. They are the result of executing 8
circuits (one per qubit-wise commuting set of Paulis), with
1000 shots each, to compute the expectation values of the
tapered Hamiltonian discussed in Sec. II D. The results for
the smallest problem instances (18O and 26O) are within a few
percent of the exact values, while there is significant deviation
for 20O, 22O, and 24O, which require ≈4× as many two-qubit
gates.

To improve the results we applied error mitigation. As the
ions on hardware are not individually addressable through the
software interface, measurement error mitigation was not per-
formed since we could not tie results of calibration circuits to
specific qubits with certainty. Instead, only gate error mitiga-
tion with zero-noise extrapolation (ZNE) [58] was performed
for the three middle isotopes. Two-qubit gate folding was
used. There are two ways to fold on the hardware platform:
MS folding after transpilation to native gates, or CNOT folding
prior to transpilation. For the former, MS is not its own inverse
(MS† = M3). A single fold thus consists of four MS gates,
which adds substantially more noise, as well as financial cost
to the simulation.

CNOT, on the other hand, is its own inverse, so a fold
consists simply of adding two of them. Typical extrapolation
is performed with respect to noise scale factors of the form
2λ + 1, where λ is the number of folds, which scales directly
with the number of additional CNOT gates. After transpilation
to trapped-ion gates, we obtain two MS gates and some single-
qubit gates as shown in Fig. 6. In principle, the noise scale
factor could be adjusted to take into account the additional
single-qubit gates. However, the single-qubit error rates are
a factor of ten less and in many cases, they end up being ab-
sorbed into neighboring gates during the optimization process,
so we do not consider this.

GPI
(-3.14)

GPI2
(1.57)

GPI
(-3.14)

MS MS

GPI2
(-1.57)

FIG. 6. A CNOT pair, to be inserted in error mitigation protocols, transpiled into trapped ion gates.
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FIG. 7. Results from hardware execution on IonQ Aria. Solid
lines correspond to exact values. Raw results are shown at noise
scale factor one. The raw results alone do not show the drip line;
to improve the results, zero-noise extrapolation with a single CNOT

fold and linear fit was performed for isotopes 20, 22, and 24. These
results are shown at noise scale factor three, and the dotted lines show
the extrapolation back to the zero-noise limit. Results from isotopes
18 and 26 are repeated at zero to improve visibility of the key
result: after error mitigation, the drip line is visible. The error bars
correspond to standard deviations estimated from 100 Monte Carlo
simulations, bootstrapped from the raw results (see Appendix C).

Due to resource constraints, only a single CNOT fold was
performed, and the resulting circuits were transpiled and opti-
mized. The ZNE circuits were also executed with 1000 shots,
and the extrapolation procedure was a simple linear fit of the
final expectation value, which is shown in Fig. 7. Since the
fit includes only two points at consistent scale factors, we can
perform it on the final Hamiltonian expectation values directly
instead of on each Pauli term individually. The error rates of
the hardware were low enough that even minimal ZNE proved
sufficient to see the drip line; our final results are shown in
Fig. 8. However, we note that the percentage error of two of
the isotopes (20O and 22O) is relatively higher than the rest.

FIG. 8. Plot of numerical results from Table VII. The error
bars correspond to standard deviations estimated from 100 Monte
Carlo simulations, bootstrapped from the raw hardware results
(see Appendix C). The drip line is clearly visible.

The error bars in the plots represent the standard deviation
of Monte Carlo simulations bootstrapped from the probability
distributions obtained from hardware execution. The boot-
strapping procedure is described in detail in Appendix C.
Future work should test the reliability and consistency of the
results by performing more experiments on hardware, with
more shots, more gate folds, different extrapolation functions,
or alternative mitigation techniques.

The results do, however, highlight the significant progress
that has been made in quantum hardware over the past few
years. As a point of comparison, ZNE with Richardson ex-
trapolation was performed on a trapped-ion machine for the
first time in Ref. [59] to solve for the deuteron binding-energy
using circuits with up to four qubits. Our baseline five-qubit
circuits for 22O and 24O use as many two-qubit gates as the
largest circuits that were run in Ref. [59], which were the
terminal points in the extrapolation. Even with minimal post-
processing, we find percentage errors to be comparable to the
state-of-the-art at the time (2%–4%). Additional postprocess-
ing, such as measurement error mitigation, would improve
these results further, perhaps even bypassing the need for gate
error mitigation.

IV. CONCLUSIONS

We investigated the usefulness of quantum computation
in the shell-model description of even oxygen isotopes from
N = 10 to 18 in the sd valence space above a 16O core.
Initially, we represented this problem as a 12-qubit problem
because there are 12 single-neutron states in the sd space.
We constructed UCCD-type Ansätze for solving the problem
with the VQE, but the quantum resources required for running
those circuits on quantum hardware are far from the currently
available resources. So we use a qubit tapering technique
that reduces our 12-qubit problem to an equivalent five-qubit
problem. The quantum resources were reduced significantly
so it became possible to run on quantum hardware. The clas-
sical simulator results for the tapered Ansätze are in good
agreement with the exact shell-model diagonalization results.
The simulated ground-state energies of the oxygen isotopes
for USDB, DJ16, and JISP16 follow the experimental trend
and thus predict the neutron drip line for the oxygen chain
correctly at 24O. However, the N3LO interaction fails to fol-
low the same.

Finally, we run the five-qubit quantum circuits on trapped-
ion quantum hardware, IonQ-Aria using the optimal pa-
rameters from classical simulator. Due to limited quantum
resources, we ran our quantum circuits only for the DJ16
interaction. The raw (without error-mitigation) results for low-
depth circuits of 18,26O are close to the exact results within a
few percent errors. However, the midshell oxygen isotopes,
20, 22, and 24 needed error-mitigation techniques to correctly
reproduce the experimental trend of binding energies. The
unmitigated results of the former two isotopes along with
the zero-noise extrapolation (ZNE) results of the latter three
isotopes show 24O as the neutron drip line nucleus.

In the future, this work can be extended to include higher-
mass isotopic chains across the sd model space, like neon and
magnesium. Due to the open-shell nature of these two isotopic
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chains, the M-scheme Hamiltonian would contain pp, nn, and
pn parts, unlike oxygen where only the nn part of the Hamil-
tonian was sufficient. It will increase the number of Pauli
strings significantly after the JW transformation. Apart from
the Hamiltonian, scaling up the quantum circuit design for
these isotopic chains will be challenging within the UCC for-
malism because many double, single-controlled double, and
double-controlled double excitation gates would be needed
to construct suitable Ansätze. The concurrent increase in the
number of variational parameters may also lead to barren
plateaus and challenges with trainability. To avoid such diffi-
culties it would be important to explore these problems using
automated Ansatz-construction techniques like ADAPT-VQE
[60,61] (as was done in recent work [15]), or a Hamiltonian
variational Ansatz [62].
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APPENDIX A

The two-body matrix elements from J scheme to M scheme
is transformed using the following formula [63]:

v̄αβγ δ =
∑

J,M,T,Tz

[Nab(JT )Ncd (JT )]−1( jamα jbmβ |JM )

×
(

1

2
mtα

1

2
mtβ |T MT

)
( jcmγ jd mδ|JM )

×
(

1

2
mtγ

1

2
mtδ|T MT

)
〈ab; JT |V |cd; JT 〉.

Here, the Greek letters α, β, γ , δ represent single nucleon
states as |α〉 = |n, l, j, mα, tz〉. The four quantities inside
bracket are the 3 j symbols of angular momenta and isospins,
while 〈ab; JT |V |cd; JT 〉 are the J-scheme two-body matrix
elements. The normalization constants Nab(JT ) and Ncd (JT )
are defined as

Nab(JT ) =
√

1 − δαβ (−1)J+T

1 + δαβ

,

Ncd (JT ) =
√

1 − δγ δ (−1)J+T

1 + δγ δ

.

APPENDIX B

The first-excited state of 18O can be constructed using uni-
tary coupled-cluster with singles and doubles (UCCSD) type
Ansatz using single, G, and double excitation gates G(2) acting
on a reference state, as discussed in Sec. II B. The construction
of the circuit is shown in Fig. 9.

FIG. 9. The first-excited state Ansatz of 18O considering |1, 4〉
as the reference states. The G(2) and G represent the double- and
single-excitation gates that are applied to get the desired number of
SD states in the Ansätze. Each single and double excitation gate adds
one more parameter to the quantum circuit.

Here, the number of SDs considered for the construction
of the Ansatz is the same as the M-scheme dimension of that
state. As shown in Fig. 9, the Ansatz is constructed by apply-
ing two single-excitation and six double-excitation gates on
the reference state |1, 4〉 to have an eight-parameter quantum
circuit.

As the number of SDs in the Ansatz is the same as the
M-scheme dimension of that state, the ideal simulator results
match the exact results up to good approximation. The contri-

FIG. 10. Energy contributions of different Slater determinant
states to the binding energy of first-excited state of 18O is shown.
For all four cases, |1, 4〉 is the reference state, and contributions from
the reference state are different for different interactions.
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butions from the different SDs apart from the reference state
are shown in Fig. 10. From the figure, we can see that the
contributions from |3, 11〉 and |5, 9〉 states are quite small,
whereas the contributions from |1, 6〉 are the highest corre-
sponding to the three microscopic interactions we considered
in this work. This 12-qubit problem can be reduced to a five-
qubit problem using the same qubit tapering technique as used
for the ground state. However, due to the limited quantum
resources, we did not intend to run these circuits on quantum
hardware. Similarly, it is possible to construct an Ansatz for
some of the low-energy states of other oxygen isotopes.

APPENDIX C

The statistical uncertainty of the ground-state energies ob-
tained by executing the optimized VQE circuits on hardware
can ideally be estimated by repeating the hardware experi-
ments multiple times and computing the standard deviation.
However, this is infeasible in practice due to resource con-
straints. To obtain a rough estimate of the standard deviation,
we used Monte Carlo simulation bootstrapped using results of
the experiment for each isotope.

A single experiment for a given isotope comprised of
executing eight circuits (one per qubit-wise commuting set
of Paulis), with 1000 shots each. The data for each experi-
ment (circuit) are returned from the hardware provider as a
histogram where the bins and frequencies correspond to indi-
vidual bit strings and their observed frequencies, respectively
(for the five-qubit VQE circuits used in this work, there was a
maximum of 25 = 32 bins per histogram).

To estimate the standard deviation of the ground-state en-
ergy value for a single isotope, we first used bootstrapped
Monte Carlo simulations to independently sample from the
distributions represented by each of the eight histograms
nshots(1000) times and postprocessed the results to obtain
a ground-state energy value. We then repeated this process
multiple (100) times to obtain several ground-state energy
values with statistical fluctuations due to the finite number of

TABLE VIII. Monte Carlo estimates of the standard deviation
of the ground-state energy values (in MeV) for different isotopes.
Bootstrapped Monte Carlo simulation using single experiment data
was used to estimate the std. dev. for noise scale factors of one and
three, while a linear combination of the two was used to estimate the
std. dev. in the ZNE extrapolated ground-state energy values for three
of the isotopes.

ZNE Noise scale Noise scale
Iso. extrapolated factor = 1 factor = 3

18 0.217
20 0.592 0.35 0.4
22 0.632 0.384 0.502
24 0.497 0.357 0.403
26 0.235

Monte Carlo samples. The standard deviation in these values
is used as an estimate of the true standard deviation of the
ground-state energy value obtained from the hardware.

We performed this procedure for different isotopes in-
dependently to obtain the standard deviations reported in
Table VIII, which are those shown as error bars in Figs. 7 and
8. The same was done for the three isotopes where gate folding
was applied. For the estimate of the zero-noise extrapolated
values, we used a combination of the standard deviation esti-
mates from the experiments with noise scale factors of one and
three (computed as the square root of the combined variance
obtained by taking a linear combination of the individual
variances with squared coefficients).

We note that the key limitation of the above method is that
it makes the simplifying assumptions that the device distri-
bution is stationary, i.e., the device operational behavior does
not change over time (which is unlikely to hold for near-term
noisy devices), and that the number of measurement shots in
the original experiments are sufficient to capture the bit string
distributions.
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