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Empirical radius formulas for canonical neutron stars from bidirectionally selecting features of
equations of state in extended Bayesian analyses of observational data
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Significant advancement in Bayesian inference of nuclear equation of state (EOS) from gravitational wave and
x-ray observations of neutron stars (NSs) has been made by the nuclear astrophysics community especially since
GW170817. By extending the traditional Bayesian analysis which normally ends at presenting the marginalized
posterior probability distribution functions (PDFs) of individual EOS parameters and their correlations (or
sometimes only the Pearson correlation coefficients which are only reliably useful when the variables are linearly
correlated while they are actually often not), we search for a data-driven and robust empirical formula for
the radius R1.4 of canonical NSs in terms of the characteristic EOS parameters (features). We also identify
the single most important but currently poorly known EOS parameter for determining the R1.4. Using three
regression-model-building methodologies: bidirectional stepwise feature selection, least absolute shrinkage
selection operator (LASSO) regression, and neural network regression on a large set of posterior EOSs and
the corresponding R1.4 values inferred from earlier comprehensive Bayesian analyses of NS observational data,
we systematically and rigorously develop the most probable R1.4 formulas with varying statistical accuracy and
technical complexity. The most important EOS parameters for determining R1.4 are found consistently in each of
the feature selection processes to be (in order of decreasing importance): curvature Ksym, slope L, skewness Jsym

of nuclear symmetry energy, skewness J0, incompressibility K0 of symmetric nuclear matter, and the magnitude
Esym(ρ0) of symmetry energy at the saturation density ρ0 of nuclear matter.
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I. INTRODUCTION

Much progress has been made, especially since
GW170817, in constraining the nuclear matter equation of
state (EOS) with uncertainty quantification thanks to
successful applications of Bayesian statistical tools and
various nuclear EOS models in analyzing the new data
from both astrophysical observations and terrestrial nuclear
experiments [1,2]. In particular, observations by the Laser
Interferometer Gravitational-Wave Observatory (LIGO)
and VIRGO of gravitational waves from neutron star (NS)
mergers and the high-precision observations by NASA’s
Neutron-Star Interior Composition Explorer (NICER) of
x-rays from hot spots on pulsars have helped establish strong
correlations between the radii R1.4 of canonical NSs of
masses around 1.4M� and features of nuclear EOS especially
its symmetry energy term, see, e.g., Refs. [3–9] for recent
reviews.

Within the minimal model of NSs consisting of neutrons,
protons, electrons, and muons at β equilibrium, the core EOS
in terms of pressure versus energy density can be obtained
from the energy per nucleon E (ρ, δ) in cold neutron-rich
nucleonic matter of density ρ and isospin asymmetry δ =
(ρn − ρp)/ρ, where ρn and ρp are the densities of neutrons
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and protons, respectively. E (ρ, δ) can be written as [10]

E (ρ, δ) = E0(ρ) + Esym(ρ)δ2 + O(δ4), (1)

where E0(ρ) is the energy per nucleon in symmetric nuclear
matter (SNM) while Esym(ρ) is nuclear symmetry energy at
density ρ. They can be further parametrized as
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in terms of the incompressibility K0 and skewness J0 of SNM
as well as the magnitude Esym ≡ Esym(ρ0), curvature Ksym,
slope L, and skewness Jsym of the symmetry energy Esym(ρ)
around the saturation density ρ0 of SNM. As we shall discuss
in more detail, in building the minimum model for neutron
stars, we use the empirical value of E0(ρ0) = −15.9 MeV
at ρ0 = 0.16 fm−3. These EOS parameters characterize not
only properties of neutron-rich matter around ρ0 but also its
features away from it. For example, Esym(ρ) and the related
pressure in NSs at densities around 2ρ0 to 3ρ0 that is affecting
most strongly the radii of canonical NSs are dominated by the
Ksym and Jsym parameters [4].
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Have we learned enough from analyzing astrophysical data
to establish a direct relationship between the R1.4 and the
EOS parameters defined above? Such a relationship would be
useful for getting a quick check of the astrophysical ramifi-
cations of a new value of any of the EOS parameters from
new terrestrial experiments or predictions of novel theories
without going through the procedure of building a new EOS
for NSs and solving again the Tolman–Oppenheimer–Volkoff
(TOV) equations. In this regard, it is interesting to note that
empirical formulas for the masses and gravitational redshifts
of NSs in terms of some of the above EOS parameters have
recently been proposed by Sotani et al. [11–13], mostly
based on predictions of several tens of nuclear energy density
functionals.

Knowing the relative importance of the above EOS param-
eters in determining the R1.4 has been a longstanding goal of
the community. However, the answers to this quest have been
strongly model dependent if not controversial [2]. Partially
because, in the forward-modeling approach, by comparing
model predictions with observational data, one usually varies
one parameter at a time and different parameters generally
have very different relative uncertainties. Rarely does any
model fully explore its whole multiparameter space to find
the true global minima of the error functions. It is indeed very
hard to make a fair comparison of results from varying param-
eters with very different values and uncertainties to identify
globally the most influential EOS parameter on R1.4. On the
other hand, in the backward Bayesian inference or covariance
analyses one often focus on comparing the Pearson correlation
coefficients, which are only reliably useful when the variables
are linearly correlated, in cases where they are actually not lin-
early related. Thus, an apparently strong correlation between
L and R1.4 or a large Pearson correlation coefficient between
them based on over 500 energy density functional predictions
do not necessarily mean that the L parameter is the most
important for determining R1.4. In this regard, a very similar
situation exists for the NS crust-core transition density ρt ,
which affects significantly the calculation of R1.4. As demon-
strated and discussed in detail in Refs. [4,14,15], it is actually
the Ksym that affects most strongly the crust-core transition
properties while very often one simply presents the ρt as a
function of L as if the latter is the dominating factor determin-
ing ρt . In fact, many investigations on the crust-core transition
density and pressure, see, e.g., Refs. [16–25], have shown
that, once a single experimental or theoretical constraint is
applied, the EOS parameters become correlated. In particu-
lar, Ksym and L are approximately linearly correlated albeit
with model-dependent correlation strength. This correlation
can easily mislead people to believe that the L parameter is
the most important for determining the crust-core transition
density. Thus, given the progress made recently in the field
and new proposals for future experiments and observations,
it is important to provide a timely answer to the question of
which EOS parameter is the most important for determining
R1.4.

In this work, we develop a set of R1.4 formulas with varying
statistical importance and technical complexity by using three
regression-model-building methodologies: bidirectional step-
wise feature selection, LASSO regression, and neural network

regression on 68 000 posterior EOSs and the corresponding
R1.4 values inferred from earlier Bayesian analyses of NS
observational data in Refs. [26–28]. We found that Ksym, L,
Jsym, J0, K0, and Esym(ρ0) are gradually less important for
determining R1.4.

The rest of the paper is organized as follows: First, for
completeness and ease of discussing the main results of this
work, we begin by summarizing in Sec. II the NS EOS model
used and the main features of its posterior PDFs from the ear-
lier Bayesian analyses [26–28] that are taken as input data in
this work. We then discuss in Sec. III the basics of regression
analysis and present an overview of the important statistics.
In Sec. IV, three methodologies for regression-model build-
ing are discussed: bidirectional stepwise feature selection,
LASSO regression, and neural network regression. Here, a
suggestion is made to modify the regular bidirectional feature
selection process to improve model performance. In Sec. V,
we discuss the results from each of the regression-model
building procedures. We demonstrate the advantages of each
technique, along with information that is qualitatively differ-
ent from the traditional correlation analysis. We conclude in
Sec. VI with a set of candidate models and a determination of
the most important features for predicting R1.4.

II. SUMMARY OF BAYESIAN POSTERIOR
EQUATIONS OF STATE AND R1.4 VALUES USED

IN THIS WORK

The posterior EOSs and their predictions for R1.4 as a
list of {Esym, L, K0, Ksym, J0, Jsym, R1.4} were taken after the
Markov chain Monte Carlo (MCMC) steps have fully reached
equilibrium in the Bayesian inference using astrophysical data
with known nuclear and astrophysical constraints as priors
[26–28]. The results presented in this work are obtained by
using 68 000 posterior EOSs and the corresponding R1.4 val-
ues. We have checked that this dataset is large enough that all
of our results are stable. More specifically, the following radii
of canonical NSs were used as independent data: (1) R1.4 =
11.9 ± 1.4 km extracted by the LIGO-VIRGO Collaborations
from GW170817 [29], (2) R1.4 = 10.8+2.1

−1.6 extracted indepen-
dently also from GW170817 by De et al. [30], (3) R1.4 =
11.7+1.1

−1.1 from earlier analysis of quiescent low-mass x-ray bi-
naries observed by Chandra and XMM-Newton observatories
[31], and (4) R = 13.02+1.24

−1.06 km with mass M = 1.44+0.15
−0.14 M�

[32] or R = 12.71+1.83
−1.85 km with mass M = 1.34 ± 0.24 M�

[33] for PSR J0030+0451 from the NICER Collaboration.
The errors quoted are at 90% confidence level. The likelihood
function Pradius used is a product of four Gaussian functions,
i.e.,

Pradius =
4∏

j=1

1√
2πσobs, j

exp

[
− (Rth, j − Robs, j )2

2σ 2
obs, j

]
, (4)

where σobs, j represents the 1σ error bar of the radius from
the observation j while Rth, j is the corresponding theoretical
prediction.

The meta-model EOS for NSs consists of a core EOS
(described briefly in the introduction) connected smoothly to
the NV EOS [34] for the inner crust and the BPS EOS [35]
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for the outer crust using the crust-core transition density and
pressure evaluated consistently from the core side [14] using
a thermodynamical approach [36,37]. As discussed repeatedly
in earlier publications [14,15,26–28,38–43] involving one of
us, once the EOS parameters in Eqs. (2) and (3) are given, a
unique EOS for npeμ matter in neutron stars at β equilibrium
can be constructed from the energy density of neutron-star
matter,

ε(ρ, δ) = ρ[E (ρ, δ) + MN ] + εl (ρ, δ), (5)

where MN is the average nucleon mass and εl (ρ, δ) is the lep-
ton energy density calculated from the noninteracting Fermi
gas model [44]. The particle densities [consequently the den-
sity profile of isospin asymmetry δ(ρ)] can be obtained by
solving the β equilibrium condition μn − μp = μe = μμ ≈
4δEsym(ρ) and the charge neutrality condition ρp = ρe + ρμ.
Here the chemical potential for particle i is calculated from the
energy density via μi = ∂ε(ρ, δ)/∂ρi. With the above inputs,
the barotropic pressure P(ρ) can then be calculated from

P(ρ) = ρ2 dε[ρ, δ(ρ)]/ρ

dρ
. (6)

Similarly, the energy density ε(ρ, δ(ρ)) becomes ε(ρ)
(barotropic) once the density profile of isospin asymmetry
δ(ρ) is obtained. Then the resulting EOS P(ε) in the form of
pressure versus energy density is ready as an input in solving
the TOV equations.

It is a meta model (model of models) of the six EOS pa-
rameters used for constructing the core EOS and determining
the crust-core transition properties. These EOS parameters
are generated randomly within their specified prior ranges
consistent with our current best knowledge. The resulting
EOS models for NSs can mimic essentially all existing EOSs
models in the literature. Such meta-model EOSs with the
minimum assumptions about the compositions of NSs have
been widely used in the literature. Nevertheless, we notice
that such minimum model with only six parameters have
its limitations. For example, both the saturation density ρ0

and the binding energy of symmetric nuclear matter E0(ρ0)
(determined mostly by the binding energies and charge radii
of finite nuclei) still have some uncertainties although their
empirical values are among the few parameters about which
the nuclear physics community has a consensus. The crust
structure, especially the inner one, as well as its connection
with the core EOS still have large uncertainties. We adopted
the most widely used NV + BPS EOSs for the inner and outer
crusts, as mentioned earlier, in building the minimum model
for neutron stars with the smallest number of parameters.
As a reference, we notice that a comprehensive Bayesian
analyses of atomic masses, charge radii, and neutron skins
of some finite nuclei together with the recent observations of
masses and radii of several neutron stars by LIGO-VIRGO
and NICER requires at least 18 parameters in a metal model
using the compressible liquid drop model for the crust, a core
EOS very similar to ours described above, and the extended
Thomas-Fermi model for nuclei [45]. It was found necessary
to separate the subsaturation and suprasaturation properties
of nuclear matter to make the analyses efficient and address
some of the tensions between astrophysical observations and

TABLE I. Mean values and standard deviations of the six EOS
parameters and the corresponding R1.4 values obtained using their
posterior distributions constrained by neutron-star observations in a
Bayesian analysis done in Ref. [28].

EOS parameter (xi) Mean (x̄i) Standard deviation (σi)

Ksym −158.97 80.45
L 54.13 13.63
Jsym 473.01 247.72
K0 239.95 11.52
J0 −163.01 69.07
Esym 31.87 1.84
R1.4 12.10 0.38

terrestrial experiments. The narrowing down of the uncertain
prior ranges of ρ0 and E0(ρ0) was achieved mostly by using
the atomic masses and charge radii alone with little improve-
ment by further incorporating the astrophysical data.

While it is possible to do a Bayesian analyses with 18
parameters even with the limited data available, to accumu-
late enough posterior EOSs in the 18 dimensional parameter
space in order to do the regression analyses is computationally
unaffordable to us presently. Moreover, the sheer number of
combinations of 18 parameters to different orders of their
multiplications is simply too big for the latest regression
approaches to work properly. Thus, among the many still-
uncertain parameters describing the EOS of neutron stars,
we have to choose the most important ones for determining
R1.4 (mostly suprasaturation EOS parameters) and make good
use of our best knowledge, especially about the empirical
properties of nuclear matter at ρ0. Given the fact that our
minimum model does not consider the possibility of forming
baryon resonances (Delta and N∗ resonances), hyperons as
we all as possible phase transitions, besides the uncertainties
of the crustal EOSs and the saturation properties of nuclear
matter, we caution the reader that all these uncertainties may
have some influence on R1.4. Of course, they all deserve fur-
ther investigations. Nevertheless, our results presented in this
work have their own scientific merits, while they should be
understood within the minimum model of neutron stars with
the caveat mentioned above.

More details for the particular EOS model used in the
Bayesian analysis can be found in Refs. [26–28]. We note that
the peak of the mass-radius sequence for an accepted EOS is
required to be at least as high as 1.97M� (the same condi-
tion that the LIGO-VIRGO Collaboration used in analyzing
GW170817). Moreover, all accepted EOSs are dynamically
stable throughout the entire NS and always remains causal.
This particular meta-model EOS has been used extensively
in studying many internal properties and observables of NSs,
see, e.g., Refs. [14,38–42].

The PDFs of the six EOS parameters and their correlations
can be found in Ref. [28]. As one of the direct inputs for the
analyses in this work, shown in Table I are the posterior mean
x̄i and standard deviation σi for each of the six EOS parame-
ters xi with i = 1 to 6. We note that the radius is constrained to
around 12 km and Esym having the lowest standard deviation
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FIG. 1. Pearson correlation coefficients (numbers in each box)
between the original EOS parameters and R1.4. Darker purple (lighter
orange) colors indicate high negative (positive) correlations.

is the most constrained EOS parameter. K0 and L are the
next most constrained parameters which demonstrate current
strong beliefs about their values. The remaining parameters J0,
Ksym, and Jsym have large variations. In fact, the uncertainties
are large enough that, for some of these parameters, it is not
surely known whether they carry a positive or negative sign.
We emphasize that both the means and standard deviations of
the symmetry energy parameters are all in excellent agreement
with the current world averages based on over 80 independent
analyses of various nuclear and astrophysical data including
24 Bayesian analyses by different groups of essentially the
same astrophysical data available since GW170817 [46,47].
The statistics of Esym and L are also in very good agreement
with predictions of the latest chiral effective-field theory [48].
The latter, however, currently cannot predict accurately the
high-density parameters J0, Ksym, and Jsym.

For the present work seeking the most probable formulas
for R1.4, the results listed in Table I will be used as the basis
to construct the reduced variable,

xi(reduced) ≡ (xi − x̄i )/σi, (7)

with i = 1 to 6 to treat all EOS parameters on equal footing,
and this is also necessary for several other considerations, as
we shall discuss in the next section. Namely, all EOS param-
eters and R1.4 are made dimensionless by first centering them
to have a mean value of zero and then scaling them to have a
variance of one. We then take the six reduced EOS parameters
as the basic EOS features. In addition, different combinations
of them will then be constructed as candidates to expand the
total number of features to be used in the regressions models.
Shown in Fig. 1 are the corresponding Pearson correlation
coefficients for {Esym, L, K0, Ksym, J0, Jsym, R1.4} we obtained
using data from the same Bayesian analysis [28]. It is seen that
Ksym has the highest correlation with R1.4 and is expected to
be the most informative parameter. However, by its correlation

score it is only slightly more correlated with R1.4 than L with
a difference in scores less than 0.01. We also note that Ksym

and L are negatively correlated with each other. J0 and Jsym

are the next most correlated with R1.4 and both exhibit higher
correlations with Ksym than they do with R1.4. Finally, K0 and
Esym are the most uncorrelated with R1.4, having near zero
correlations with R1.4 and many of the other parameters. The
lack of correlation between K0, Esym, and R1.4 is likely because
they are the most constrained parameters and imposition of a
stricter prior distribution leads to smaller variations in their
values. Correlations between the remaining parameters and
R1.4 are more intractable since they all vary significantly dur-
ing the Bayesian inference.

We emphasize that the Pearson correlation coefficients
shown in Fig. 1 cannot encapsulate nonlinear relationships
between variables. These correlation coefficients may under-
value the strength and nature of the relationships and some
dependencies of the variables may be misleading if their
underlying correlations are nonlinear. We can remedy these
issues by performing relatively simple regression analyses
and use feature selection techniques. In the process, we can
use both parametric correlation methods and nonparametric
(e.g., neutral network) ones. The latter often need fewer as-
sumptions about the distributions of the variables but have no
precise parametric formulas accompanying the strength of the
relationship [49].

III. REGRESSION PRELIMINARIES

Generally, a linear regression model [50,51] asserts a func-
tional relationship

r̂k =
∑

i

βixi,k + εk = �β �Xk + εk (8)

between an observable r̂k and a set of features { �xi}k , where k
is the sample index. In the present study, r̂k is the regression-
model predicted value of R1.4 using the kth EOS parameter
set (features) { �xi}k = {Esym, L, K0, Ksym, J0, Jsym, R1.4}k with
k running from 1 to 68 000 through the entire EOS ensemble.
βi are the coefficients for the ith feature found by minimizing
the total distance between observations (actualization) and
regression-model predictions,

Dls =
∑

k

(rk − r̂k )2, (9)

where rk is the TOV predicted R1.4 value (defined as an
“observation” in the context of this study) with the kth EOS
parameter set from the Bayesian analysis. The βi are consid-
ered as the parameters of the regression model. We note here
that, as we are going to consider combinations of the original
six EOS parameters, the i here is general and can be much
larger than six.

The difference between the observation (actualization) rk

and the regression-model prediction r̂k is a residual and is
considered an error εk of the regression-model prediction for
the kth sample. It is important that the errors be normally
distributed and have a constant variance for all predictions
[50], i.e., homoscedastic. Although linear regression is robust
against violations of these assumptions when there are many
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observations, or the violations in these assumptions are rela-
tively minor. To ensure violations are moderate and improve
model generalizability, modifications can be made to linear
regression models, as with the least absolute shrinkage and
selection operator (LASSO) regression [52] which minimizes

Dlasso =
∑

k

(rk − r̂k )2 + λ

n∑
i

|βi|. (10)

Adding the absolute values of all the regression-model param-
eters β j penalizes large coefficients weighted by a learning
parameter λ. Here λ is a real-valued number in the interval
[0, 1] and affects how quickly βi coefficients drop off in com-
parison with the βi found in least squares regression. Note that
λ = 0 is equivalent to minimizing Dls and a λ = 1 forces all
the coefficients to be zero. In cases when λ �= 1 minimizing
Dlasso can still cause some or all βi coefficients to become zero
and thus nullify the effects of the features they lead. When
some βi do become zero, then LASSO regression can be used
as feature selection method by keeping only the features with
nonzero coefficients. More generally, LASSO regression can
prevent models from overfitting data and can increase model
generalizability.

To ease the following discussions, we recall in the follow-
ing a few terminologies necessary. Two metrics are commonly
used to determine the quality of a regression model of the form
in Eq. (8). The total sum of squares (TSS) is

TSS ≡
∑

k

(rk − r̄)2. (11)

is the total distance between all the actualized observable rk

from their mean r̄ (completely determined by the Bayesian
analysis in this study). While the sum of squared errors (SSE),

SSE ≡
∑

k

(rk − r̂k )2 = Dls, (12)

is the total distance between all the predictions of a regression
model and the corresponding observations.

For model selections, we use the following three statistical
measures of the quality of a regression model:

(i) The coefficient of determination [50,53] (R2)

R2 ≡ 1 − SSE

TSS
(13)

measures the explained variance of a model. For a
given dataset and regression-model, SSE can be 0.0,
indicating a perfect fit. However, a model can also
be arbitrarily poor leading to an SSE greater than
TSS and achieve an arbitrarily lower and negative R2

values. Thus, R2 has a maximum value of one but is
unbounded below.

(ii) The Akaike information criterion [54] (AIC),

AIC ≡ q − ln (�) = 2q − n ln

(
SSE

d

)
, (14)

is a model selection statistic which takes into account
the number of parameters a model contains and the
model’s fit as measured by the maximum likelihood
estimate. The first expression in Eq. (14) is general

for any maximum likelihood estimate �, and the final
one is the expression for AIC when � is determined
by the least squares minimization. q is the number of
estimated parameters in the model, n is the number
of observations, and d is the degrees of freedom in
the model. While the coefficient of determination R2

provides useful information regardless of the exis-
tence of other models, the AIC can only be used to
compare the quality between models that are fit to the
same dataset. In a given set of models, the model with
the smallest AIC is considered the best one.

(iii) The partial F statistic [50] (F ∗) is

F ∗ ≡ (SSEν − SSE f )d f

SSE f (dν − d f )
(15)

and compares the quality of a full model with a
nested version of itself. A full model is defined by
the modeler to include as many features of interest
and a nested model must contain less features than
the full model, all of which must be in the full model,
i.e., the set of features in the nested model should
be a proper subset of the features in the full model.
In Eq. (15), SSE f (ν) and d f (ν) are the sum of errors
squared and degrees of freedom for the full (nested)
model, respectively.

The F ∗ statistic follows a one-tailed F distribution
and can be written as a ratio of two χ2 distributions
[50,55]. It is used to test the null hypothesis that the
set of parameters {β j} in a full model, which are not in
the nested model, are simultaneously zero. A higher F
statistic yields a lower probability (p value) in the F
distribution and is evidence that at least one of βk in
the set {β j} being tested is nonzero, i.e., evidence to
reject the null hypothesis. Acceptable p values, i.e.,
significance levels are set before modeling and if a p
value is greater than the significance level, then F ∗ is
not considered to have provided sufficient evidence
against the null hypothesis and the set {β j} would
be assumed simultaneously zero. If the full model
includes only one extra parameter than the nested
model, then the null hypothesis can be used to test
whether a single βi = 0, thus providing evidence for
the statistical significance of a single parameter.

IV. METHODS

First of all, we note that, unless otherwise specified, from
this point forward we discuss the relationship between EOS
dimensionless features and the dimensionless radius R1.4. All
the symbols in the plots and tables are reduced variables as
defined in Eq. (7).

As outlined in Fig. 2, each EOS parameter, their poly-
nomial terms up to degree six, along with their cubed root,
reciprocals, and logarithms are considered as features of inter-
est. Most of the features are generated to take account possible
complexity of different terms, therefore to avoid an overly
complex model each feature is checked for correlation with
every other feature. If the correlation between two features is
greater than 0.85 as measured by the Pearson correlation co-

055803-5



JAKE RICHTER AND BAO-AN LI PHYSICAL REVIEW C 108, 055803 (2023)

FIG. 2. Diagrammatic representation of the feature generating procedure before correlation filtering is applied.

efficient the feature which has higher complexity is removed
from the list of generated features. Complexity is determined
by the abstraction from the original EOS parameters, and thus
the latter are defined as features with the lowest order com-
plexity. Logarithms have the highest complexity due to the
required positive argument, fractions have the second-highest
complexity due to their divergence at zero, cubed root terms
are then third-highest complexity, and finally the cross terms
are considered the least-complex generated features.

Three different analyses are performed after feature gen-
eration and filtration: Bidirectional feature selection, LASSO
regression, and neural network regression. We use the Python
package sci-kit learn [56] to do least squares regression,
LASSO regression, and for building the architecture of the
neural network.

A. Parametric regression-model building

A bidirectional step algorithm as illustrated in Fig. 3,
similar to the one described in Ref. [50], is implemented to
decide which of the features will create an efficient model.
First, a working model containing only the average value
of the dimensionless radius distribution is considered and
because it has been centered to 0.0, this is equivalent to a
completely empty model. Then a “forward step” is taken,
each feature in the generated set is considered for addition
into the model by temporarily adding the feature, perform-
ing least squares minimization, and then removing it from
the model. The parameter that (i) has the highest partial F
statistic, (ii) improves or maintains model residual statistics as
measured by the residual distribution skew and kurtosis (third
and fourth statistical moments, respectively), and (iii) has an
F ∗ p value greater than 0.05 will be considered significant,
added to the working model and removed from the feature
list. After adding a feature to the model a “backward step”
is taken wherein each feature in the current working model
is removed one at a time to determine if they are statistically

significant by the F ∗ p value. If it is determined that there
are insignificant features in the backward step then they are
removed from the model. After the backward step, the proce-
dure returns to perform a forward step and iteratively builds
a model. This process of forward and backward stepping
repeats until no other features can be added to the model
either because all have been included or there is not another
parameter which satisfies conditions (i)–(iii) in the forward
step.

A significance level of 0.05 is chosen here to ensure that re-
alistic variables are included in the model. Higher significance
levels may lead to less significant features being included
and create unnecessarily complex models. Lower significance
levels may exclude informative variables that would improve
model performance. It should be noted that the condition (ii)
is not commonly used in the literature. However, we impose
it in our step-wise algorithm. The goal of condition (ii) is
to force selecting features that keep the residuals distributed
approximately symmetric about the prediction. Thus, when
using the condition (ii) we consider this to be a modified
bidirectional step algorithm.

The LASSO penalized regression is performed on the same
set of features described in the above generation process.
The learning rate λ is set as a hyperparameter of the model
selection process and chosen so that AIC is minimized. In
the bidirectional feature selection and LASSO regression, we
consider different sets of generated features. The feature sets
are characterized by the highest polynomial terms that were
generated before filtering out features with excessive correla-
tion, e.g., a feature set with only the original EOS parameters
(and their expressions) as generated features is considered the
complexity-degree-one feature set. This allows us to systemat-
ically study the effects of including higher-complexity terms
by varying the complexity of terms in the generated feature
set. This is especially true when analyzing the bidirectional
selection techniques which provide step-by-step model se-
lections that are more sensitive to different correlations. In
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FIG. 3. Diagrammatic representation of the modified bidirectional feature selection algorithm. The numerals (i), (ii), and (iii) are the
conditions discussed in the methods section. Removing condition (ii) would give the regular bidirectional selection procedure. Beginning with
a forward step, a model is built by one-at-a-time selection and fitting to find the best feature at the given model step. After each forward step
is taken a “backward step” is performed to ensure each feature in the model is statistically significant; if not, it will be removed. The process
terminates when no “bestF” is found in the forward step process.

the LASSO regression, changing complexity of the feature
set may only change the number of parameters with nonzero
coefficients.

B. Neural network (nonparametric) regression

Neural networks provide a method for performing regres-
sion analysis with arbitrarily high degrees of complexity and
low computational cost [51]. Networks are composed of lay-
ers and each layer is composed a set of neurons. The first layer
is the input layer which is followed by a sequence of hidden
layers and finally an output layer which gives the networks
predictions. Each neuron is a function (usually a nonlinear
function) that takes as an input a weighted sum of the outputs
from the layer preceding it and gives a single valued output
for the next layer. Weights between layers are then adjusted to
improve model performance in the output layer. In this work

a neural network is trained on the Bayesian posterior dataset
discussed earlier. We use the sci-kit learn’s MLPRegressor
class to build a simple multilayer perceptron for the regression
problem. The network consists of the six EOS parameters as
an input layer and two hidden layers with six neurons each.
All hidden layer neurons were activated by the hyperbolic
tangent function. Training was done to minimize the mean
squared error (MSE):

MSE ≡ 1

n

n∑
k

(rk − r̂k )2, (16)

where n is the number of observations. The data are split
75-25 so that 75% of them are used for training, the rest
are for model testing. For updating the weights, we use
the adam method with a batch size of 200 samples with
1000 epochs.
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FIG. 4. Models selected by the bidirectional feature selection processes when degree-one terms and expressions are generated. Each Mi
(i = 0, 1, 2, . . .) is a step in the feature selection process from either the modified procedure or the regular procedure. Top bars are the models
selected when condition (ii) is imposed and the bottom bars are the selected models when condition (ii) is not imposed. Colors of the bar are
related to a feature that was used in the models, and their lengths are proportional to the its coefficient size as a fraction of the sum of all the
coefficient sizes.

After training is complete we use the Python package
eli5 to perform permutation importance testing on the input
layer features. The procedure chooses one feature vector to
permute and passes it through the neural network with the
other features remaining unaltered. The permutation of a sin-
gle feature will alter the predictions and change the MSE.
The difference in MSE between the original network with
no permuted features and the network with one permuted
feature is calculated and stored. The permuted feature is then
returned to its original state and another feature is chosen to
be permuted, and again the difference in MSE as a result of
the permutation is calculated and stored. When all the features
have been permuted once we compare the change in MSE to
determine which feature the neural network was most reliant
on. A higher change in MSE indicates the neural network was
more dependent on the given feature since its permutation lead
to a more significant loss in information. Thus, a feature with
higher change in MSE after permutation would be considered
a more important predictor.

V. RESULTS AND DISCUSSIONS

Here we present results from applying the regression and
feature selection techniques described above. Many candidate
models are found and we discuss their efficacy via model
selection statistics and their residuals. Finally, a series of
suggested R1.4 models are presented which best characterize
the dataset from the Bayesian analysis.

A. Bidirectional equation of state feature selection

Shown in Fig. 4 are the results of the bidirectional feature
selections made at each step where the only features being
considered are the original EOS parameters, their cubed roots,
logarithms, and reciprocals, i.e., no cross terms. For clarity
and brevity, when discussing the models with i features se-
lected from a feature set with generated polynomial terms up
to degree j in the modified (regular) process; we denote this
as Mi j

mod(reg). The top bar of each Mi are the features selected
by the modified bidirectional selection procedure [when
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condition (ii) is imposed] and bottom bars are the features
selected by the regular bidirectional selection process. The
length of each color in the bar is proportional to |βi|/

∑
i |βi|

where βi coefficient leads the indicated parameter.
The first steps shown in Fig. 4, M11

reg and M11
mod choose

Ksym due to it having a higher Pearson correlation coeffi-
cient with R1.4 than all other EOS parameters, as shown in
Fig. 1. Subsequently, L is added to both models. The resulting
coefficient for L is slightly less than that for Ksym. The R2

score increases from 0.25 in M11
mod to 0.71 in M21

mod. In the
modified process the next features added (in order) are K0,
J0, and Esym. After the addition of K0, there is no significant
increase in R2 and the coefficients leading J0 and Esym are
small in comparison to K0 and especially when compared with
Ksym and L.

In the regular bidirectional selection process, M31
reg differs

from M31
mod in the choice of Jsym. We note that this choice

significantly improves the R2 score of M31
reg over M31

mod, with
a difference in scores of 0.13 in their third steps. The last three
parameters added in the regular bidirectional selection process
are K0, J0, and Esym. They are the same as the last three param-
eters added in the modified process. The final model contains
all the original EOS parameters with R2 = 0.94. Both selec-
tion methods terminate automatically without including any
logarithms, reciprocal terms, or cubed roots. The logarithms
and cubed roots were considered but then discarded in the
feature building process due to their high correlations with the
original EOS parameters. The reciprocal terms of Ksym, Jsym,
L were all uncorrelated with the original parameters and were
eligible to be included in either stepwise selection algorithm.
Their exclusion in both stepwise selection processes indicates
there is no great explanatory power of the reciprocal terms
and they provide no improvement in the distribution of the
residuals.

Moreover, the regular bidirectional selection process finds
a more accurate model as measured by R2 where the final
models differ in R2 by 0.26. The difference in accuracy can be
attributed to the exclusion of Jsym in the modified procedure.
When Jsym is included in the regular feature selection process,
K0 and J0 provide more significant increase in R2 when com-
pared with their effects on R2 in the modified procedure which
does not include Jsym. This suggests Jsym has a confounding
effect on K0 and J0 and should be included in an appropriate
model of R1.4. However, whether Jsym should be included as
a stand-alone linear term or in higher polynomial terms is
unclear. It is interesting to note here that Bayesian analyses
[26–28] have clearly indicated that the currently available NS
observational data do not provide a tight constraint on Jsym.
With or without it in parametrizing the EOS for Bayesian
analyses affects the PDFs of other EOS parameters similar to
the above findings.

Shown in Fig. 5 are the dynamics of the bidirectional step-
wise selection when degree-two polynomial terms and their
expressions are generated. Again, Ksym and L are the first two
parameters added in the modified and unmodified procedure.
In the modified procedure, as more parameters are added the
fractional weights of Ksym and L consistently decrease until
the fifth parameter is added. The first large fractional decrease

in L is when M32
mod includes (LJsym )

1
3 , also at M32

mod, there
is a slight decrease in the weight of Ksym. Since (LJsym )

1
3 is

almost directly correlated with L and Jsym is nontrivially cor-
related with Ksym, the trade-off in coefficient size is expected.
We note that M32

mod has a higher R2 score than M31
mod. It

indicates that nonlinear expressions of explanatory features
which have already been included in the model may provide
more information than including original EOS features like K0

and J0. The latter two are the next parameters included in the
model, and the increase in R2 score is greater than the increase
seen when only first-degree terms were included. This adds to
the prior evidence that Jsym has positive confounding effect on
the variables K0 and J0 since Jsym appears in a cross term with
L and is likely the reason R2 increases.

In the unmodified case, stepwise selection finds models up
to M42

reg are the same as models up to M41
reg. M52

reg selects
LJ0 as the first cross term in the regular bidirectional proce-
dure. After LJ0 there is no significant increase in R2. When
(KsymJ0)

1
3 are included in M72

reg, the R2 reaches near its max-
imum value and the fractional coefficients are significantly
smaller than the original EOS features. Notably, the fractional
weights of Ksym, L, and Jsym are mostly constant with the addi-
tion of extra features and most of the trade-off between feature
coefficient sizes occur between higher-complexity terms.

In considering only the lower-complexity-degree terms, the
bidirectional feature selection algorithm shows the progres-
sion of the relationships between the original EOS parameters
and R1.4. Here, Ksym and L are found to be the most impor-
tant predictors. Moreover, a comparison of their fractional
coefficients indicates that Ksym can be considered the most
important parameter for determining R1.4 in models which
only include low-complexity terms, regardless of whether a
modified stepwise algorithm is considered. Additional infor-
mation from our analyses indicates that Jsym is also important
for predicting radius. In fact, Jsym is more important than its
correlations would suggest. In Fig. 1 Jsym has a lower correla-
tion with R1.4 than J0, but it tends to increase the accuracy in
modeling R1.4 more than J0. This finding is actually consistent
with our earlier knowledge [4]. The Jsym controls mostly the
high-density symmetry energy while the J0 controls mostly
the symmetric nuclear matter EOS at densities above about
2ρ0 [4]. They are known to mainly affect separately the radii
and masses of NSs. This physics is naturally in the Bayesian
posteriors. It is reassuring that the feature selection techniques
revealed it numerically and automatically.

The three EOS parameters K0, Esym, J0 are nearly unimpor-
tant in predicting R1.4 and only provide small contributions in
improving accuracy when Jsym is included. The unmodified
bidirectional selection process indicates that Jsym is an impor-
tant predictor for an accurate model. However, its exclusion in
the modified procedure indicates there need to be correcting
features in the model to offset its effect on the distribution of
the residuals. Again, this is due to the fact that available NS
observational data do not constrain the high-density symmetry
energy parameter Jsym. Its value fluctuates irregularly in the
Bayesian posteriors [26,27].

In Fig. 6 we show the models selected when all cross
terms up to degree six are generated and filtered by excessive
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FIG. 5. Models selected by bidirectional feature selection when degree-two cross terms and expressions are considered. Steps, bar lengths,
and bar colors are determined as in Fig. 4 with a different color palette being applied.

correlation. The models are similar up to M36 where features
KsymJ2

0 and LK4
0 are chosen first. However, here we note that

the R2 value for the model of which R1.4 is a linear combi-
nation of KsymJ2

0 and LK4
0 is lower than the R2 for the model

with R1.4 as a linear combination of only Ksym and L (which
were the features selected by the selection algorithms used
on lower-complexity datasets). At M36 the models found by
the different stepwise selection procedures begin to vary in
R2 scores and type of parameters selected. This difference
is seen between selection algorithms and between the same
selection algorithm used on different complexity datasets. For
example, the modified process includes Jsym at M36

mod, a de-
viance from the previous selecting algorithms used on features
in a lower complexity feature set which did not include Jsym

unless it was paired with another feature or as a reciprocal
of itself. Moreover, after M36

mod the modified algorithm chose
variables which tended to have higher-degree terms, increas-
ing the complexity of the model, whereas the unmodified
algorithm tend to choose the original EOS parameters first
and then include some higher-complexity terms. When the

number of higher-complexity terms increase the modified fea-
ture selection algorithm produced a lower R2 than when fewer
high-complexity terms are involved. The R2 score when the
degree-six feature set was used is smaller than that when the
degree-two feature set is used. The unmodified algorithm’s R2

score was unaffected by a change in complexity of the feature
set, only a change in the variables found.

Figure 7 compares the regression-model predicted radii
with the true radii (the observation or actualization defined
earlier) from the Bayesian inference. Black circles represent
the predicted vs true radius values when the model is selected
by the original bidirectional feature selection algorithm, and
blue circles are the models selected by the modified feature
selection procedure. The upper-left panel gives the model fits
when no cross terms are considered, upper-right panel are the
fits when degree-three terms are considered, and the lower
panel is when cross terms up to degree six are considered. As
the complexity of the feature set increases both methods find
models which better predict radius under 11.5 km and over
13.5 km. In the unmodified procedure the model accuracy as
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FIG. 6. Models selected by the bidirectional feature selection when degree-six cross terms and expressions are considered. Steps, bar
lengths and bar colors are determined as in Figs. 4 and 5 with a different color palette being applied. Here, each top bar at an Mi is the
unmodified selection process and the bottom bar is the selection from the modified procedure.

measured by the R2 scores is maintained around 0.95 while
the modified procedure finds models of varying R2 scores.
When no cross terms are considered the model achieves an
accuracy around 77%, introducing third-degree cross terms
leads to an approximately 10% increase in R2, and introducing
sixth-degree cross terms yields a less accurate model.

The models that have more symmetric residuals are found
by the modified bidirectional process. Models found by the
regular algorithm are more accurate but fail to provide consis-
tent information as one moves along the predicted radius line
in red. The model which best combines accuracy and symmet-
ric residuals is shown in the middle panel when degree-three
cross terms are considered by the modified bidirectional al-
gorithm. However, there is a slight bend in the predictions
just under 12.5 km, which indicates some necessary nonlinear
terms may be missing from the selected model. This problem
disappears when degree-six terms are generated as shown in
the rightmost plot.

Imposing the condition (ii) in the feature selection pro-
cess improves the distribution of the residuals around the
prediction line and finds models which are sufficiently ac-
curate. This corrects for problems in the models found by
the regular forward feature selection. Namely, it reduces
over predictions that occur at lower radii around 11.5 km
and higher ones over 13.5 km and the inconsistent residu-
als when the radii are between the two extremes. The cost
of imposing condition (ii) is model accuracy. Furthermore,
the condition (ii) is less consistent as more cross terms are
generated, so care must be taken in determining the com-
plexity of cross terms to use and what correlation to use for
filtering.

Regardless of the method and degree cross terms gener-
ated, Ksym is the most heavily weighted parameter and the
second most weighted one is L. This is strong evidence that
Ksym plays the most important role in predicting R1.4 and
that L is slightly less important. Importantly, in none of the
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FIG. 7. Display of predicted radii from regression model against true radii from Bayesian inference. Dimensionless radius are transformed
to have units of kilometers. Red line is the perfect fit line, i.e., if the prediction were exact against the true radii then all points would be on the
red line. Blue circles indicate the predicted and true values for a given prediction of the model selected by the modified bidirectional feature
selection process. Black circles are the predicted values for the selected model from normal bidirectional feature selection. Each plot shows the
fits when different complexity terms are considered in the feature generation. The upper-left panel shows fits of the fifth model when no cross
terms are generated. The upper-right panel shows fits for the tenth model when cross terms up to degree-three polynomial terms are generated.
The lower panel shows that fits for the tenth model cross terms up to degree six are generated.

analysis does a cross term containing L and Ksym appear in
the selected models. This is not certain proof their cross terms
are not important, rather an indication that the cross terms do
not provide any significantly new information when Ksym and
L are already included. Notably, Jsym is useful to increase the
accuracy of the models selected. However, to generate a model
with more symmetric residuals it appears only when many
other parameters are already in the model or it is paired with
another feature and scaled such that it produces more useful
predictions.

B. Relative importance of equation of state features according
to LASSO regression

Figure 8 shows the models selected by LASSO regression
with varying degrees of generated feature complexity. From
left to right then bottom, the maximum generated degrees are
one, three, and six, respectively. As the generated complexity
increases the fits of LASSO regression improve qualitatively
in the residuals and by the model selection statistics R2 and
AIC. Initially, with no cross terms considered, the distribution
is similar to the bidirectional selection algorithms, and there
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FIG. 8. Predicted radii of LASSO regression selected models against the true radii from the Bayesian inference. Penalization is chosen to
minimize AIC. Upper-left panel gives predictions when no cross terms are considered. Upper-right panel gives the regression when at most
degree-three cross terms are considered. Lower panel shows model when cross terms up to degree six are used.

are clear bends and branches in the predictions which indicate
the need for nonlinear terms. In the middle plot where at most
degree-three cross terms are generated, there is a significant
decrease in the bend and the branch shrinks closer to the main
sequence of predictions. In the final model with generated
degree-six cross terms, the bends disappear. However, there
is still a branch in the predictions when R1.4 is around 12 km.
Fortunately, the branch is linear and the true radii are closer to
the prediction line.

To obtain the fits shown in Fig. 8, the LASSO selection
maintained a large number of features in its selection. For
the case when degree-three terms were generated, there were
17 features with coefficients greater than 0.0 and 16 features
greater than 0.05. In the highest-complexity feature set (right
panel) there were 29 features with coefficients greater than
0.0 and 24 features with coefficients greater than 0.005. The
number of features from LASSO is nearly triple and double

the number of parameters used by the bidirectional feature
selection algorithms.

Table II shows the coefficients for the features with the
largest coefficients in the LASSO regression model which
considered up to degree-six cross terms. It is seen that Ksym

dominates the coefficients in the LASSO model when paired
with other terms, especially when in cross terms involving
J2

0 and J2
sym. If some feature vectors experience high mul-

ticollinearity the sizes of their coefficients in the regression
model can vary greatly. In this case, the effects of one feature’s
information can be spread to the coefficients of other features
by a trade-off in coefficient size. Thus, it is possible that,
because Ksym is included in many cross terms, then many of
the terms with Ksym would experience exchanges in coefficient
sizes and decrease the coefficient of Ksym. Table II demon-
strates that this is not the case, here the coefficient leading the
lone Ksym term is roughly the same proportion when no extra
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TABLE II. Coefficient leading the indicated feature when cross
terms up to degree six are generated.

Feature Coefficient (deg. 6)

Ksym 1.27
L 0.91
KsymJ2

sym −0.63
Jsym 0.51
KsymJ2

0 0.32
K4

sym −0.26
KsymL2J2

0 −0.24
LJ0 0.21
K0 0.19
J5

sym −0.16

cross terms are used, as in Fig. 4. Thus, cross terms with Ksym

provide information which is significant to R1.4 apart from
Ksym as a lone term. Moreover, not explicit in Table II, the
features of LASSO regression with nonzero coefficients were
mostly composed of terms crossed with Ksym and L. From the
above analysis of LASSO regression, we would conclude that
Ksym is the most important parameter in determining the R1.4.

In comparison with the previous feature selection algo-
rithms, LASSO finds that Ksym is significantly more important
than L. LASSO may also increases accuracy of the predictions
if one is willing to accept the loss of interpretability in hav-
ing more features and branch of predictions deviating from
true values in an interval around the most probable radius of
12 km.

FIG. 9. Neural network regression results on a testing subset of
the original data. Black circles are the predictions of the neural
network against the true values. The red line indicates a perfect
prediction for a calculated radius. Network was trained with sklearn
package and a tanh activated hidden layer.

TABLE III. Changes in model mean square error (MSE) from
permutation. Higher MSE indicates a features which had larger
weighting in the neural network, i.e., more important to the model.

Feature Permutation MSE change

Ksym 2.88 ± 0.034
L 1.59 ± 0.024
Esym 0.011 ± 0.00031
Jsym 1.32 ± 0.0204
K0 0.131 ± 0.0019
J0 0.179 ± 0.0026

C. Relative importance of equation of state features according
to neural network regression

Figure 9 shows neural network regression predictions
against a test dataset. The fit is nearly perfect with an R2

score of 0.98 and no exceptional variations in the residuals
except when around 12 km, where some predictions are less
than their true values. We also note slight underpredictions
when the true radius is around 13 km. Here the neural network
regression technique with a single type of activation function
and smaller number of layers provides the most accurate
model for R1.4.

Shown in Table III is the feature importance as measured
by the change in MSE after permutation. We see that a per-
mutation in Ksym has the highest effect on MSE, indicating it
is the most important parameter in the neural network model.
After Ksym, a permutation in L has the second highest effect in
the model which is roughly 55% the effect size of permuting
Ksym. The third most important feature is Jsym with effect size
83% of the effect from permuting L and 46% the effect size
from permuting Ksym. The permutation importance presents
relatively strong evidence about the effects of Ksym compared
with L and weaker evidence about the importance of L when
compared with Jsym in modeling R1.4. These findings help
clarify the contradictory or ambiguous situation in the current
literature which generally places large emphasis on the effects
of L in determining R1.4 [2].

D. Identifying the most influential equation of state features and
selecting the most accurate R1.4 models

To this end, it is useful to summarize here the key advan-
tages and disadvantages of each technique in developing the
regression models for R1.4. What do they predict in common
about the most influential EOS features and the most accurate
R1.4 models?

To our best knowledge, there is no proper prior choice
of bidirectional selection techniques, i.e., modified or un-
modified for a given dataset. The unmodified bidirectional
selection techniques provide quicker convergence to accurate
models and can incorporate a lower number of parameters that
maintain high model accuracy. However, the fits show that
the regular procedure has large changes in residual variation
and consistency. Given a prediction for R1.4 below 11.5 km
or over 13 km, a modeler using the unmodified bidirectional
selection technique would be confident that their results are

055803-14



EMPIRICAL RADIUS FORMULAS FOR CANONICAL … PHYSICAL REVIEW C 108, 055803 (2023)

significantly overpredicting the radius, but would be assured
that between these values their predictions are more accurate.
The modified selection algorithm generally solves the prob-
lems of the unmodified one, creating more consistent residuals
around the prediction. In this case, it would be impossible
for a modeler to be confident they are overpredicting unless
they are strictly at the tail of the prediction interval. However,
there is a trade-off in the accuracy of the models and consis-
tency of variable selection as complexity increases. Thus, we
should note that, when employing either of these techniques,
extra caution should be taken in analyzing and improving the
residuals.

Between the bidirectional selection and LASSO regres-
sion, LASSO provides an efficient method to determine which
features are most important, considering all of them simulta-
neously. In the analysis, this generally led LASSO regression
to maintain a larger subset of features than either of the
bidirectional selection techniques. Since the fits of LASSO
regressions improve the distribution of the residuals when
higher-complexity feature sets were utilized, then we may
assume both bidirectional feature techniques terminate too
early and there are likely few missing features in their models.
However, due to the iterative construction it is possible that
the parameters in bidirectional selection are correlated with
the extra parameters LASSO maintains. Importantly, since the
fits from LASSO regression improve with higher-complexity
terms which include Ksym then there are likely many important
cross terms between Ksym and other EOS parameters that
present vital information not contained in Ksym alone. The
clear trade-off with choosing LASSO regression is a loss in
interpretability from a significant increase in the number of
parameters.

Of all the modeling techniques, neural network regression
provides the best fit and generalizability, even with a relatively
small and simple network. However, there is no way to get a
parametric model of R1.4. Thus, to provide an intuitive model
of R1.4 it is suggested that one of the parametric techniques
(LASSO or bidirectional selection) discussed earlier be used
instead of a neural network. However, if the accuracy is most
important then a neural network should be used.

We demonstrated the effectiveness of each regression-
model building strategy when applied to a posterior EOS
dataset that has dependencies induced by the Bayesian in-
ference. Combining the analyses we can determine the most
important features in predicting R1.4. The bidirectional feature
selections provide relatively weak evidence for the importance
of Ksym compared with L. The coefficients leading Ksym and L
are stronger evidence that Ksym is more important, especially
if one considers the cross terms involving Ksym and L. The
neural network, which has the highest accuracy, provides the
strongest evidence for the importance of Ksym in compari-
son with L, where the difference in effect size among the
MSE statistics are much greater than when comparing the
coefficients of Ksym and L. Although these numbers cannot
be compared directly they all provide significant evidence in
favor of Ksym being the most important parameter in determin-
ing R1.4.

Notably, Jsym was found to also play a major role in pre-
dicting R1.4. This information is evident in all three feature

selection techniques. The parametric models which did not
include Jsym tended to perform worse and the neural network
regression depended on Jsym nearly as much as it did on L.
We suggest that any model for R1.4 should then include Jsym

and that many viable models can be constructed from com-
binations of Ksym, L, and Jsym (i.e., the density dependence of
nuclear symmetry energy) alone. This is a different conclusion
than would be made if analysis was only made on linear
correlations between the EOS parameters and R1.4, since J0

has greater linear correlation with R1.4 than Jsym but Jsym is
significantly more important to predict R1.4 regardless of the
regression modeling technique used.

We emphasize that the above observations are not due to
the different variances of the EOS parameters since (i) we
normalized the standard deviation to unity in preprocessing
the EOS features and (ii) the variance of L is significantly
smaller than the variance of J0 and was found to have a much
larger effect. If only the variances dictated model selections,
then it would be expected that J0 have a larger effect on R1.4

than L.
Table IV summarizes the above discussion, showing the

best models found from each procedure and showing their R2

and AIC scores. The best models included were from apply-
ing the modified bidirectional selection techniques since they
provide the most consistent distribution of residuals, which
we take to be more important than the raw R2 score. More-
over, of the bidirectional feature selections the best model
was obtained when the maximum-degree features generated
were degree three. They had the highest R2 and AIC scores
and maintained more consistent residuals. The best overall
model by AIC, residuals, and R2 was found by the LASSO
regression when the highest-degree features in the generated
list were degree six, although only a few degree-six terms
were included in the model, and none with high coefficients
leading them.

E. Comparisons with predictions of nine unified relativistic
mean-field equations of state models

To this end, we emphasize again that our work is based
on analyzing the large ensemble of posterior EOS models
and their predictions for R1.4 from earlier Bayesian analyses
of astrophysical data [26–28]. Needless to say, we did not
consider all uncertainties known and the neutron star model
we used is the minimum model. To our best knowledge, there
is no consensus in the community about what constitutes
realistic models of neutron stars because there are just too
many unknowns about their internal structure, and the obser-
vational data are very limited. By definition, all EOS models
generated through the Bayesian analyses have certain prob-
abilities to reproduce all the observational data considered.
In this sense, our empirical formulas for R1.4 extracted from
applying the modern regression techniques to these Bayesian
posterior EOS models and their predictions are realistic in
terms of reproducing the observational data. How good are
our empirical formulas when compared with predictions of
more microscopic EOS models that go beyond the minimum
model for neutron stars in various degrees? The answers to
this question are model dependent because there are many
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TABLE IV. List of the best viable R1.4 models as functions of the EOS parameters from the parametric regression-model building
procedures (in terms of the reduced observable and variables). In parentheses is the maximum-degree cross term generated in the feature
set used by the given method. The modified bidirectional feature selection models were included because they maintained more consistent
residuals than the regular feature selection process. Only the LASSO model which considered all filtered degree-six terms is listed with many
smaller coefficients that can be disregarded.

Selection method Number of R1.4 as function of
(deg. considered) variables reduced EOS parameters AIC R2

Modified bidirectional (1) 3 0.735Ksym + 0.7199L + 0.144K0 −89186 0.727
Modified bidirectional (2) 5 0.896Ksym + 0.675L + 0.556(LJsym )

1
3 + 0.232K0 + 0.334J0 −123195 0.8343

Modified bidirectional (3) 7 1.262Ksym + 0.696L − 0.517KsymJ2
sym + 0.34052KsymJ2

0 −
0.23537(KsymE 2

sym )
1
3 + 0.218L2Jsym + 0.153J2

0

−134567 0.859

Modified bidirectional (4) 10 0.711KsymJ2
0 + 0.2871/LK3

0 + 0.619Jsym − 0.384(KsJ0 )1/3 + 0.941L +
0.517K0 − 0.105K0Esym − 0.190L2Jsym − 0.09141/L4 + 0.065(LJsym )1/3

−102773 0.776

Modified bidirectional (6) 10 0.740KsymJ2
0 + 0.643Jsym + 0.193LK4

0 + 0.567L − 0.324(KsymJ0 )
1
3 −

0.247L2Jsym0.199K0 − 0.082Esym + 0.087L6 + 0.066L2J4
sym

−103119 0.778

LASSO (6) 24 1.27Ksym + 0.91L − 0.630KsymJ2
sym + 0.511Jsym + 0.312KsymJ2

0 −
0.259K4

sym − 0.241KsymL2J2
0 + 0.219LJ0 + 0.195K0 − 0.163J5

sym −
0.098(KsymE 2

sym )
1
3 − 0.085L2J4

sym + 0.076LK4
0 + 0.073J2

symJ2
0 −

0.065Esym − 0.051LJ2
0 E 2

sym − 0.050L2Jsym − 0.036LE 3
sym +

0.036(KsymJ0 )
1
3 − 0.035KsymE 5

sym − 0.032(JsymK2
0 J0 )

1
3 + (LJ0 )

1
3 Esym −

0.026KsymL2 + 0.016L6 − 0.0061/L4 + 0.004J0E 5
sym

−243405 0.971

such models in the literature. With some biases we choose
to compare our simplest three-parameter formula listed in
Sec. IV with predictions of the nine unified relativistic mean
field (RMF) model predictions by Fortin et al. in Ref. [57].
These unified EOSs have all segments (outer crust, inner crust,
liquid core) calculated starting from the same nuclear interac-
tion. Moreover, for three of the nine RMF EOSs, effects of
using five or six different ways to match the crust and core are
considered.

The results shown in Table IV can be used to quickly gen-
erate a set of R1.4 values once the EOS parameters are known
by transforming the features to their original scale according
to Eq. (7) and Table I. For example, the three-parameter ex-
pression for the scaled radius R1.4 = 0.735Ksym + 0.7199L +
0.144K0 in terms of the scaled Ksym, L, and K0 in Table IV can

TABLE V. The R1.4 values in units of km predicted by using the
nine unified RMF EOSs with the listed K0, L, and Ksym parameters
in units of MeV from Ref. [57] in comparison with the predicted
R1.4-RL3 values.

EOS K0 L Ksym R1.4 R1.4-RL3

NL3 271.6 118.9 101.6 14.63±0.71 14.45
NL3ωρ 271.6 55.5 −7.6 13.75±0.10 12.80
GM1 300.7 94.4 18.1 13.76±0.42 13.81
DDME2 250.9 51.2 −87.1 13.27 12.34
TM1 281.2 111.2 33.8 14.37 13.87
DDHδ 240.3 48.6 91.4 12.5 12.85
DD2 242.6 55 −93.2 13.1 12.36
BSR2 239.9 62.0 −3.1 13.4 12.80
BSR6 235.8 85.7 −49.6 13.7 13.10

be rewritten all using the original variables as

R1.4 = 12.10 + 0.38[0.735(Ksym + 158.97)/80.45

+ 0.7199(L − 54.13)/13.63

+ 0.144(K0 − 239.95)/11.52]. (17)

We denote this radius as R1.4-RL3 in the following discussions
to distinguish it from those one may get using other expres-
sions involving more EOS parameters as listed in Table IV.
While the R1.4-RL3 gives a relatively small coefficient of
determination R2 = 0.727, it is the simplest and currently the
most useful one because most of the works in the literature
have only published the Ksym, L, and K0 values without giving
any information about the higher-order EOS parameters.

Table V lists the relevant RMF EOS model parameters
as well as their corresponding R1.4 (from RMF EOS) and
R1.4-RL3 values [from our empirical formula of Eq. (17)]. For
the RMF EOSs in the first three rows, effects of using different
ways to match the crust-core EOSs were studied in Ref. [57].
The maximum effects of these matching methods are indi-
cated by the error bars of the predicted R1.4 values. Figure 10
further compares the R1.4 and R1.4-RL3 values. We notice that
any points lying along the blue line reflect a perfect match
between the two values. We see that the empirical radius
formula with three variables is consistent in reconstructing the
predictions from the RMF EOSs and is especially consistent
at higher radii. We note particularly good agreement with R1.4

from the GM1 and NL3 EOSs.
Despite of the fact that some of the EOS models give

Ksym and L values that are outside the currently known 68%
confidence boundaries of these two parameters based on many
Bayesian analyses of astrophysical data (see, e.g., Table I and
the systematics of L = 57.7 ± 19 MeV and Ksym = −107 ±
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FIG. 10. A scatter plot of the R1.4 values (vertical axis) predicted
by using the nine unified RMF EOSs from Ref. [57] versus the
predicted R1.4-RL3 values (horizontal axis) by using Eq. (17). Any
points lying along the blue line are a perfect match between the two
values.

88 MeV based on 24 independent Bayesian analyses of LIGO-
VIRGO data [46]), the R1.4-RL3 seems to at least capture
the main features of the RMF model predictions. The physics
underlying some of these nine RMF models is quite different
in several aspects. They also have very different assumptions
at their conception, leading to the rather different EOS pa-
rameters as illustrated in Table V. The agreement between the
R1.4 and R1.4-RL3 values is very reasonable (differ by less
than 7% in comparison with the current accuracy of more
than 10% in the radius measurement of neutron stars).

This is suggestive that it is the proper combination of the
EOS parameters (rather than their individual values) that
is most important for determining the radius of a canoni-
cal neutron star. Thus, the above comparison supports the
conclusion that our empirical radius formula for canoni-
cal neutron stars has the right combination of nuclear EOS
parameters.

VI. CONCLUSIONS

To identify the most important EOS features determining
the radius R1.4 of canonical NSs, we applied the three
state-of-the-art regression-model-building methodologies:
bidirectional stepwise feature selection, LASSO regression,
and neural network regression to posterior EOSs inferred
from Bayesian analyses of NS observational data.

We extracted the best R1.4 models with varying accuracy
and complexity in terms of the EOS features. Given new
constraints or realizations of the EOS parameters from future
experiments, one can immediately see their impact on R1.4 us-
ing these empirical formulas without having to construct new
EOS models for NSs and solving again the TOV equations.
All three regression methods agree about the most important
predictors of R1.4. In order of decreasing importance, these are
Ksym, L, Jsym, J0, K0, and Esym(ρ0).
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