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Model-independent analysis on the regular behavior of α preformation probability in heavy nuclei
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The formation process of the α cluster at the surface of nuclei is believed to unravel the structural properties of
heavy nuclei, while the fully microscopic understanding of the formation probability is still extremely difficult. In
this study, the α decay width is obtained within the cluster model plus the identical α-core interaction potential
for our previous α-cluster structure investigation. Given that the α decay half-life is determined by the decay
width (penetration probability) and the α preformation probability (Pα), the relative-varying trend of Pα can
be then systematically analyzed via the comparison of the ratio of experimental α decay half-lives in isotopic
chains with that of calculated decay widths to avoid exploring the model-dependent values of preformation
probabilities. The ratio of extracted Pα values, for neighboring α emitters, is further presented to clearly reveal
the smooth pattern of the formation probabilities of the α cluster off the shell closure. As a comparative study, the
ratio of the Pα value from the cluster formation model is listed in the valence nucleon scheme as well, showing
a similar pattern to the present results.
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I. INTRODUCTION

α decay, as one crucial decay channel of unstable nuclei,
has received extensive attention since the early stages of
nuclear physics especially due to its key role played in the
identification of newly synthesized heaviest nuclides [1–4].
On the other hand, the spectra of α decay provide us a unique
platform to explore the structural properties of exotic nuclei
[5–10], such as the robustness of the N = 126 neutron shell
[11], the proton-neutron pairing correlation [12–15], and the
odd-even staggering phenomenon [16–20]. Theoretically, the
α decay is usually treated as a two-step process, namely,
the formation of the α cluster and its subsequential penetra-
tion through the Coulomb barrier. The latter procedure was
independently interpreted by Gamow [21] and Gurney and
Condon [22] as the quantum tunneling phenomenon, which
is the first successful application of quantum mechanics into
the nuclear physics field. Following this, the previously pro-
posed Geiger-Nuttal law [23] of α radioactivity can be nicely
explained despite the lack of details on the composition of
an α particle or even the atomic nucleus. There is in fact a
coincidence that the formation probability of the α cluster be-
fore its emission varies smoothly, particularly in contrast with
the varying range of the penetration probability (more than 30
orders of magnitude). Consequently, the experimental α decay
half-lives can be well reproduced within various theoretical
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models plus the constant assumption of an α preformation
factor [24–28].

In turn, the α preformation factor (Pα) can be extracted
from the experimental half-life and the calculated penetration
probability [29–37] (or say the decay width). The abnormal
behavior of Pα away from the expected smooth trend can
then exhibit the special characteristic of exotic nuclei [38,39],
such as the aforementioned shell effect [40–44] and the en-
hancement of proton-neutron correlation [15,45]. However,
the extracted values of Pα are quite model-dependent because
the penetration is addressed within a specific α-core inter-
action potential, which is constructed via different ways in
different models. It seems that these conjectures or conclu-
sions, based on the extraction of the α preformation factor,
are therefore model dependent as well. Fortunately, the key
point is a deviation of Pα from the relatively flat trend, leading
to our new knowledge of the structural properties of nuclei
away from the stability line. The latter Pα lines, on the basis
of different α decay models, can actually shift together into a
generally single one, as shown in our previous study to some
extent [32]. Despite differences in the extracted Pα values
[33,46–50], the overall conclusion drawn from the observed
trends should remain consistent.

In this study, we propose a model-independent avenue to
recognize the regular pattern of preformation probability Pα

in heavy nuclei near the proton drip line. Specifically, we
obtain the ratio of the calculated decay width of one α emitter
to its lighter neighbor in one isotopic chain. In parallel, the
ratio of experimental half-lives is correspondingly presented.
If the α preformation probability varies smoothly, these two
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lines of ratios should be close with each other. It can be
simply figured out that such a comparison is not related with
the choice of α decay models in fact. Moreover, a slightly
modified Woods-Saxon type potential is adopted by us to sys-
tematically describe the α-core structure recently. Given the
same α-core two-body system, the same potential is applied
here to calculate the decay width to make the investigation
consistent. Another new ingredient, here, is that the decay
width is obtained in view of the pure particle flow via the
solution of the radial α-core Schrödinger equation. The details
on the present approach can be found in the next section,
in which the cluster formation model is also employed to
perform a comparative study on the α preformation factor. In
Sec. III, specific results and related discussions are presented,
followed by a summary in the last section.

II. THEORETICAL FRAMEWORK

A. Extraction of α preformation factor
from the experimental data

Once the α particle is formed at the nucleus surface, it com-
bines with the residual daughter nucleus to create a two-body
system, leading to a quasibound state, corresponding to a de-
cay width. As for this α-core system, the radial wave function
can be achieved by solving the relative motion Schrödinger
equation between the α particle and residual nucleus, which
is given by (

−h̄2

2m
∇2 + V (r)

)
un�m = Qαun�m. (1)

Here, the total interaction potential V (r) consists of the nu-
clear potential VN (r), the repulsive Coulomb potential VC (r),
and the additional centrifugal potential,

V (r) = VN (r) + VC (r) + h̄2�(� + 1)

2μr2
, (2)

where μ is the reduced mass of the α-core system, � is the
angular momentum carried by the α particle, and r denotes the
distance between the center of mass of the residual daughter
nucleus and that of the α cluster. Actually, the angular mo-
mentum carried by α emitted is zero for ground state(g.s.) to
g.s. α transitions of even-even nuclei here.

After the residual daughter nucleus is treated as an
isotropic spheroid with homogeneous charges plus the point
approximation of α particle, the repulsive Coulomb potential
VC (r) can be obtained by

VC (r) =
⎧⎨
⎩

Zd Zαe2

r , r > RC

Zd Zαe2

2RC

[
3 − (

r
RC

)2]
, r � RC

, (3)

where RC is the Coulomb radius, Zd and Zα denotes the charge
number of core and cluster of the system, respectively.

It is obvious that the selection of the nuclear potential
VN (r) is a crucial step in determining V (r), while the differ-
ent theoretical models employ different interaction potentials
[34,37,51–53]. Our previous study [54] utilized a Woods-
Saxon type potential plus a high order term (i.e ., W.S.+W.S.3)
to investigate the cluster structure above the double magic

nucleus,

VN (r) = − V0

[
1 + λ exp

(
− r2

σ 2

)]

×
{

b

1 + exp[(r − R)/a]

+ 1 − b

{1 + exp[(r − R)/3a]}3

}
, (4)

where V0, λ, σ , a, and b are fixed parameters. In order to
ensure the consistency with previous research [54], the same
nuclear potential VN (r) [i.e., Eq. (4)] is adopted here with its
corresponding parameters to investigate the same two-body
system. The determination of the separation radius R for each
nucleus is obtained by adjusting the experimental decay en-
ergy Qα values, where the special number of internal nodes is
determined by the Wildermuth condition,

G = 2N + � =
4∑

i=1

(2ni + �i ) =
4∑

i=1

gi. (5)

Here, N is the number of internal nodes, ni and �i are the cor-
responding quantum numbers of the nucleons forming the α

cluster in the shell model context. The globe quantum number
is therefore chosen as G = 22 (G = 20) for nuclei with the
neutron number N > 126 (N � 126), which is consistent with
previous studies [55–57]. Following this schedule, one can
find that the separation radius R shows a clear change when
crossing the N = 126 shell closure, which is not consistent
with the continuous behavior of experimental charge radii in
this region [58]. To address this issue, the potential depth
V0 should be tuned up slightly above N = 126 to ensure the
continuity of R around the closed-shell region.

A methodology of analyzing the quasibound state wave
function in the pure particle emission state is utilized to eval-
uate the decay width through the determination of energy
flux density at the remote region. In the case of pure particle
emission, the quasibound state normalized wave function can
be solved by matching the outgoing Coulomb wave function
in the asymptotic zone, namely,

un�m(r) � A(G�(kr) + iF�(kr)) −→ A exp(ikx + δ). (6)

It is worthwhile to note that the wave function of real and
imaginary parts both maintains a stable amplitude A in the
asymptotic region. Two randomly adjacent points r1 and r2 are
picked in the asymptotic region, and u1 (r1) = 1 [u2(r1) = 1]
and u1(r2) = 1 [u2(r2) = −1] are taken as the corresponding
wave functions, respectively. There are only two linearly in-
dependent solutions in the quasibound state wave function,
u1(r1) and u1(r2) can then be derived by linearly superimpos-
ing the real and imaginary components of Eq. (6):

u1 = cos θ

cos θ + sin θ
Re(un�m) + sin θ

cos θ + sin θ
Im(un�m),

u2 = sin θ

cos θ − sin θ
Re(un�m) + cos θ

cos θ − sin θ
Im(un�m), (7)
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where θ is the phase difference between u1 and Re(un�m). With
the process presented above, the amplitudes A1 and A2 in the
asymptotic region can be obtained by

A1 = A

| cos θ + sin θ | ,

A2 = A

| cos θ − sin θ | , (8)

where A1 and A2 are the amplitude of the wave functions
u1 and u2, respectively. After A1 and A2 are calculated, the
amplitude A of the pure outflow state wave function un�m in
the asymptotic region can be given by

lim
r→∞ |�n�m(r)|2 = A2 = 2A2

1A2
2

A2
1 + A2

2

. (9)

In order to avoid the singularity in the calculation of A1 and
A2, one needs to reselect the starting points in the asymptotic
zone if the difference between A1 and A2 is very large. After
the asymptotic behavior of the quasibound state wave function
in the outflow state is obtained, the α decay width can be
achieved by

	 = h̄2k

μ
A2, (10)

where the wave number k = √
2μE/h̄. As for the half-lives of

α decay, one can obtain

T1/2 = h̄ ln 2

Pα	
, (11)

where Pα is the preformation factor. It is believed that Pα

is quite difficult to be evaluated microscopically because of
the complexity of both the nuclear potential and the nuclear
many-body problem. In turn, the extracted Pα values, from
the experimental half-life and calculated decay width based
on the above equation, can tell us structural features of exotic
α emitters. However, previous studies have proven that the
	 is sensitive to the choice of the α-core interaction po-
tential, and it can span quite large orders of magnitude in
different models. Hence the model-independent analysis on
the α preformation factor, aiming at the rich knowledge of
dynamical behavior derived by the nucleon-nucleon corre-
lation, should be necessary. As mentioned before, one can
avoid the discrepancies due to the model choice by consid-
ering the ratios of related quantities (i.e., T1/2, 	, and Pα)
of adjacent nuclei in the isotopic chain. In detail, the ratio
of Pα of neighboring nuclei, according to Eq. (11), can be
assessed by

Rα = Pα(n)

Pα(n+1)
= T1/2(n+1)/T1/2(n)

	n/	n+1
, (12)

where n denotes one certain nucleus and n + 1 denotes its
isotopic neighbor with one more neutron.

B. α preformation factor with the cluster-formation model

To compare the present extracted Pα values plus the ratios
with other results from a relatively direct method, the α pre-
formation factor is also evaluated within the cluster-formation

model (CFM). According to the CFM, the initial state wave
function of the nuclear system � can be described as a linear
combination of possible clusterization states �i, namely,

� =
N∑

i=1

ai�i, (13)

where ai is the superposition coefficient of clusterization
states �i. In parallel, the total Hamiltonian H can be written
as the combination of all cluster Hamiltonians Hi,

H =
N∑

i=1

Hi. (14)

Note that various clusterization states are degenerate for the
total energy E of the system within the CFM framework.
Additionally, the conditions of orthogonality and complete-
ness are satisfied between these different clusterization
states,

N∑
i=1

|ai|2 = 1, (15)

ai =
∫

�∗
i �dτ. (16)

Following this, one can get the relation about the eigenen-
ergy E of the total wave function,

E =
n∑

i=1

|ai|2E =
n∑

i=1

E f i, (17)

where E f i represents the formation energy of the clus-
terization state �i. According to the above process, the
formation probability Pi of the clusterization state �i of the
initial state wave function can be denoted as Pi = |ai|2 =
E f i/E . Obviously, the formation probability of a certain
clusterization state can be determined by the ratio of its
formation energy to the total energy of the system. Con-
sequently, in the case of four-nucleon clusterization, i.e.,
α particle, the formation probability of α cluster can be
given by

PCFM
α = E f α

E
, (18)

where E f α denotes the formation energy of the α cluster state
and E is the total energy composed of E f α and the interaction
energy between the α cluster and the residual daughter nu-
cleus. In principle, to determine the formation energy E f α and
the total energy E shown in Eq. (18), the overlap integral of
the wave function between the initial state and the α-decaying
state should be obtained by separating the complete Hamil-
tonian within the coordinate transformation and subsequently
solving the time-dependent Schrödinger equation [41,49,59–
61]. It is worthwhile to note that the main contribution to the
α cluster formation probability stems from the nucleons at
the surface of the parent nucleus [62–64]. As a consequence,
the experimental data of the binding energy can be utilized to
approximate the values of the previously indicated two ener-
gies leading to the preformation probability in the CFM. By
carefully analyzing the nucleon-nucleon interactions of neu-
trons (n − n) and protons (p − p) as well as neutron-proton
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(n − p) correlations on the surface of the nucleus, explicit
expressions of the formation energy and total energy have
been given, namely [59],

E f α = 3B(A, Z ) + B(A − 4, Z − 2)

− 2B(A − 1, Z − 1) − 2B(A − 1, Z ), (19)

E = Sα (A, Z ) = B(A, Z ) − B(A − 4, Z − 2), (20)

where Sα are α-cluster separation energies. To obtain a more
concise link between the formation energy E f α and the
nucleon-nucleon interacting energy,i.e., separation energies,
one can reformulate Eq. (19) to

E f α = E f α + B(A − 4, Z − 2) − B(A − 4, Z − 2)

= [2Sp(A, Z ) + 2Sn(A, Z )] − Sα (A, Z ), (21)

where Sp (Sn) denotes the single-proton (neutron) separation
energy of the parent nucleus, namely,

Sp(A, Z ) = B(A, Z ) − B(A − 1, Z − 1), (22)

Sn(A, Z ) = B(A, Z ) − B(A − 1, Z ). (23)

As mentioned in Ref. [49], Eqs. (19) and (20) can
only effectively reproduce the preformation factors Pα for
even-even nuclei. It will be unreasonable when extending
to the formation energy E f α of odd-odd and odd-A nu-
clei. At that time, based on the above equation (21), the
reasonable relation of the formation energy for different
types (even-even, odd-odd, odd-A) of nuclei was proposed
[41,49]:

E f α =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2Sp + 2Sn − Sα (even − even)
2Sp + S2n − Sα (even − odd)
S2p + 2Sn − Sα (odd − even)
S2p + S2n − Sα (odd − odd)

. (24)

Here, the S2p (S2n) denotes the two-proton (neutron) separa-
tion energy as

S2p(A, Z ) = B(A, Z ) − B(A − 2, Z − 2), (25)

S2n(A, Z ) = B(A, Z ) − B(A − 2, Z ). (26)

In short, owing to the concisely refined equation, i.e.,
Eq. (18), proposed in the CFM scheme, a comparative relation
to verify the consistency of the Pα between adjacent nuclei is
simply given by

RCFM
α = Pα(n)

Pα(n+1)
= E f α(n)/En

E f α(n+1)/En+1
. (27)

III. CALCULATED RESULTS AND DISCUSSION

Based on the theoretical framework described above, we
intend to investigate the pattern of α preformation factors in
heavy α emitters with a focus on the g.s. to g.s α decays in
even-even nuclei with 82 < Z < 92 and 102 < N < 144. Be-
fore showing the detailed results of the α preformation factor,
the ratios (in logarithm scale) of experimental α decay widths
deduced from the measured data [65] and the calculated ones
for isotopic chains are presented in Fig. 1. As one can see, the

FIG. 1. The logarithm of ratios between the experimental α de-
cay widths and the calculated ones for isotopic chains versus the
neutron number N of α-decaying nuclei.

log10(	exp/	calc), corresponding to the α preformation factor,
as implied by Eq. (11), clearly decreases in the vicinity of the
N = 126 shell closure for each isotopic chain. This reconfirms
the significant shell effect in the formation process of the α

cluster, which is consistent with previous studies [46,66,67].
It is noted that the log10(	exp/	calc), as another form of
Pα , generally maintains steady values when it comes to the
off-shell region. The interesting point is that this quantity
of the α emitter above N = 126 is obviously higher than
that of nuclei with N < 126, which can be attributed to the
strong pairing force among the neutrons and protons for the
α particle formation [15]. Moreover, the abnormal behavior
of uranium isotopes below N = 126 can be understood from
the enhanced n − p correlation with an increasing number
of valence protons, as shown in the recent systematical
analysis [15].

Figure 1 actually denotes that the extracted Pα values are
in the reasonable order of 10−1 based on Eq. (11). In fact,
the discrepancies of calculated α decay widths, from different
models [51–53,68–73], can span several orders of magnitude,
denoting large differences between various extracted prefor-
mation factors. For example, the evaluated Pα values from the
present extraction and the CFM method are shown in parallel
for Po and Ro isotopes in Fig. 2. As anticipated, the value of
Pα is comparatively small in the vicinity of the N = 126 shell
closure along the isotopic chain, no matter if the extraction
or the CFM evaluation is concerned. For instance, 210Po and
212Rn hold the smallest Pα values among the polonium and
radon isotopes, respectively.

Besides reconfirming the strong shell effect on the for-
mation of the α cluster, this supports our previous points
that the deviation away from the general trend is the key
for demonstrating the structural properties from the α pre-
formation probability. Based on the careful analysis in our
previous study [32], it is found that the extracted preformation
factors exhibit a similar variation trend for each isotopic chain,
whichever model is employed in the calculation of the α decay
width. Of course, the previous results [32] and the present dis-
cussion on the preformation probabilities from Fig. 2 are quite
intuitive rather than directive presentation. It is therefore, as
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FIG. 2. The comparison of the α preformation factor in the
present extraction (solid symbols) with that within the CFM (hollow
symbols) versus the neutron number of parent nuclei.

mentioned before, necessary to perform a model-independent
way to recognize the Pα pattern, serving as a probe into the
n − p interaction [15], shell evolution [44], symmetry energy
[74], and other structural phenomenon.

Before paying attention to the extracted or evaluated Pα

values directly, let us mention the comparison of the ratio of
the half-life between two adjacent nuclei with that of calcu-
lated decay width (	n/	n+1) in isotopes, as shown in Fig. 3.
This parallel comparison, inspired by Eq. (12), can unravel the
varying trend of the α preformation factor. Indeed, the order
of magnitude, for these two quantities log10(T1/2(n+1)/T1/2(n) )
and log10(	n/	n+1), is identical as shown in Fig. 3, which has
not been dependent on the choice of the α-core interaction
potential. It will be interesting to see the corresponding ratios

FIG. 3. Ratios of the experimental half-life (a) and the calculated
decay width (b) versus the neutron number N of α emitters. Here, the
subscripts n and n + 1 denote two adjacent nuclei in the even-even
isotopic chain.

FIG. 4. Comparison of the preformation factor ratios extracted
from the experimental data (a) with those from the CFM evaluation
(b). The ratios are plotted versus the standard Casten parameter
[NpNn/(Np + Nn)] for isotopic chains.

of decay widths calculated from other models. The close
behaviors of these two ratios of experimental half-life and
calculated decay width substantiate the smooth and steady
pattern of preformation factors again. Moreover, the values of
log10(T1/2(n+1)/T1/2(n) ) and log10(	n/	n+1) on the right part
above the N = 126 shell are generally larger than those on the
left region, which is a manifestation of the different chang-
ing rates of both half-lives and α-decay widths crossing the
N = 126 shell closure. This may be explained by the afore-
mentioned strong neutron-neutron pairing (n − n) interaction
there. Simply, increasing the valence neutron would make the
α emission harder, resulting in the reduction of α decay energy
(very sensitive to the calculated decay width and half-life).
As a result, the α decay half-life of heavier isotopes with
N > 126 is comparatively longer plus an increasing rate, as
shown in the right panel of Fig. 3. The shell effect is expected
to interplay with the pairing correlation for the preformation
of the α cluster before its penetration [12], as evidenced in
recent experiments as well [75,76]. In Fig. 4, the ratio of Pα in
one isotopic chain, defined as Rα previously, is plotted versus
the quantity NpNn/(Np + Nn). In this context, the Np (Nn)
represents the valence proton (neutron) number with respect
to the nearest shell closure, i.e., Z = 82 and N = 126 here,
which was earlier proposed by Casten [77] in the pursuit
of the relations of n − p pairing correlations with nuclear
structure information. As shown in the top panel of Fig. 4,
the ratio value Rα varies quite smoothly and approaches the
unity line in the right region across the N = 126 shell clo-
sure. As compared, there is is relatively obvious fluctuation
for the Rα value at the left side from the NpNn = 0 point,
which could be explained as follows to some extent. On one
hand, the extracted uncertainties can be further reduced with
the improving accuracy of the experimental α decay data
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especially in the uranium and radon isotopes near the proton
drip line. On the other hand, with the introduction of more
valence neutrons (or holes) in the α formation process, the
situation would be more complicated leading to the fluctuant
pattern of the α preformation factor there. Further, the Rα

varies in general smoothly especially for nuclei with N > 126
in the n − p related context, namely NpNn, which implies the
slight effect from the n − p interaction in the α formation.
This is also consistent with the recent conjecture on the basis
of the experimental α decay systematics around 208Pb. Mean-
while, those α-decaying nuclei above 100Sn are in different
circumstances due to the expectedly large n − p correlation
within a closer Fermi surface of protons and neutrons. In
this nuclear symmetry region (N ∼ Z), the α preformation
probability should be therefore larger, which has been demon-
strated via the relative α-reduced width [8,78]. As for the
CFM evaluation, the RCFM

α value holds quite steadily away
from the closed shell, implying the smooth Pα value. This is
generally consistent with the above extracted result [Fig. 4(a)],
sustaining the previous knowledge of the Pα behavior in a
model-independent way. Moreover, the logarithm of the pre-
formation probability is linearly related with the square root
of the decay energy for isotopes [79,80]. The α decay en-
ergy of emitters, away from the shell, is also linear with the
neutron number for isotopic chains, as opposed to the va-
lence correlation scheme or the systematics analysis [81,82].
Keeping these two facts in mind, it can be easily concluded
that the ratio of Pα between neighboring α emitters would
maintain in a smooth pattern. Yet it is worth noting that the
CFM is derived from the assumption of clusterization states,
neglecting the detailed nucleon-nucleon or cluster-cluster cor-
relation. A further investigation deserves the more accurate
description of the α preformation factor, helping the exper-
imental design for the synthesis of superheavy α-decaying
nuclei.

IV. SUMMARY

In summary, our recently proposed technique, focusing on
the asymptotic behavior of the radial wave function of the
α-core relative motion, is applied to systematically calculate
the α decay width of heavy isotopes with Z > 82. During
this process, the crucial α-core potential is directly chosen
from previous studies of α cluster structure, to ensure the
consistency of investigation on the same binary system. The
α preformation probability is then extracted by the obtained
decay width and the corresponding measured half-life for
isotopic chains. After the detailed analysis of these three re-
lated quantities, namely T1/2, 	, and Pα , via the ratio of them
between adjacent α emitters, the generally smooth pattern of
the preformation factor in the off-shell region is revealed in
a model-independent way not to mention the strong effect
of the N = 126 shell. Meanwhile, the neutron-proton pairing
is supposed to play a key role in the slightly different Pα

behavior at two sides of the N = 126 shell closure, imply-
ing the interplay between the shell effect and pairing in the
formation of the α cluster before its emission. The evaluated
preformation factors from the cluster formation model are also
given for comparison, supporting the conjecture in this study.
It is hoped that the present strategy can be applied to other α

decay models, further enriching the knowledge of clustering
in heavy and superheavy nuclei.
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