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Systematic study of bremsstrahlung emission in reactions with light nuclei in cluster models
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A new model of the bremsstrahlung emission in the scattering of light nuclei is constructed with the main
focus on the strict cluster formulation for nuclear processes. The analysis is performed in the frameworks of the
folding approximation for s nuclei. The reactions p + 4He, 2H + 4He, 3H + 4He, and 3He + 4He are considered.
The properties of the emission of bremsstrahlung photons in a wide region of kinetic energies of relative motion
of two nuclei from 7 to 1000 MeV are systematically studied. The influence of the oscillator length on the
calculated bremsstrahlung emission spectra is discussed. Using the example of 3H + 4He, the dependence of
the bremsstrahlung spectra on parameters of the nuclear component of the interaction potential is established
(for the first time for light nuclei). Experimental bremsstrahlung data for the proton-deuteron scattering and
proton–α-particle scattering are described on the basis of this model.
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I. INTRODUCTION

The bremsstrahlung emission of photons accompanying
nuclear reactions is an important topic of nuclear physics and
has attracted significant interest of many researchers for a long
time (see reviews [1–4]). This is explained by the fact that the
spectra of bremsstrahlung photons are calculated on the basis
of nuclear models with include mechanisms of reactions, in-
teractions between nuclei, dynamics, and many other physical
issues. The measurements of those photons and their analysis
provide the information about all these aspects, by verifying
the suitability of the developed models.

Investigations of the bremsstrahlung emission in proton-
nucleus scattering have shown the important role of incoher-
ent bremsstrahlung processes. In particular, in Refs. [5,6] (see
also Ref. [7]), a formalism which accounts for both coherent
and incoherent processes was formulated, and it was found
that the incoherent contribution is essentially larger than the
coherent one in the full bremsstrahlung emission. Moreover,
the inclusion of incoherent processes in the formalism im-
proves the agreement between the calculated cross section and
experimental data [8] for p + 197Au at the proton beam energy
Ep = 190 MeV. Another useful advance of the incoherent
bremsstrahlung is the explanation of a plateau in the middle
part of the experimental cross section [8], while the coherent
contribution gives only the logarithmic behavior of the calcu-
lated cross section that is not enough for a good description of
the data [8]. In such a formalism, the full operator of emission
of bremsstrahlung photons can be explicitly separated into
two groups of terms. One group (coherent bremsstrahlung)
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includes terms with the momentum defined based on the rela-
tive distance between the center of mass of the nucleus target
and the scattered proton (for example, for α-nucleus scatter-
ing, this is Eq. (B10) in Ref. [7]). The second group (inco-
herent bremsstrahlung) includes the remaining terms without
the momentum from the relative distance between the nucleus
target and the scattered proton. But it includes the momenta of
relative distances between individual nucleons of the nucleus
target and the scattered proton (for α-nucleus scattering, this
is Eq. (B11) with addition of Eq. (B12) in Ref. [7]). In other
words, the incoherent bremsstrahlung originates from the
many-nucleon dynamics, while the coherent bremsstrahlung
is related to the two-body (proton-nucleus) dynamics.

So, consideration of nuclear scattering as a many-nucleon
quantum mechanical problem allows one to increase signif-
icantly the accuracy of the description of bremsstrahlung
spectra. Another useful result from those investigations is
understanding of important role of magnetic moments of
nucleons in nuclei participating in reactions. Attempts to
determine accurately relations between parameters of indi-
vidual nucleons in the studied nuclear process and emission
of bremsstrahlung photons give a deeper understanding about
nuclear interactions. This motivates us to construct the full
cluster formalism for nucleon-nucleus and nucleus-nucleus
scattering in the bremsstrahlung problem.

We remind the reader about investigations of
bremsstrahlung emission in reactions with light nuclei
on the basis of cluster models. Such investigations reveal
new information about the wave functions of two colliding
nuclei. This process is complementary to the capture reaction
or photodisintegration. But, in contrast to these processes,
bremsstrahlung is more complicated from a numerical point
of view, as calculation of the cross section involves two
wave function of states in the continuous energy region. This
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TABLE I. Nuclei and clusterizations used in investigations of
bremsstrahlung in nuclear scattering on the basis of microscopic
two-cluster models.

Nucleus Clusterization Papers

8Be α + α [9], [12], [14], [15], [16], [18], [19], [21]
7Be α + 3He [10], [13]
5Li α + p [11], [13], [19], [20]

process has been investigated within microscopic two-cluster
models [9–21] (see also Ref. [22]). In Table I we collect
all available information about such investigations. The first
investigation was performed in Ref. [9], where interaction
of two α particles was considered. Theoretical data were
obtained for the initial energy of interacting α particles with
Ei � 10 MeV. The different geometries of reactions were
discussed in detail and the optimal geometry of experiments
was recommended. In Ref. [18] the same model was applied
to study the bremsstrahlung in α-α collisions with a realistic
nucleon-nucleon potential. A wider energy range of two α

particles (Ei � 50 MeV) was analyzed. The bremsstrahlung
emission in the α + 3He collision was studied in Ref. [10]
within the resonating group method. Contributions of the
narrow resonance states 7/2− and 5/2− to the bremsstrahlung
cross sections are thoroughly studied.

The resonating group method was applied in Ref. [11] to
investigate the bremsstrahlung process in the interaction of
protons with an α particle. The model correctly reproduced
the phase shift of elastic p + α scattering and the parame-
ters of the 3/2− and 1/2− resonance states in 5Li. A good
agreement between available experimental data and results
of calculations was achieved. The bremsstrahlung cross sec-
tion was calculated for the energy of the incident proton
0 � Ep � 25 MeV.

There is a significantly larger volume of the experimental
bremsstrahlung data obtained with higher precision which has
not been analyzed yet by the cluster models. These are data [8]
for proton-nucleus scattering (for p + 197Au at proton beam
energy Ep = 190 MeV and inside the photon energy region
Eγ = 40–170 MeV; see also Refs. [23–27]), data [28,29] for α

decay of 210Po (see also Refs. [30–34] for nuclei 210Po, 214Po,
226Ra, and 244Cm), and data [35,36] for the spontaneous fis-
sion of heavy nuclei 252Cf (see also Refs. [37–42]). There are
experimental investigations of the dipole γ -ray emission with
incident energy in the 32S + 100Mo and 36S + 96Mo fusion
reactions at Elab = 196 and 214.2 MeV, respectively, aiming
to probe the evolution of fusion with incident energy [43].
γ decays of the excited states in the energy region of the
pygmy dipole states in heavy nuclei have been observed [44]
(see also Ref. [45]).

Note that the most of the efforts by researchers were
on the study of bremsstrahlung in proton-nucleus scatter-
ing and fission. But, a strict cluster formalism has not been
constructed yet to describe those processes up to the level
of a good description of the available experimental data.
Some authors have indicated interest in realizing this ap-
proach [46]. Note that in microscopic models of α decay

[47–54], however, emission of bremsstrahlung photons has
not been studied on the basis of those approaches. Emission
of bremsstrahlung during the ternary fission of heavy nuclei
252Cf [55] was investigated also. It was found in that paper
that the bremsstrahlung spectra are significantly dependent on
the different scenarios of dynamics of fission, whch can be
studied by means of bremsstrahlung analysis. Hypernuclei in
scattering have been studied via analysis of bremsstrahlung
emission [7]. However, those investigations were performed
without a cluster basis.

Summarizing all the issues above, we see an attractive
prospect of constructing a unified formalism and of describing
the available experimental information about bremsstrahlung
in nuclear reactions. The first step in realization of this pro-
gram is the aim of this paper, where we focus on the scattering
of nuclei with a small number of nucleons in the folding
approximation.

The paper is organized in the following way. In Sec. II
a new cluster model of emission of bremsstrahlung photons
in the scattering of light nuclei is formulated. In Sec. III the
folding approximation of the cluster model is described with
the main formulas for calculations for s nuclei. In Sec. IV
emission of bremsstrahlung photons for scattering is studied
on the basis of the model above. Here, we analyze parameters
which have significant influence on the accuracy of calcula-
tions of the spectra, we calculate the spectra in dependence
on the kinetic energy of relative motion between two nuclei
in a wide energy region, we estimate the spectra for different
nuclei at the same energy of relative motions between nuclei,
we analyze the role of the oscillator length of nuclei in cal-
culations of the spectra, we look for sensitivity of the shape
of the spectra to the nuclear component of the interaction
potential, and we describe the experimental bremsstrahlung
data for proton-deuteron scattering on the basis of the model.
Conclusions and perspectives are summarized in Sec. V. Use-
ful details of the model are presented in appendices. In these
sections we give a formalism and calculations of the matrix
elements in the folding approximation (see Appendix A),
multiple expansion of the matrix elements of bremsstrahlung
(see Appendix B), formalism of polarizations of the emitted
photon (see Appendix C), and calculation of angular integrals
(see Appendix D).

II. CLUSTER FORMALISM

To study the bremsstrahlung emission in interacting light
nuclei, we are going to employ cluster models. First, we
need to clarify the term cluster model. By the cluster model
we mean one of numerous realizations (versions) of the res-
onating group method (RGM). The resonating group method
suggests that the properties of atomic nuclei and various
types of nuclear reactions can be described by assuming
there are stable formations of nucleons composing clus-
ters. The nucleon-nucleon interaction of nucleons belonging
to different clusters creates cluster-cluster interactions. The
main differences of various types of the RGM consist of
(i) various shapes of wave functions describing the internal
structure of the clusters, and (ii) various algorithms for solving
the many-particle Schrödinger equation or the equivalent
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effective two-body equations of the RGM derived by Wheeler
[56,57].

Note that models that treat clusters as structureless parti-
cles will be called potential models.

Now, let us consider interaction between clusters when
antisymmetrization is taken into account or neglected. More
precisely, we employ totally antisymmetric functions for a
two-cluster configuration A = A1 + A2,

� (A) = Â{�1(A1) �2(A2) φ (r)}, (1)

and also the functions of the so-called folding model,

� (F ) = �1(A1) �2(A2) φ (r), (2)

when antisymmetrization of nucleons of different clusters is
neglected. To describe relative motion of clusters, one can use
the distance r between clusters,

r =
⎡⎣ 1

A1

∑
i∈A1

ri − 1

A2

∑
j∈A2

r j

⎤⎦. (3)

It is assumed that the wave functions �i(Ai ), describing in-
ternal structure of clusters, are translatoinally invariant and
antisymmetric ones. In Eq. (1), the antisymmetrization oper-
ator Â permutes nucleons between clusters and thus realizes
the Pauli principle correctly. It is well known that the Pauli
principle plays an important role especially in the low-energy
region of interacting clusters. This approximation we will
call the standard version of the resonating group method
(RGM). The second approximation which is presented by
wave function (2) is called the folding model (FM) or folding
approximations.

In what follows, wave functions φ(r) are to represented in
the spherical coordinates

φ(r) = REl (r)Ylm (̂r), (4)

where r̂ = r/r, |r| = r. Wave functions (1) and (2) suggest
approximate solutions for the Schrödinger equation,

(Ĥ − E )� (A) = 0, (5)

(Ĥ − E )� (F ) = 0, (6)

with a microscopic Hamiltonian Ĥ which consists of the ki-
netic energy operator in the center-of-mass motion and a sum
of pairwise nucleon-nucleon potentials.

By multiplying these equations from the left on the product
�1(A1) �2(A2) and integrating over internal spatial, spin, and
isospin coordinates of nucleons, we obtain an integrodiffer-
ential equation for φ(q) when the Pauli principle is treated
correctly, or a differential equation when the folding approxi-
mation is used. The later can be written as{

− h̄2

2mNμ
�r + V̂ (F )(r) − E

}
φ(r) = 0, (7)

where μ is the reduced mass,

μ = A1A2

A1 + A2
, (8)

and mN is the mass of a nucleon. It is important to under-
line that the folding potential V̂ (F )(r) is a key component

of a nonlocal intercluster potential appeared in the standard
version of the RGM. The folding potential V̂ (F )(r) is totally
determined by the shape of the nucleon-nucleon potential and
density distributions of nucleons in each cluster.

A. Potential in the folding approximation

In the folding approximation, as pointed out above, the
intercluster potential is local and may be easily calculated,
especially when simple shell-model functions �i(Ai ) are used
to describe the internal state of clusters.

The folding potential is the integral

V̂ (F )(r) =
∑
i∈A1

∑
j∈A2

∫
dV1 dV2 |�(A1)|2 V̂ (ri − r j ) |�(A2)|2,

(9)
where integration is performed over all coordinates

dV1 =
∏
i∈A1

dri, dV2 =
∏
i∈A2

dri. (10)

As wave functions �1(A1) and �2(A2) are translationally
invariant, they actually depend on coordinates

r′
i = ri − R1, R1 = 1

A1

∑
i∈A1

ri, i ∈ A1,

r′
j = r j − R2, R2 = 1

A2

∑
j∈A2

r j, j ∈ A2, (11)

respectively. Thus we have to switch to these coordinates:

V̂ (F )(r) =
∑
i∈A1

∑
j∈A2

∫
dV ′

1 dV ′
2 |�(A1)|2 V̂ (r′

i − r′
j + r)

× |�(A2)|2, (12)

where

r = R1 − R2 = 1

A1

∑
i∈A1

ri − 1

A2

∑
j∈A2

r j,

dV ′
1 =

∏
i∈A1

dr′
i, dV ′

2 =
∏
j∈A2

dr′
j (13)

and �(Aα ) is a many-particle shell model function, describing
internal motion of Aα nucleons. As we deal with the two-body
potential, we can perform integration over all single-particle
coordinates r′

i (r′
j) but one. As a result integration over all but

one coordinates leads us to the density distribution

ρα (r) =
∫

dV ′
α�α (Aα )

∑
i

δ(r − r′
i )�α (Aα ). (14)

And thus

V̂ (F )(r) =
∫

dr1 dr2 ρ1(r1)V̂ (r1 − r2 + r) ρ2(r2). (15)

For s nuclei, the density distribution equals

ρα (rα ) = Nα exp

{
− r2

b2

Aα

Aα − 1

}
, (16)

where b is the oscillator length.
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By using Fourier transformation we can reduce (15) to the
form

V̂ (F )(r) =
∫

dk V (k) exp{i k r} �1(k) �2(k). (17)

Here, V denotes the Fourier transform of a nucleon-nucleon
interaction,

V̂ (r) = (2π )−3/2
∫

dk exp{−ikr}V (k), (18)

and �α (k) denotes the form factor of a subsystem with Aα

nucleons. For the s-shell nuclei, it easy to find that

�α (k) = exp

{
−k2b2

4

Aα − 1

Aα

}
. (19)

For a nucleon-nucleon interaction, having Gaussian form

V̂ (i j) = V0 exp

{
− (ri − r j )2

a2

}
, (20)

all calculation can be done analytically in closed form and the
result reads

V̂ (F )(r) = V0 z3/2 exp

{
− r2

a2
z

}
, (21)

where

z =
(

1 + b2

a2
[2 − μ−1]

)−1

. (22)

It is worthwhile to notice that when ratio b2/a2 is rather
small (which takes place for a very wide potential well), then
z ≈ 1 and the folding potential almost coincides with the
nucleon-nucleon potential. In other limit case, when b2/a2 �
1 (which may be realized for a potential with small core
radius), intensity as well as radius of the potential are signifi-
cantly redetermined.

B. Case of two-cluster systems

The general formulas obtained above may be adopted to
the case of interest, namely, to two-cluster systems. Here we
consider two-cluster systems where one of the clusters is an
α particle (A1 = 4) and the second cluster consists of A2

nucleons with 1 � A2 � 4. In this case we can write

V (F )
NN = A2

4
(9V33 + 3V31 + 3V13 + V11)

(
1 + b2

a2

3

4

)−3/2

exp

{
− R2

a2

(
1 + b2

a2

3

4

)−1
}
, (23)

V (F )
NN (r) = A2

4
(9V33 + 3V31 + 3V13 + V11)z3/2 exp

{
−R2

a2
z

}
,

(24)

where

z =
(

1 + b2

a2

[
2 − μ−1])−1

,

μ = A1A2

A1 + A2
,

and where V33, V31, V13, V11 are intensities of the cen-
tral nucleon-nucleon interaction (denoted as V2S+1,2T +1) with
fixed values of the spin S and isospin T of interaction nucle-
ons. Each component of the potential is presented by the sum
of two or three Gaussians:

V2S+1,2T +1(r) =
NG∑
i=1

V (i)
2S+1,2T +1 exp

{
− r2

a2
i

}
. (25)

Expressions obtained for NN interaction with Gauss spatial
form can be easily transformed to the case of the Coulomb
forces. For this we shall use the well-known relation

1

r
= 2√

π

∫ ∞

0
dx exp{−r2x2}. (26)

Then the Coulomb interaction between clusters with numbers
of protons Z1 and Z2 is

V̂ (F )
C (r) = Z1 Z2 e2

b

2√
π

∫
dγ z3/2 exp

{
− r2

b2
γ 2z

}
. (27)

By introducing new a variable for integration,

a = σγ 2

1 + σγ 2
, σ = 2 − μ−1, (28)

we obtain the integral

V̂ (F )
C (r) = Z1Z2e2

b

2√
π

1

2
√

σ

∫ 1

0
da a−1/2 exp

{
− r2

σ b2
a

}
,

(29)

which leads to the error function

V̂ (F )
C (r) = Z1 Z2 e2

R
erf

(
r2

σ b2

)
. (30)

For large values of R � 1, we have

V̂ (F )
C (r) ≈ Z1 Z2 e2

r
. (31)

C. Operator of emission of bremsstrahlung photons

The translation invariant operator of the interaction of a
photon with atomic nuclei is

Ĥe
(
kγ , εμ

) = 1

2

eh̄

mN c

A∑
i=1

1

2
(1 + τ̂iz )[π̂∗

i A∗(i) + A∗(i )̂π∗
i ],

(32)
where

A∗(i) = εμ exp{−i
(
kγ ρi

)}, π̂∗
i = i∇ρi

,

ρi = ri − Rc.m.,

Rc.m. = 1

A

A∑
i=1

ri, π̂i = p̂i − P̂c.m., P̂c.m. = 1

A

A∑
i=1

p̂i,

(33)

and kγ is the wave vector of the photon and εμ is its circular
polarization.
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It is worthwhile noticing that operator Ĥe(kγ , εμ) has to
be projected onto momentum λ which determine the mul-
tipolarity of the emitted photon. The projected operator we
denote as Ĥ (λ)

e (kγ , εμ). The projected operator Ĥ (λ)
e (kγ , εμ)

will be proportional to spherical functions Yλμ (̂ri ) . We do
not dwell on projection of the operator Ĥe(kγ , εμ); we will
project matrix elements of this operator calculated between
Slater determinants. Later we will also consider the operator

Ĥ0 =
A∑

i=1

1

2
(1 + τ̂iz ) exp{i(kγ ri )}, (34)

which determines emission or absorption of a photon in the
capture reaction or photodisintegration reaction, respectively.

This operator can be easily projected on quantum number λ:

Ĥ (λ)
0 =

A∑
i=1

1

2
(1 + τ̂iz ) jλ(kγ ri )Yλμ (̂ri ). (35)

To calculate matrix elements of the operator between Slater
determinant wave functions, it is more expedient to use the
single-particle operator

Ĥe(kγ , εμ) = −1

2

eh̄

mN c

A∑
i=1

1

2
(1 + τ̂iz )[εμ exp{−i(kγ ri )}̂p∗

i ].

(36)
After calculations we obtain

Ĥe(kγ , εμ) = −1

2

eh̄

mN c

A∑
i=1

1

2
(1 + τ̂iz )[εμ exp{−i(kγ , ri − Rc.m.)}(̂p∗

i − P̂c.m.)] × exp{−i(kγ , Rc.m.)}

− 1

2

eh̄

mN c

A∑
i=1

1

2
(1 + τ̂iz ) exp{−i(kγ , ri − Rc.m.)} × exp{−i(kγ , Rc.m.)}(εμP̂c.m.). (37)

D. Cross section of bremsstrahlung emission

We follow papers [10,11] of Liu, Tang, and Kanada to consider the bremsstrahlung emission in light nuclei. The differential
cross section of the bremsstrahlung emission in the coplanar laboratory framework is

d σ (1)

d�1 d�2 d�γ

= Eγ

(2π h̄)4

(
p f

h̄c

)
sin2 θ1 sin2 θ2

sin5(θ1 + θ2)

1

2J + 1

∑
μmi

|〈�E f l f |Ĥγ (kγ , εμ)|�Eili〉|2. (38)

The new version is

d3σ (2)

d�1d�2dEγ

= p4
1v f

(2π h̄)4h̄

sin2 θ1 sin2 θ2

sin5 (θ1 + θ2)

∑
μ

|〈�E f l f |Ĥe(kγ , εμ)|�Eili〉|2, (39)

where p1 is the momentum of the incident nucleus (cluster) with A1 nucleons.
The kinematic relations for initial (Ei) and final (E f ) energies of a two-cluster system and the photon energy (Eγ ) are

Ei = E f + Eγ (40)

and

Eγ = E1,i

[
1 − 1

A2

A1 sin2 θ1 + A2 sin2 θ2

sin2 (θ1 + θ2)

]
, (41)

where E1,i is the energy of the incident cluster A1. Energies (Ei) and (E f ) are determined in the center-of-mass of coordinate
system.

III. MATRIX ELEMENTS IN THE FOLDING APPROXIMATION

Matrix element of bremsstrahlung emission of photons for two s-clusters (i.e., for clusters with 1 � Aα � 4 or for n, p, d , 3H,
3He, 4He) is (see Appendix A for details)

〈�E f l f |Ĥγ (kγ , εμ)|�Eili〉 =
√

A2

A1 A
〈RE f l f (r)Yl f m f (̂ri )| exp −i

√
A2

A1 A
(kγ , r) (εμ, π̂)|REili (r)Ylimi (̂ri )〉 F1

−
√

A1

A2 A
〈RE f l f (r)Yl f m f (̂ri )| exp i

√
A1

A2 A
(kγ , r) (εμ, π̂)|REili (r)Ylimi (̂ri )〉 F2. (42)

In the standard approximation of the resonating group method, form factor Fα is (α = 1, 2)

Fα = 〈�α (Aα )
∣∣F (α)

0

∣∣�α (Aα )〉 = Zα exp −1

4

Aα − 1

Aα

(k, b)2, (43)
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with b is oscillator length. Thus, to determine cross section of the bremsstrahlung emission, we need to calculate the matrix
element (i = 1, 2)

I (αi ) = 〈RE f l f (r)Yl f m f (̂r)| exp{−iαi(kγ , r)}π̂|REili (r)Ylimi (̂r)〉,
Iμ (αi ) = εμ I (αi ) = 〈RE f l f (r)Yl f m f (̂r)| exp{−iαi(kγ , r)}(εμπ̂)|REili (r)Ylimi (̂r)〉 (44)

for two values of the parameter,

α1 =
√

A2

A1A
, α2 = −

√
A1

A2A
. (45)

A. Multipole expansion

Applying the multipolar expansion, the integral is [see Appendix B, Eq. (B6)]

I1(αi ) =
〈
φ f

∣∣∣∣ e−iαikγ r ∂

∂r

∣∣∣∣φi

〉
r
=
√

π

2

∑
lγ =1

(−i)lγ
√

2lγ + 1
∑

μ=±1

ξμ μ
[
pM

lγ μ − iμ pE
lγ μ

]
, (46)

where (at li = 0)

p
M0m f

lγ μ
= −IM (0, l f , lγ , 1, μ)J1(0, l f , lγ , αi ),

p
E0m f

lγ μ
=
√

lγ + 1

2lγ + 1
IE (0, l f , lγ , 1, lγ − 1, μ)J1(0, l f , lγ − 1, αi )

−
√

lγ
2lγ + 1

IE (0, l f , lγ , 1, lγ + 1, μ)J1(0, l f , lγ + 1, αi ), (47)

and

J1(li, l f , n, αi ) =
∫ +∞

0

dRi(li, r)

dr
R∗

f (l f , r) jn(αikr) r2dr. (48)

Here, ε(α) are unit vectors of linear polarization of the photon emitted (ε(α),∗ = ε(α)), kγ is the wave vector of the photon, and
wγ = kγ c = |kγ |c. Vectors ε(α) are perpendicular to kγ in the Coulomb gauge. We have two independent polarizations ε(1) and
ε(2) for the photon with impulse kγ (α = 1, 2). ξμ are vectors of circular polarization with opposite directions of rotation (see
Ref. [58], Eq. (2.39), p. 42; see also Appendix C). Also we have properties

[kγ × ε(1)] = kγ ε(2), [kγ × ε(2)] = − kγ ε(1), [kγ × ε(3)] = 0,
∑

α=1,2,3

[kγ × ε(α)] = kγ (ε(2) − ε(1) ). (49)

Also we have the property∑
α=1,2

ε(α) · I1(αi ) =
√

π

2

∑
lγ =1

(−i)lγ
√

2lγ + 1
∑

μ=±1

μ hμ

(
pM

lγ ,μ + pE
lγ ,−μ

)
, (50)

where [see Eqs. (C5), Appendix C]

h± = ∓1 ± i√
2

, h− + h+ = −i
√

2,
∑

μ=±1

μ hμ = −h− + h+ = −
√

2. (51)

B. Case of li = 0, l f = 1, lγ = 1

In the case of li = 0, l f = 1, lγ = 1 integral (46) is simplified to

I1(αi) = −i

√
3π

2

∑
μ=±1

ξμ μ
[
pM

lγ μ − iμ pE
lγ μ

]
, (52)

where [see Eqs. (47)]

p
M0m f

lγ μ
= −IM (0, 1, 1, 1, μ)J1(0, 1, 1, αi ),

p
E0m f

lγ μ
=
√

2

3
IE (0, 1, 1, 1, 0, μ)J1(0, 1, 0, αi ) −

√
1

3
IE (0, 1, 1, 1, 2, μ)J1(0, 1, 2, αi ).

(53)
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Results of calculation of angular integrals are (we omit details of calculations in this paper)

IE (0, 1, 1, 1, 0, μ) =
√

1

24π
, IM (0, 1, 1, 1, μ) = 0, IE (0, 1, 1, 1, 2, μ) = 47

240

√
3

2π
, (54)

and matrix elements (53) are simplified to

p
M0m f

lγ μ
= 0, p

E0m f

lγ μ
= 1

6

√
1

π
J1(0, 1, 0, αi ) − 47

240

√
1

2π
J1(0, 1, 2, αi ). (55)

We substitute these solutions to Eq. (52) and obtain

I1(αi ) = −1

6

√
3

2

(
J1(0, 1, 0, αi ) − 47

40

√
1

2
J1(0, 1, 2, αi )

)
(ξμ=+1 + ξμ=−1). (56)

C. Action on vectors of polarization

Now we calculate the summation over vectors of polarization. We use the definition of vectors of polarization [see Eq. (C1)],
and find

ε(1) = 1√
2

(ξ−1 − ξ+1), ε(2) = i√
2

(ξ−1 + ξ+1). (57)

Using (56), we obtain

ε(1) · (ξμ=+1 + ξμ=−1) = 0, ε(2) · (ξμ=+1 + ξμ=−1) = i
√

2. (58)

On such a basis, from Eq. (56) we find

ε(1) · I1(αi ) = 0, ε(2) · I1(αi ) = −i

√
3

6

(
J1(0, 1, 0, αi ) − 47

40

√
1

2
J1(0, 1, 2, αi )

)
. (59)

Using definition (46) for I1 (±α), the matrix element (42) is written as

〈�E f l f |Ĥγ (kγ , εμ)|�Eili〉 = − ih̄

{√
A2

A1 A
εμ I1

(
+
√

A2

A1 A

)
F1 −

√
A1

A2 A
εμ I1

(
−
√

A1

A2 A

)
F2

}
. (60)

IV. ANALYSIS

Cross sections of the bremsstrahlung emission are deter-
mined on the basis of integrals defined in Eqs. (48) [see
Eq. (39) or (40), and Eqs. (60) and (59)]. These inte-
grals involve the radial wave functions REl (r). These radial
wave functions are calculated numerically by solving the
Schrödinger equation with the corresponding potential of in-
teraction between two studied clusters (nuclei). Details of
normalization, asymptotic behavior of such wave functions,
and their numeric calculations are given in Appendix E.
In Fig. 1 such cluster-cluster potentials constructed within
our formalism above are presented. These potentials include
nuclear and Coulomb components and are determined by
using the Minnesota nucleon-nucleon potential [59,60] and
formulas (24) and (30). Also in this paper we will restrict
ourselves to the bremsstrahlung cross sections integrated over
angles.

A. Parameters that strongly influence the accuracy
of calculations of the spectra

Achieving the needed accuracy of calculation of the spectra
turned out to be important in this problem. As it turned out,
just direct calculation of the bremsstrahlung spectra at some
chosen parameters of calculations did not give satisfactory

convergence in calculations for some nuclei. This makes it
necessary to understand what determines the accuracy of
calculations and what causes errors in the calculation on a
computer. Note that it would seem to be possible to increase
the number of intervals in the selected region of integration in
order to obtain higher convergent calculations of the spectra.
In such a way, we have chosen the minimum number of
intervals equal to 4 per one oscillation of the radial wave
function. However, it turned out that increasing the number
of intervals did not allow us to increase the accuracy of
determining the cross section. From the formalism one can
see that it is more important to analyze the full integrand
function of the radial integral, rather than the wave functions
themselves.

The integrand function of the bremsstrahlung matrix el-
ement for 3H + 4He at relative motion energy 15 MeV is
shown in Fig. 2. From the figures one can clearly see that the
radial region from zero up to 700 fm is the minimum region
that includes complete shapes of all harmonics. However, for
calculations of the spectra with minimal satisfactory accuracy
it is better to take into account at least a few of these complete
shapes. This specifies the minimum value of Rmax. Hence, it
is clear that this parameter cannot be small. For calculations
in this paper we chose value Rmax = 20 000 fm and 2 500 000
intervals for the radial region of integration.
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B. Spectra in dependence on kinetic energy
of relative motion between two nuclei

First, let us analyze how the spectra are changed in de-
pendence on kinetic energy of relative motion between two
nuclei. In Fig. 3 we present the bremsstrahlung cross sec-
tions for 3H + 4He in such a dependence in the energy range
from 7 to 1000 MeV calculated by our approach. From these
figures one can see that our approach gives a unified picture
of emission of bremsstrahlung photons inside this wide energy
region.

C. Cross sections for different nuclei at the same energy
of relative motions between nuclei

Cross sections calculated for p + 4He, 2H + 4He,
3H + 4He, and 3He + 4He at energy 15 MeV are presented
in Fig. 4. From this figure one can see that (at the same

energy Ekin = 15 MeV) (1) the most intensive emission
of photons is for p + 4He, (2) emissions of photons
for 3H + 4He and 3H + 4He are very similar, and (3)
2H + 4He emits photons with the smallest intensity.
One explanation is in the different ratios between form
factors (43) for these systems (more precisely, one can
calculate factor f = √

A2/(A1) · F1 − √
A1/A2 · F2 for such

estimations).

D. Role of oscillator length b of nuclei in calculations of the
spectra

Let us analyze how the oscillator length influences of the
shape of the spectrum. Oscillator length b is included in the
matrix element as

〈�E f l f |Ĥγ (kγ , εμ)|�Eili〉 = − ih̄

⎧⎨⎩
√

A2

A1 A
εμ I1

⎛⎝+
√

A2

A1 A

⎞⎠F1 −
√

A1

A2 A
εμ I1

⎛⎝−
√

A1

A2 A

⎞⎠F2

⎫⎬⎭,

Fα = Zα exp −1

4

Aα − 1

Aα

(k, b)2. (61)

One can see that, in order to study influence of the oscillator
length on the spectra, the exponent in the second formula in
Eqs. (61) should be taken into account in calculations. From
this formula one can see that inclusion of the oscillator length
suppresses the full bremsstrahlung cross section additionally.
Here a natural question arises: How strong is such a sup-
pression or can it be practically invisible? A next question is,
where is such an influence the most strong? The simplest way
to obtain answers comes from numerical estimations of the
exponent in dependence on different energies. More precise
information is obtained from calculations of the spectra. The
bremsstrahlung spectra with influence of the oscillator length
for different energies are shown in Fig. 5. Analyzing such
spectra, we conclude the following.

(i) Changes of the bremsstrahlung spectra due to change
of the oscillator length are practically not visible for
energies below 50 MeV.

(ii) The oscillator length begins to play a visible role for
higher energies of the emitted photons (i.e., hundreds
of MeV). This requires one to use more large energies
of scattering of nuclei. Such highest sensitivity in
cross sections at higher energies can be explained by
the following. Each matrix element of bremsstrahlung
emission includes two wave functions of relative mo-
tion, i.e., wave functions for states before emission
of a photon and after such an emission. The wave
function before emission of a photon is defined ac-
cording to higher energy of relative motion Ekin, so its
wavelength is shorter, which helps one to distinguish
more details (more tiny microstructure) in the shape
of the potential with barrier. The wave function after

emission of a higher energy photon is defined accord-
ing to smaller energy Ekin. That allows one to analyze
underbarrier tunneling effects and the shape of the
barrier. In the matrix element, properties of these two
wave functions are combined. Indeed, this is visible
Fig. 5, which confirms suchreasoning.

(iii) There is no sense in analyzing spectra at low energies
(energies of photons and energies of relative motion
between two incident nuclei). Instead, one needs to
choose a window in the high energy region for such
analysis. There, cross sections are smaller, essentially,
which makes experimental measurements and theo-
retical calculations more difficuly. This aspect creates
its own restriction on maximally large energy, higher
than which the study of this question will be not
realistic (or impossible).

E. Is it possible to see in the spectra the influence of the nuclear
component of the interaction potential and where it occurs?

Let us analyze whether it is possible to see in the spectra
of photon emission the influence of parameters of the nuclear
part of the interaction potential. Calculations of the spectra for
3H + 4He in dependence on the depth of the nuclear compo-
nent of the potential are shown in Fig. 6. In the first panel
(a), the calculations are given at Ekin = 15 MeV, where one
can chose a region in the range of higher photon energies
(10–14 MeV), where there is small visible difference between
the spectra (this area in the figure is highlighted with a rect-
angle). One can see a change in the spectra in dependence on
the depth of the nuclear part V0 of the interaction potential.
It would seem that this picture should be good indication
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FIG. 1. Potentials for different nuclear systems (see text in
Sec. IV for details).

of the place where it is worth looking for the influence of
the parameters of the nucleus part of the potential on the
bremsstrahlung cross section: This is a region with higher
photon energies (at any energy of relative motion between
nuclei).

However, let us analyze whether such a dependence will
persist with an increase in the energy of the relative motion

of the nuclei. The spectra at energy of relative motion of
nuclei of 200 MeV are presented in Fig. 6(b). Here one can
clearly see another region in the range 25–130 MeV where
the difference between the spectra is manifested. Note that
this type of relationship has never been found in the study of
bremsstrahlung emission in nuclear reactions. Such a depen-
dence is likely to have opposite character than the previous
dependence revealed in Fig. 6(a). Apparently, this dependence
is more suitable for experimental investigations, because it
allows the use of significantly lower photon energies for mea-
surements. This dependence is much more reliable (i.e., it
appears in a wider region of photon energies). The spectra
have more intense emission, which is easier to measure and
gives higher convergence in computer calculations. If, after
such a detection of dependence at Ekin = 200 MeV, one goes
back to Fig. 6(a) at Ekin = 15 MeV, then one can find a suit-
able difference between spectra of a similar nature for lower
photon energies (at 2–6 MeV). This reinforces confidence in
the analysis obtained.

F. Analysis of experimental bremsstrahlung data

1. Bremsstrahlung in proton-deuteron scattering

We will analyze bremsstrahlung from proton-deuteron
scattering. There are different aspects of using angles in cal-
culations of the bremsstrahlung cross sections. Moreover, in
different papers authors sometimes used renormalized ex-
perimental data for that reaction. But, one can obtain an
understanding about the general tendency of bremsstrahlung
cross section from normalized calculations. For this reason
reason, we will provide normalized calculations of spectra in
this paper. Calculations of bremsstrahlung spectra on the basis
of our model in comparison with experimental data of Clayton
et al. [61] are presented in Fig. 7. From this figure one can
see that our approach describes the general trend of these data
in Ref. [61] with good enough agreement. One can suppose
improved agreement between our calculations and experimen-
tal data [61] in the middle part of the spectra if one adds the
influence of magnetic moments of nucleons (related to spins
of these nucleons) on emission of photons.

FIG. 2. Shape of the full integrand function of the bremsstrahlung matrix element for 3H + 4He at of relative motion energy 15 MeV in the
center-of-mass system. [Parameter of calculations: energy of photons is chosen as 4 MeV for demonstration.]
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FIG. 3. Cross sections of bremsstrahlung emission for 3H + 4He at different kinetic energies Ekin of relative motion. [Parameters of
calculations: cross section is defined in Eq. (38), Rmax = 20 000 and 2 500 000 intervals are chosen in the numerical integration. Time of
computer calculation is 53 min for each cross section in panel (a) (50 points for each cross section), and 1 h 12 min for each cross section in
panel (b) (70 points for each cross section).] One can see the tendency in each figure that the spectra increase monotonically with increasing
energy of relative motion, Ekin. There is an essential decrease of the cross section with increasing energy of photons for the smallest energy
Ekin = 7 MeV in panel (a), that is explained by tending to the kinematic limit at higher energies of photons. The rate of increase of the spectra
with energy Ekin is not monotonic, and one can find maxima at some energies.

For comparative analysis we add also the calculation [62]
of Herrmann, Speth, and Nakayama, which was used in anal-
ysis in Ref. [61]. After renormalization, the general tendency
of the spectra are not changed actually (differences are very
small). For this reason, we think that our calculation is in bet-
ter agreement with experimental data [61] than the calculation
in [62] (see the red dashed line in the figure).

2. Bremsstrahlung in the scattering of α-particles on protons

In this section we will analyze bremsstrahlung emis-
sion in the scattering of α particles on protons. Photons of
bremsstrahlung were measured over a large range for the reac-
tion of α particles with protons, using the photon spectrometer
TAPS at the AGOR facility of the Kernfysisch Verneller
Institut [63]. In this experiment a beam of 200 MeV α par-
ticles was incident on a liquid hydrogen target. Experimental
bremsstrahlung data for this study were presented in papers
[63,64] and Ph.D. thesis [65].

From these presented data we choose data in Fig. 3 in
Ref. [63] for analysis. Note that inclusive data given in Fig. 1
and exclusive data given in Fig. 3 in that paper are different
at Eγ < 20 MeV (with smaller difference at Eγ > 20 MeV).
We explain our choice by the following. (1) Data in Fig. 3
in Ref. [63] were obtained on the basis of double and triple
coincidences. (2) On the basis of these data authors of that
paper obtained information about resonances (radiative cap-
ture populating the unbound ground and first excited states) of
the short-lived nucleus 5Li, extracted the parameters presented
in Table I in Ref. [63], and calculated the bremsstrahlung
contributions for these resonances shown in Fig. 1 in that
paper.

As shown in Ref. [63], for explanation of experimental
data one needs to take into account the presence of two
unbound states of 5Li for capture in addition to the main
bremsstrahlung emission during p + α scattering (it is clearly
seen in Figs. 1 and 3 in that paper). In particular, in Fig. 1 in

Ref. [63] such states were obtained as two Gaussian peaks.
Parameters of these Gaussian peaks were deduced using a
fitting procedure (see Table I in that paper). In our paper we
do not take into account the incoherent part and magnetic
part of bremsstrahlung. So, our approach reproduces the main
contribution during scattering, but to take into account two
resonant states of 5Li we follow the results of research in
[63]. Calculations of bremsstrahlung spectra on the basis of
our model in comparison with experimental data of Hoefman
et al. [63] are presented in Fig. 8.

Our model calculates main bremsstrahlung contribution
on a microscopic basis, while in Ref. [63] this contribution
was obtained on the basis of phenomenological formula (1)
from classical electrodynamics with energy and momentum
conservations. The summarized full cross section from our
calculations is shown in Fig. 8(b) by a red solid line. One
can see that agreement between such our calculated full cross
section and experimental data [63] is comparable with the
result in Ref. [63]. Also we add the full bremsstrahlung cross
section in the low energy region of photons (in contrast to
Ref. [63]).1

1The presence of a visible smooth hump in the calculated cross
section at photon energy close to 16 MeV can be explained by
restriction of the numerical calculation of Coulomb functions in
the close asymptotic region. Note that Coulomb functions at some
parameters are calculated on the basis of asymptotic series. These
series are not convergent, in principle. But the best calculated values
are adequate approximations and they are generally accepted in the
physics community for use. However, this results in the origin of
small changes in the full bremsstrahlung spectra at some parameters.
We suppose that the accuracy of calculation of this part of the cross
section can be improved on the basis of the technique developed in
Appendix in Ref. [36]. However, this technically solid development
is omitted in this paper, and we restrict ourselves to the current
accuracy of these functions.
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FIG. 4. Cross sections of bremsstrahlung emission for p + 4He,
2H + 4He, 3H + 4He, and 3He + 4He at relative motion kinetic energy
Ekin = 15 MeV in the center-of-mass frame. [Parameters of calcula-
tions: cross sections are defined in Eq. (38), Rmax = 20 000 fm, and
2 500 000 intervals are chosen in the numerical integration; time of
computer calculation for each cross section is 53 min].

Note that for analysis the authors of [63] also used the
potential model of Baye et al. [14], the covariant generaliza-
tion of the Feshbach-Yennie approach based on Refs. [66,67],
and a model of direct capture into unbound states based on
Ref. [68] (see Fig. 3 in Ref. [63]). However, our microscopic
model improves the accuracy of the prediction of the experi-
mental trend at low photon energy with respect to the model
used in Ref. [63].

V. CONCLUSIONS AND PERSPECTIVES

In this paper, a new model of the bremsstrahlung emission
during light nuclei scattering is constructed with the main
focus on the strict cluster formulation of nuclear processes.
The analysis is performed within the framework of the folding
approximation of the formalism with participation of s nuclei.
On the basis of such a model, the emission of bremsstrahlung
photons during the scattering of light nuclei is investigated.
Conclusions of this study are the following.

(1) Using the example of 3H + 4He, we obtain a unified
picture of the emission of bremsstrahlung photons in
dependence on the different kinetic energies Ekin of
the relative motion of two nuclei in a wide energy
range from 7 to 1000 MeV, calculated by our approach
(see Fig. 3). Cross sections increase with the increase
of energy of relative motion, Ekin. But, the rate of
increase of cross sections as a function of energy Ekin

is nonmonotonic, where one can find maxima at some
energies.

(2) We estimate a comparable picture of the
bremsstrahlung emission for p + 4He, 2H + 4He,
3H + 4He, and 3He + 4He with the same kinetic
energy of relative motion, Ekin = 15 MeV (see Fig. 4).

FIG. 5. Cross section of bremsstrahlung emission for 3H + 4He
at different oscillator lengths b. [Parameters of calculations: cross
section is defined in Eq. (38), Rmax = 10 000 fm, and 5 000 000
intervals are chosen in the numerical integration.]

The general behavior of the spectra is similar for all
systems. We find that (1) the most intensive emission
of photons is for p + 4He, (2) emissions of photons
for 3H + 4He and 3He + 4He are very similar, and (3)
2H + 4He emits photons with the smallest intensity.

(3) The influence of the internal structure of interacting
clusters on the cross section of the bremsstrahlung
emission is analyzed [see Eqs. (61) and Fig. 5]. Within
the present model, the internal structure is contributed
through the elastic form factors. We conclude the fol-
lowing.
(1) The inclusion of cluster form factors further sup-

presses the full bremsstrahlung cross section.
(2) Changes in the bremsstrahlung spectra due to

change of the internal structure are practically in-
visible at energies below 50 MeV.

(3) Cluster form factors begin to play a prominent role
for higher energies of the emitted photons (i.e.,
hundreds of MeV). This requires the use of larger
energies of the incident nuclei.

(4) There is no sense in analyzing the bremsstrahlung
cross sections at low energies of the emitted pho-
tons as a contribution from the internal structure
is negligibly small. Instead, one needs to choose a
window in the high-energy region for this analysis.
On this point, the cross sections are significantly
smaller, which makes experimental measurements
and theoretical calculations more difficult. This
aspect gives a restriction of the largest possible
energy beyond which the study of this question
will not seem realistic.

(4) The dependence of the bremsstrahlung spectra on the
parameters of the nuclear part of the cluster-cluster
potential has been revealed. Using the example of
3H + 4He, for better observation of such a dependence,
we find two regions in the spectra: the middle-energy
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FIG. 6. Cross sections of bremsstrahlung emission for 3H + 4He in dependence on depth of nuclear potential V0 at relative motion energyies
15 MeV (a) and 200 MeV (b) in the center-of-mass frame [Parameters of calculations: cross section is defined in Eq. (38), Rmax = 2000 fm,
and 2 500 000 intervals are chosen in the numerical integration].

region and the high-energy region (see Fig. 6). In the
middle-energy region, the calculations of the spectra
are more stable, and intensity of emission is higher
which is convenient for possible measurements. In the
high-energy region, the dependence is more sensitive
to variations of nuclear parameters. But the intensity
of the emission is smaller which is problematic for
possible measurements and computer calculations.

(5) The bremsstrahlung cross section calculated on the
basis of our model for proton-deuteron scattering at
Ep = 145 MeV is in good agreement with experimen-
tal data [61] (see Fig. 7).

(6) The bremsstrahlung emission for the scattering of α

particles on protons at the beam energy of α particles
Eα = 200 MeV was analyzed. The bremsstrahlung
cross section obtained by summation of main con-
tributions in the p + α scattering (calculated on the
basis of our microscopic model) and two additional
contributions from captures at unbound ground and
first excited states of 5Li is in good agreement with
the general trend of experimental data [63] (see
Fig. 8).

As a future prospect, we plan to evaluate the contribu-
tion from the inclusion of nucleon magnetic moments in the
model. We believe that this should provide an additional new
incoherent bremsstrahlung contribution. According to a previ-
ous study of bremsstrahlung in the scattering of protons from
heavy nuclei [6], this incoherent emission is important and
not small. However, its role can be significantly smaller for
light nuclei, according to our preliminary estimates. We also
estimate that this term can improve agreement between the
calculated full cross section and corresponding experimental
data.
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FIG. 7. Normalized cross sections of bremsstrahlung emission
for p + 2H at energy of proton beam of 145 MeV in comparison
with experimental data [61]. [Parameters of calculations: cross sec-
tion is defined in Eq. (38), Rmax = 20 000 fm, and 2 500 000 intervals
are used in the numerical integration; kinetic energy Ekin of the
relative motion of proton and deuteron is used in calculations of
bremsstrahlung matrix elements, which is Ekin = (2/3) × Ep = 98
MeV.] The bremsstrahlung calculation of Herrmann, Speth, and
Nakayama for p + n at 150 MeV [62] is added for comparative
analysis (see the red dashed line in the figure).
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FIG. 8. Calculated cross sections of bremsstrahlung emission for p + 4He at beam energy of the α particles of 200 MeV in comparison
with experimental data [63]. [Parameters of calculations: cross section is defined in Eq. (39), Rmax = 20 000 fm, and 2 500 000 intervals are
used in the numerical integration.] (a) Main bremsstrahlung contribution of photons emitted in the p + α scattering calculated by our model
(see blue dashed line) in comparison with experimental data. (b) Full bremsstrahlung cross section (see red solid line) obtained as summation
of the main contribution in the p + α scattering (see blue dashed line) and two additional contributions from capture at unbound ground and
first excited states of 5Li (see green dash-dotted line and brown dash–double-dotted line) in comparison with experimental data.

APPENDIX A: MATRIX ELEMENT IN THE FOLDING APPROXIMATION

Let us consider the operator

Ĥe(kγ , εμ) = eh̄

mN c

A∑
i=1

1

2
(1 + τ̂iz )A∗(i )̂π∗

i (A1)

for a two-cluster system with the partition A = A1 + A2. In this case the operator Ĥe(kγ , εμ) can be presented as

Ĥe(kγ , εμ) = Ĥ (1)
e (kγ , εμ) + Ĥ (2)

e (kγ , εμ)

= eh̄

mN c

∑
i∈A1

1

2
(1 + τ̂iz )A∗(i )̂π∗

i + eh̄

mN c

∑
j∈A2

1

2
(1 + τ̂ jz )A∗( j )̂π∗

j . (A2)

It is necessary to recall that

A∗(i )̂π∗
i = exp{−i(kγ ρi )}(εμπ̂∗

i )

= exp{−i(kγ , ri − Rc.m.)}(εμ [̂p∗
i − P̂∗

c.m.]). (A3)

The first operator Ĥ (1)
e (kγ , εμ) we represent in the following form:

Ĥ (1)
e (kγ , εμ) = eh̄

mN c
exp{−i(kγ , R1 − Rc.m.)}

∑
i∈A1

1

2
(1 + τ̂iz ) exp{−i(kγ , ri − R1)}(εμ [̂p∗

i − P̂∗
1])

+ eh̄

mN c
exp{−i(kγ , R1 − Rc.m.)}(εμ [̂P∗

1 − P̂∗
c.m.])

∑
i∈A1

1

2
(1 + τ̂iz ) exp{−i(kγ , ri − R1)},

(A4)

where R1 and P̂∗
1 are the coordinate and momentum of center-of-mass motion of the first cluster:

R1 = 1

A1

∑
i∈A1

ri, P̂1 = 1

A1

∑
i∈A1

p̂i. (A5)

In similar way we can present the second operator:

Ĥ (2)
e (kγ , εμ) = eh̄

mN c
exp{−i(kγ , R2 − Rc.m.)}

∑
j∈A2

1

2
(1 + τ̂ jz ) exp{−i(kγ , r j − R2)}(εμ [̂p∗

j − P̂∗
2])

+ eh̄

mN c
exp{−i(kγ , R2 − Rc.m.)}(εμ [̂P∗

2 − P̂c.m.])
∑
j∈A2

1

2
(1 + τ̂ jz ) exp{−i(kγ , r j − R2)}, (A6)
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where

R2 = 1

A2

∑
j∈A2

r j, P̂2 = 1

A2

∑
j∈A2

p̂ j . (A7)

Consider in detail the differences

R1 − Rc.m., R2 − Rc.m.. (A8)

Taking into account their definitions, we obtain

R1 − Rc.m. = 1

A1

∑
i∈A1

ri − 1

A

A∑
i=1

ri =
√

A2

A1A

√
A1A2

A

⎡⎣ 1

A1

∑
i∈A1

ri − 1

A2

∑
j∈A2

r j

⎤⎦,

R2 − Rc.m. = 1

A2

∑
j∈A2

r j − 1

A

A∑
i=1

ri = −
√

A1

AA2

√
A1A2

A

⎡⎣ 1

A1

∑
i∈A1

ri − 1

A2

∑
j∈A2

r j

⎤⎦.

(A9)

Thus

R1 − Rc.m. =
√

A2

A1A
q, R2 − Rc.m. = −

√
A1

A2A
q, (A10)

where

q =
√

A1A2

A

⎡⎣ 1

A1

∑
i∈A1

ri − 1

A2

∑
j∈A2

r j

⎤⎦ (A11)

is the Jacobi vector determining distance between clusters. Similarly, we can transform momenta

P̂1 − P̂c.m. =
√

A2

A1A
π̂, P̂2 − P̂c.m. = −

√
A1

A2A
π̂, (A12)

where

π̂ =
√

A1A2

A

⎡⎣ 1

A1

∑
i∈A1

p̂i − 1

A2

∑
j∈A2

p̂ j

⎤⎦. (A13)

Concluding, we can write down

Ĥe
(
kγ , εμ

) = exp

⎧⎨⎩−i

√
A2

A1A
(kγ , q)

⎫⎬⎭ · F (1)
1 + eh̄

mN c

√
A2

A1A
exp

⎧⎨⎩−i

√
A2

A1A
(kγ , q)

⎫⎬⎭π̂ · F (1)
0

+ exp

⎧⎨⎩i

√
A1

A2A

(
kγ , q

)⎫⎬⎭ · F (2)
1 − eh̄

mN c

√
A1

A2A
exp

⎧⎨⎩i

√
A1

A2A
(kγ , q)

⎫⎬⎭π̂ · F (2)
0 , (A14)

where

F (α)
0 =

∑
i∈Aα

1

2
(1 + τ̂iz ) exp{−i(kγ , ri − Rα )},

F (α)
1 = eh̄

mN c

∑
i∈Aα

1

2
(1 + τ̂iz ) exp{−i(kγ , ri − Rα )}(εμ [̂p∗

i − P̂∗
α])

(A15)

with α = 1, 2.
If we consider a two-cluster system in the folding approximation, then a wave function of the system is

�El = �1(A1)�2(A2)REl (q)Ylm (̂q), (A16)
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where functions �1(A1) and �2(A2) describe internal motion of nucleons of the first and second clusters, respectively, and q̂ is
a unit vector (̂q = q/q). The matrix element of the operator (A14) between functions �E f l f and �Eili is then

〈�E f l f |Ĥ (1)
e (kγ , εμ)|�Eili〉 =

〈
RE f l f (q)Yl f m f (̂q)

∣∣∣∣∣∣exp

⎧⎨⎩−i

√
A2

A1A

(
kγ , q

)⎫⎬⎭
∣∣∣∣∣∣REili (q)Ylimi (̂q)

〉〈
�1(A1)

∣∣F (1)
1

∣∣�1(A1)
〉

+
√

A2

A1A

〈
RE f l f (q)Yl f m f (̂q)

∣∣∣∣∣∣exp

⎧⎨⎩−i

√
A2

A1A

(
kγ , q

)⎫⎬⎭(εμπ̂
)∣∣∣∣∣∣REili (q)Ylimi (̂q)

〉〈
�1(A1)

∣∣F (1)
0

∣∣�1(A1)
〉

+
〈

RE f l f (q)Yl f m f (̂q)

∣∣∣∣∣∣exp

⎧⎨⎩i

√
A1

A2A

(
kγ , q

)⎫⎬⎭
∣∣∣∣∣∣REili (q)Ylimi (̂q)

〉〈
�2(A2)

∣∣F (2)
1

∣∣�2(A2)
〉

−
√

A1

A2A

〈
RE f l f (q)Yl f m f (̂q)

∣∣∣∣∣∣exp

⎧⎨⎩i

√
A1

A2A

(
kγ , q

)⎫⎬⎭(εμπ̂
)∣∣∣∣∣∣REili (q)Ylimi (̂q)

〉〈
�2(A2)

∣∣F (2)
0

∣∣�2(A2)
〉
.

(A17)

For two s clusters (i.e., for clusters with 1 � Aα � 4 or for n, p, d , t , 3He, and 4He)〈
�1(A1)

∣∣F (1)
1

∣∣�1(A1)
〉 = 〈�2(A2)

∣∣F (2)
1

∣∣�2(A2)
〉 = 0, (A18)

consequently

〈
�E f l f

∣∣Ĥ (1)
e (kγ , εμ)

∣∣�Eili

〉 = √ A2

A1A

〈
RE f l f (q)Yl f m f (̂q)

∣∣∣∣∣∣exp

⎧⎨⎩−i

√
A2

A1A

(
kγ , q

)⎫⎬⎭(εμπ̂
)∣∣∣∣∣∣REili (q)Ylimi (̂q)

〉〈
�1(A1)

∣∣F (1)
0

∣∣�1 (A1)
〉

−
√

A1

A2A

〈
RE f l f (q)Yl f m f (̂q)

∣∣∣∣∣∣exp

⎧⎨⎩i

√
A1

A2A

(
kγ , q

)⎫⎬⎭(εμπ̂
)∣∣∣∣∣∣REili (q)Ylimi (̂q)

〉〈
�2(A2)

∣∣F (2)
0

∣∣�2(A2)
〉
.

(A19)

In the standard approximation of the resonating group method (or cluster model), the form factor is〈
�α (Aα )

∣∣F (1)
0

∣∣�α (Aα )
〉 = Zα exp

{
−1

4

Aα − 1

Aα

(
kγ b
)2}

, (A20)

where b is the oscillator length. Thus, to determine the cross section of the bremsstrahlung emission, we need to calculate matrix
element

Iμ(α) = 〈RE f l f (q)Yl f m f (̂q)| exp{−iα(kγ , q)}(εμπ̂)|REili (q)Ylimi (̂q)〉 (A21)

for two values of the parameter,

α1 =
√

A2

A1A
, α2 = −

√
A1

A2A
. (A22)

APPENDIX B: MULTIPOLE EXPANSION OF MATRIX ELEMENTS

1. Matrix elements integrated over space coordinates

We shall calculate the following matrix elements [see Ref. [5], Eqs. (24)–(41)]:

〈φ f | e−iαikγ r | φi〉r =
∫

φ∗
f (r) e−iαikγ r φi(r) dr,

〈
φ f

∣∣∣∣ e−iαikγ r ∂

∂r

∣∣∣∣φi

〉
r
=
∫

φ∗
f (r) e−iαikγ r ∂

∂r
φi(r) dr. (B1)

a. Expansion of the vector potential A by multipoles

Let us expand the vectorial potential A of an electromagnetic field by multipoles. According to Ref. [58] [see Eqs. (2.106),
p. 58], in the spherical symmetric approximation we have

ξμ eiαikγ r = μ
√

2π
∑
lγ =1

(2lγ + 1)1/2 ilγ [Alγ μ(r, M ) + iμ Alγ μ(r, E )], (B2)
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where (see [58], Eq. (2.73) on p. 49 and Eq. (2.80) on p. 51)

Alγ μ(r, M ) = jlγ (αikγ r) Tlγ lγ ,μ (̂r),

Alγ μ(r, E ) =
√

lγ + 1

2lγ + 1
jlγ −1(αikγ r) Tlγ lγ −1,μ (̂r) −

√
lγ

2lγ + 1
jlγ +1(αikγ r) Tlγ lγ +1,μ (̂r). (B3)

Here, Alγ μ(r, M ) and Alγ μ(r, E ) are magnetic and electric multipoles, jlγ (αikγ r) is the spherical Bessel function of order lγ ,
Tlγ l ′γ ,μ (̂r) are vector spherical harmonics, and ξμ are vectors of circular polarization of the emitted photon. Equation (B2) is
the solution of the wave equation of an electromagnetic field in the form of plane wave, and is presented as the summation of
the electrical and magnetic multipoles (for example, see pp. 83–92 in [69]). Therefore, separate multipolar terms in Eq. (B2) are
solutions of this wave equation for chosen numbers jγ and lγ ( jγ is a quantum number characterizing the eigenvalue of the full
momentum operator, while lγ = jγ − 1, jγ , jγ + 1 is connected with the orbital momentum operator, but it defines eigenvalues
of photon parity and so it is a quantum number also).

We orient the frame so that axis z be directed along the vector kγ (see [58], Eq. (2.105) on p. 57). According to [58] (see p.
45), the functions Tlγ l ′γ ,μ (̂r) have the following form (ξ0 = 0):

T jγ lγ ,m (̂r) =
∑

μ=±1

(lγ , 1, jγ
∣∣m − μ,μ, m) Ylγ ,m−μ (̂r) ξμ, (B4)

where (l, 1, j | m − μ,μ, m) are Clebsh-Gordon coefficients and Ylm(θ, ϕ) are spherical functions defined according to [70] (see
p. 119, Eqs. (28,7)–(28,8)). From Eq. (B2) one can obtain such a formula (at ε(3) = 0):

e−iαikγ r = 1

2

∑
μ=±1

ξμ μ
√

2π
∑
lγ =1

(2lγ + 1)1/2 (−i)lγ · [A∗
lγ μ(r, M ) − iμ A∗

lγ μ(r, E )]. (B5)

b. Central interactions

Using (B5), for (B1) we find

〈φ f | e−iαikγ r | φi〉r =
√

π

2

∑
lγ =1

(−i)lγ
√

2lγ + 1
∑

μ=±1

[
μ p̃M

lγ μ − i p̃E
lγ μ

]
,

〈
φ f

∣∣∣∣ e−iαikγ r ∂

∂r

∣∣∣∣φi

〉
r
=
√

π

2

∑
lγ =1

(−i)lγ
√

2lγ + 1
∑

μ=±1

ξμ μ × [pM
lγ μ − iμ pE

lγ μ

]
, (B6)

where

pM
lγ μ =

∫
φ∗

f (r)

(
∂

∂r
φi(r)

)
A∗

lγ μ(r, M ) dr, pE
lγ μ =

∫
φ∗

f (r)

(
∂

∂r
φi(r)

)
A∗

lγ μ(r, E ) dr (B7)

and

p̃M
lγ μ = ξμ

∫
φ∗

f (r) φi(r) A∗
lγ μ(r, M ) dr, p̃E

lγ μ = ξμ

∫
φ∗

f (r) φi(r) A∗
lγ μ(r, E ) dr. (B8)

c. Calculations of the components pM
lγμ, pE

lγμ and p̃M
lγμ, p̃E

lγμ

For calculation of these components we shall use the gradient formula (see [58], Eq. (2.56) on p. 46),

∂

∂r
φi(r) = ∂

∂r
{Ri(r) Ylimi (̂r)} =

√
li

2li + 1

(
dRi(r)

dr
+ li + 1

r
Ri(r)

)
Tli li−1,mi (̂r)

−
√

li + 1

2li + 1

(
dRi(r)

dr
− li

r
Ri(r)

)
Tli li+1,mi (̂r), (B9)

and obtain

pM
lph,μ

=
√

li
2li + 1

IM (li, l f , lγ , li − 1, μ){J1(li, l f , lγ , αi ) + (li + 1)J2(li, l f , lγ , αi )}

−
√

li + 1

2li + 1
IM (li, l f , lγ , li + 1, μ){J1(li, l f , lγ , αi ) − liJ2(li, l f , lγ , αi )},
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pE
lph,μ

=
√

li (lγ + 1)

(2li + 1)(2lγ + 1)
IE (li, l f , lγ , li − 1, lγ − 1, μ){J1(li, l f , lγ − 1, αi ) + (li + 1)J2(li, l f , lγ − 1, αi )}

−
√

li lγ
(2li + 1)(2lγ + 1)

IE (li, l f , lγ , li − 1, lγ + 1, μ){J1(li, l f , lγ + 1, αi ) + (li + 1)J2(li, l f , lγ + 1, αi )}

+
√

(li + 1)(lγ + 1)

(2li + 1)(2lγ + 1)
IE (li, l f , lγ , li + 1, lγ − 1, μ){J1(li, l f , lγ − 1, αi ) − liJ2(li, l f , lγ − 1, αi )}

−
√

(li + 1) lγ
(2li + 1)(2lγ + 1)

IE (li, l f , lγ , li + 1, lγ + 1, μ){J1(li, l f , lγ + 1, αi ) − liJ2(li, l f , lγ + 1, αi )}, (B10)

where

J1(li, l f , n, αi ) =
∫ +∞

0

dRi(r, li )

dr
R∗

f (l f , r) jn(αi kγ r) r2dr,

J2(li, l f , n, αi ) =
∫ +∞

0
Ri(r, li) R∗

f (l f , r) jn(αi kγ r) r dr,

IM (li, l f , lγ , l1, μ) =
∫

Y ∗
l f m f

(̂r) Tli l1, mi (̂r) T∗
lγ lγ , μ (̂r) d�,

IE (li, l f , lγ , l1, l2, μ) =
∫

Y ∗
l f m f

(̂r) Tli l1, mi (̂r) T∗
lγ l2, μ (̂r) d�. (B11)

In the same way, for p̃M
lγ μ p̃E

lγ μ we find

p̃M
lγ μ = Ĩ (li, l f , lγ , lγ , μ)J̃ (li, l f , lγ , αi ),

p̃E
lγ μ =

√
lγ + 1

2lγ + 1
Ĩ (li, l f , lγ , lγ − 1, μ)J̃ (li, l f , lγ − 1, αi ) −

√
lγ

2lγ + 1
Ĩ (li, l f , lγ , lγ + 1, μ)J̃ (li, l f , lγ + 1, αi ), (B12)

where

J̃ (li, l f , n, αi ) =
∫ +∞

0
Ri(r) R∗

f (l, r) jn(αi kγ r) r2dr,

(B13)

Ĩ (li, l f , lγ , n, μ) = ξμ

∫
Ylimi (̂r) Y ∗

l f m f
(̂r) T∗

lγ n,μ (̂r) d�.

APPENDIX C: LINEAR AND CIRCULAR POLARIZATIONS OF THE EMITTED PHOTON

We define vectors of linear polarization of the emitted photon as (in Coulomb gauge at ε(3) = 0):

ε(1) = 1√
2

(ξ−1 − ξ+1), ε(2) = i√
2

(ξ−1 + ξ+1), (C1)

where ξμ are vectors of circular polarization with opposite directions of rotation for the emitted photon used in Eqs. (B2).
We rewrite vectors of linear polarization ε(α) through vectors of circular polarization ξμ (see Ref. [58], Eq, (2.39), p. 42, and
Appendix A in Ref. [5]; ε(α),∗ = ε(α)):

ξ−1 = 1√
2

(ε(1) − iε(2) ), ξ+1 = − 1√
2

(ε(1) + iε(2) ), ξ0 = ε(3). (C2)

We obtain properties ∑
α=1,2

ε(α),∗ = h−1ξ
∗
−1 + h+1ξ

∗
+1, (C3)∑

μ=±1

ξ∗
μ · ξμ = 1

2
(ε(1) − iε(2) ) (ε(1) − iε(2) )∗ + 1

2
(ε(1) + iε(2) )(ε(1) + iε(2) )∗ = 2, (C4)
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where

h−1 = 1√
2

(1 − i), h1 = − 1√
2

(1 + i), h−1 + h1 = −i
√

2. (C5)

Also there is property the (see Eqs. (3) and (5) in Ref. [71]):∑
α=1,2

ε(α), ∗ =
∑

μ=±1

hm ξ∗
m. (C6)

We shall find multiplications of vectors ξ±1. From Eq. (C2) we obtain

ξ∗
−1 =

(
1√
2

(ε(1) − iε(2) )

)∗
= 1√

2
(ε(1) + iε(2) ) = − ξ+1,ξ

∗
+1 = − ξ−1 (C7)

and

ξ∗
−1 = −ξ+1, ξ∗

+1 = −ξ−1. (C8)

We check orthogonality conditions as

ξ−1 · ξ−1 = ξ+1 · ξ+1 = 0, ξ−1 · ξ∗
−1 = ξ+1 · ξ∗

+1 = −1,

ξ−1 · ξ+1 = 1, ξ−1 · ξ∗
+1 = ξ+1 · ξ∗

−1 = 0. (C9)

We calculate multiplications of vectors as

[ξ∗
−1 × ξ+1] = − [ξ+1 × ξ+1] = 0, [ξ∗

−1 × ξ−1] = − [ξ+1 × ξ−1],

[ξ∗
+1 × ξ−1] = − [ξ−1 × ξ−1] = 0, [ξ∗

+1 × ξ+1] = − [ξ−1 × ξ+1], (C10)

and

[ξ−1 × ξ∗
−1] = − [ξ+1 × ξ∗

+1] = i[ε(1) × ε(2)] = − [ξ−1 × ξ+1]. (C11)

Now we take into account that two vectors ε(1) and ε(2) are vectors of polarization of the emitted photon which are
perpendicular to the direction of emission of this photon defined by vector k. The modulus of vectorial multiplication [ε(1) × ε(2)]
equals unity. So, we have

[ε(1) × ε(2)] = kγ∣∣kγ

∣∣ ≡ γ̂ . (C12)

Using such a basis, we rewrite properties (C11) as

[ξ−1 × ξ∗
−1] = − [ξ+1 × ξ∗

+1] = − [ξ−1 × ξ+1] = i[ε1 × ε2] = i γ̂ . (C13)

APPENDIX D: ANGULAR INTEGRALS IE , IM , AND Ĩ

We shall calculate the integrals in Eqs. (B11) and (B13) (see Appendix B in Ref. [5]):

IM (li, l f , lγ , l1, μ) =
∫

Y ∗
l f m f

(̂r) Tli l1, mi (̂r) T∗
lγ lγ , μ (̂r) d�,

IE (li, l f , lγ , l1, l2, μ) =
∫

Y ∗
l f m f

(̂r) Tli l1, mi (̂r) T∗
lγ l2, μ (̂r) d�,

Ĩ (li, l f , lγ , n, μ) = ξμ

∫
Y ∗

l f m f
(̂r)Ylimi (̂r) T∗

lγ n, μ (̂r) d�. (D1)

Substituting the function T jl,m (̂r) defined by Eq. (B4), we obtain (at ξ0 = 0)

IM (li, l f , lγ , l1, μ) =
∑

μ′=±1

(l1, 1, li
∣∣mi − μ′, μ′, mi ) (lγ , 1, lγ | μ − μ′, μ′, μ)

∫
Y ∗

l f m (̂r) · Yl1, mi−μ′ (̂r) · Y ∗
lγ , μ−μ′ (̂r) d�,

IE (li, l f , lγ , l1, l2, μ) =
∑

μ′=±1

(l1, 1, li| mi − μ′, μ′, mi ) (l2, 1, lγ
∣∣μ − μ′, μ′, μ)

∫
Y ∗

l f m (̂r) · Yl1, mi−μ′ (̂r) · Y ∗
l2, μ−μ′ (̂r) d�, (D2)

Ĩ (li, l f , lγ , n, μ) = (n, 1, lγ
∣∣ 0, μ, μ) ×

∫
Y ∗

l f m f
(̂r)Ylimi (̂r)Y ∗

n0 (̂r) d�. (D3)
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Here, we have taken orthogonality of vectors ξ±1 into account. In these formulas we shall find the angular integral∫
Y ∗

l f m f
(̂r)Yl1, mi−μ′ (̂r)Y ∗

n, μ−μ′ (̂r) d� = (−1)l f +n+mi−μ′
il f +l1+n+|m f |+|mi−μ′|+|mi−m f −μ′|

×
√

(2l f + 1) (2l1 + 1) (2n + 1)

16π

(l f − |m f |)!
(l f + |m f |)!

(l1 − |mi − μ′|)!
(l1 + |mi − μ′|)!

(n − |mi − m f − μ′|)!
(n + |mi − m f − μ′|)!

×
∫ π

0
P

|m f |
l f

(cos θ ) P|mi−μ′|
l1

(cos θ ) P
|mi−m f −μ′|
n (cos θ ) sin θ dθ, (D4)

where Pm
l (cos θ ) are associated Legandre polynomials, and we obtain the conditions

for integrals IM, IE : μ = mi − m f , n � |μ − μ′| = |mi − m f + μ′|, μ = ±1,

for integral Ĩ : mi = m f . (D5)

Using formula (D4), we calculate integrals (D2) and (D3):

IM (li, l f , lγ , l1, μ) = δμ,mi−m f

∑
μ′=±1

C
mim f μ

′

li l f lphl1lph

∫ π

0
f

mim f μ
′

l1l f lγ
(θ ) sin θ dθ,

IE (li, l f , lγ , l1, l2, μ) = δμ,mi−m f

∑
μ′=±1

C
mim f μ

′

li l f lphl1l2

∫ π

0
f

mim f μ
′

l1l f l2
(θ ) sin θ dθ,

Ĩ (li, l f , lγ , n, μ) = Cmiμ

li l f lγ n

∫ π

0
f mimi0
li l f n (θ ) sin θ dθ, (D6)

where

C
mim f μ

′

li l f lphl1l2
= (−1)l f +l2+mi−μ′

il f +l1+l2+|m f |+|mi−μ′|+|mi−m f −μ′|

× (l1, 1, li
∣∣mi − μ′, μ′, mi ) (l2, 1, lγ

∣∣mi − m f − μ′, μ′, mi − m f )

×
√

(2l f + 1) (2l1 + 1) (2l2 + 1)

16π

(l f − |m f |)!
(l f + |m f |)!

(l1 − |mi − μ′|)!
(l1 + |mi − μ′|)!

(l2 − |mi − m f − μ′|)!
(l2 + |mi − m f − μ′|)! , (D7)

Cmiμ

li l f lγ n = (−1)l f +n+mi+|mi| il f +li+n · (n, 1, lγ
∣∣ 0, μ, μ) ·

√
(2l f + 1) (2li + 1) (2n + 1)

16π

(l f − |mi|)!
(l f + |mi|)!

(li − |mi|)!
(li + |mi|)! ,

(D8)

f
mim f μ

′

l1l f l2
(θ ) = P|mi−μ′|

l1
(cos θ ) P

|m f |
l f

(cos θ ) P
|mi−m f −μ′|
l2

(cos θ ). (D9)

We define differential functions on the integrals (D6) with angular dependence as

d IM (li, l f , lγ , l1, μ)

sin θ dθ
= δμ,mi−m f

∑
μ′=±1

C
mim f μ

′

li l f lphl1lph
f

mim f μ
′

l1l f lγ
(θ ),

d IE (li, l f , lγ , l1, l2, μ)

sin θ dθ
= δμ,mi−m f

∑
μ′=±1

C
mim f μ

′

li l f lphl1l2
f

mim f μ
′

l1l f l2
(θ ),

d Ĩ (li, l f , lγ , n, μ)

sin θ dθ
= δmim f Cmiμ

li l f lγ n f mimi0
li l f n (θ ). (D10)

APPENDIX E: CALCULATIONS OF THE WAVE
FUNCTIONS OF RELATIVE MOTION BETWEEN TWO

NUCLEI

1. Boundary conditions and normalization of the wave functions

In this paper, for the wave function of relative motion φ(r)
in the initial state i and final state f we chose states of the
elastic scattering of one nucleus on another nucleus, for which
we have used the normalization condition for the radial wave

function of relative motion, Rs(k, r), as (see Ref. [70], p. 138)

∫ +∞

0
R∗

s (k′, r) Rs(k, r) r2dr

=
∫ +∞

0
χ∗

s (k′, r) χs(k, r) dr

= 2π δ(k′ − k), Rs(k, r) = χs(k, r)

r
. (E1)
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Here, r is relative distance between nuclei and k, k′ are wave
numbers. The radial wave function in the asymptotic region
can be written as (s = i, f )

χs(k, r) = Ns[AsGs(k, r) + BsFs(k, r)], (E2)

where Fs and Gs are the Coulomb functions, As and Bs are
real constants determined concerning the found solution for
χs(k, r) at small r, and Ns is an unknown normalization factor.
At far distances we have

Fs(k, r) = sin θs, Gs(k, r) = cos θs, θs = ksr − lπ

2
+ σl (ηs),

(E3)

where σl (ηs) = arg �(iηs + l + 1), ηs = μ mN ν

ks h̄ , ν = Z1 Z2 e2

is Coulomb parameter, μ mN = m1m2/(m1 + m2) is the re-
duced mass of two nuclei with mass m1 and m2, and e is the
electric charge of a proton. With such a representation of the
asymptotic Coulomb functions we find

(AsGs(k
′, r) + BsFs(k

′, r))∗(AsGs(k, r) + BsFs(k, r))

= A2
s + B2

s

2
cos (θ ′ + θ ) + AsBs sin (θ ′ + θ )

+ A2
s + B2

s

2
cos (θ ′ − θ ). (E4)

On such a basis, the integral (E1) is transformed to the
following form:

|Ns|2 A2
s + B2

s

2

∫ +∞

0
cos (θ ′ − θ ) dr = 2π δ(k′ − k). (E5)

Taking the definition of the δ function into account, we obtain

Ns = 2√
A2

s + B2
s

. (E6)

In bremsstrahlung problems another normalization condi-
tion is useful for decay of nuclear system, so we add this
formalism. The wave function should correspond to emission
of a cluster from a nucleus during a unit of time (see Ref. [70],
p. 140):∮

js (r) r2 d� = 1, χs(r → +∞) = Ns[Gs(r) + iFs(r)],

(E7)

where d� = sin θ dθ dφ is the solid angle element, js(r)
is the probability flux density, and the integration is per-
formed over a spherical surface of enough large radius, Rmax.

We define the flux as js (r) = i/2m [φs(r) ∇φ∗
s (r) − c.c.] and

choose the radial component, χs(r), at far distances as the
outgoing Coulomb wave [see second formula in Eqs. (E7)],
where Ns is an unknown normalization factor. We integrate
Eq. (E7) over the angular variables and find Ns as

(
ks

m
|χs(Rmax)|2 = ks

m
|Ns|2(|Gs(Rmax)|2 + |Fs(Rmax)|2)

= ks

m
|Ns|2 = 1

)
→
(

Ns =
√

m

ks

)
. (E8)

2. Aspects of numerical calculations of the wave functions

To calculate integrals (B11) and (B13), we used a large
but finite range for the variable r: 0 � r � Rmax. We separate
the full radial region into the internal and asymptotic parts at
point Rat: the internal region with strong effects of nuclear and
Coulomb interactions between clusters (0 � r � Rat ), and the
asymptotic region with the Coulomb interaction only (Rat �
r � Rmax). Calculations of the wave functions are performed
in each region independently by different methods.

In the internal region we use the following method. For the
state of elastic scattering the wave function, χs, is real. We
determine each partial solution of the wave function and its
derivative at a selected starting point r0, and then we calculate
those in the region close enough to this point using the method
of beginning of the solution (based on expansion in Taylor
series; see Ref. [72]). For the solution increasing in the barrier
region we choose r0 = 0 as the starting point. For the solution
decreasing in the barrier region we choose r0 = Rat as the
starting point. Then we calculate both partial solutions and
their derivatives independently in the full nuclear region using
the method of continuation of the solution briefly presented
in Appendix B.3 in Ref. [73], which is an improvement of
the Numerov method with constant step [72]. Then, we find
the unknown complex coefficients from the corresponding
boundary conditions.

The Coulomb wave functions and their derivatives in the
asymptotic region are calculated by using library programs.
Then, they are matched at point Rat with the solutions in the
internal region, using continuity conditions for the wave func-
tions and their derivatives. The Rmax boundary is chosen with
requirement to achieve convenient stability and convergence
in the calculations of the cross sections (this can be boundary
of about 200 000 fm).
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