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Implications of isoscalar and isovector scalar meson mixed interaction
on nuclear and neutron star properties
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The properties of finite nuclei, bulk nuclear matter, and neutron stars are studied using the relativistic mean
field model which includes nonlinear couplings between isoscalar and isovector mesons. The quartic interaction
σ 2δ2 due to isoscalar and isovector scalar, σ and δ mesons, is also taken into account in addition to vector
meson mixing ω2ρ2. Several HPNL sets (named from Himachal Pradesh University Nuclear Laboratory) are
generated to assess the influence of isoscalar and isovector scalar meson mixed interactions σ 2δ2 on the density
dependence of symmetry energy and neutron star properties. These parametrizations correspond to different
values of coupling constant, �σδ of σ -δ meson mixing and are obtained by fitting the available experimental
data of ground state properties (binding energies and charge radii) for finite nuclei, infinite nuclear matter, and
observed maximum mass of PSR J0740+6620 by following the χ2 minimization procedure. Furthermore, the
σ -δ mixing is found to have a large influence on the radius and tidal deformability of a canonical neutron
star. These new relativistic interactions are found to be simultaneously compatible with the constraints on the
equation of state of symmetric nuclear and pure neutron matter from particle flow data in heavy ion collisions,
the neutron skin thickness of 208Pb from PREX-II results, the mass-radius relations measured from NICER,
and the limits of dimensionless tidal deformability of a canonical neutron star from binary neutron star merger
GW170817 and GW190814 events.
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I. INTRODUCTION

The astrophysical phenomena concerning compact stars
as well as the finite nuclei and nuclear matter properties are
determined by the nuclear equation of state (EoS) that is
established by the relationship between the energy density
and pressure of the system. As a result of precise observa-
tions of neutron stars, such as the Shapiro delay measurement
of a binary millisecond pulsar J1614+2230 [1,2] and the
radius measurement of PSR J0740+6620 from the Neutron
Star Interior Composition Explorer (NICER) and from x-ray
multi-mirror (XMM- Newton) data [3,4], theoretical studies
have been currently performed more than ever to explain
the neutron star physics through the EoS for dense nuclear
matter. In addition, the direct detection of gravitational-wave
(GW) signals from a binary neutron star merger, GW170817,
observed by advanced LIGO and Virgo detectors have placed
stringent constraints on the mass–radius relation of neutron
stars [5–7]. The tidal deformability of a neutron star [8,9] has
a very significant role to construct EoS of the neutron star.

The lead radius experiment (PREX-II) has recently given
a model-independent extraction of neutron skin thickness of
208Pb as �rnp = 0.283 ± 0.071 fm [10]. The �rnp has been
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identified as an ideal probe on symmetry energy—a key but
poorly known quantity that describes the isospin dependence
of EoS of nuclear matter and plays a very important role in
various concerns in atomic physics and astrophysics. Reed
et al. [11] had proposed a large value of density dependence of
symmetry energy L = 106 ± 37 MeV to explain the PREX-II
result and suggested a strong positive linear correlation of
neutron skin thickness of the lead nucleus with the slope of
symmetry energy (L) at saturation density. The value of L
around the saturation density strongly affects the mass-radius
relation and tidal deformability (�) of a neutron star. It pro-
vides a unique bridge between atomic nuclei and neutron
stars. The large value of �rnp = 0.283 ± 0.071 fm suggests
a very stiff EoS and large value of L around saturation den-
sity and generally gives rise to a large value of neutron star
radius and the tidal deformability [11]. The upper limit on
�1.4 � 580 for GW170817 requires softer EoS and hence
softer symmetry energy coefficient [6]. The heaviest neutron
star 2.14+0.10

−0.09M� of PSRJ0740+6620 [12] also limits the EoS
for symmetric nuclear matter (SNM). The flow data from
heavy ion collisions suggest that the EoS for SNM should be
relatively softer [13].

The recent precise parity-violating electron scattering ex-
periments on 208Pb (PREX-II) [10] and 48Ca (CREX) [14]
provide new insights into the neutron skin thickness of nuclei.
The weak charge form factors of 48Ca and 208Pb reported
by CREX and PREX-II experiments and their measured
parity-violating asymmetry have been analyzed using density
functionals and reached a conclusion that it is difficult to
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describe parity-violating asymmetry simultaneously in both
nuclei [15,16]. The calcium radius experiment (CREX) has
recently given a model-independent extraction of neutron skin
thickness of 48Ca as �rnp = 0.121 ± 0.026 fm [14] which
suggests softness of density dependence of symmetry energy.
It is very difficult to understand the result from the PREX-
II experiment because the measured neutron skin thickness
is remarkably larger than those expected theoretically. The
calculations of neutron skin are generally constrained by the
nuclear symmetry energy coefficient J , and its slope param-
eter L, near the nuclear saturation density, mainly describing
the properties of isospin-asymmetric nuclear matter and heavy
nuclei. A large number of theoretical nuclear studies on L
via the nuclear EoS have been performed since the PREX-
II experiment. Some calculations favor the small value of
L � 70 MeV, for example, the energy density functionals or
the Bayesian inference [15,17–21], whereas the others em-
ploy the larger L than 100 MeV [11,22] to account for the
PREX-II results, the experimental analyses of heavy-ion col-
lisions, and the astrophysical observations of neutron stars.
However, it is still hard to determine the exact value of L
[23]. In the previous works [19,20,24–26], we have devel-
oped the relativistic mean-field (RMF) models which include
all possible self- and mixed-coupling terms for the σ , ω, ρ,
and δ mesons up to the quartic order so that the parame-
ters should obey the naturalness behavior as imposed by the
effective field theory [27] and can simultaneously accom-
modate the properties of finite nuclei, bulk nuclear matter,
and neutron stars within the astrophysical observations. In
the present study, we construct parametrizations to assess
the influence of isoscalar and isovector scalar meson mixed
interactions σ 2δ2 on the density dependence of symmetry
energy, finite nuclei, and bulk nuclear matter and neutron star
properties.

The aim of the present study is to construct new effective
interactions to investigate the effects of quartic interaction
of a σ -δ meson on the properties of finite nuclei, bulk nu-
clear matter, and asymmetric dense nuclear matter within
the framework of the RMF model. We generate several pa-
rameter sets by varying the coupling strength (�σδ) of σ -δ
meson mixing with the remaining ones calibrated to yield
finite nuclei, bulk nuclear matter, and neutron star properties
consistent with the available terrestrial experiments and astro-
physical observations of neutron stars. It is necessary that the
equations of state (EoSs) obtained with these new RMF ef-
fective interactions should be compatible with the constraints
on EoSs of symmetric nuclear and pure neutron matter from
particle flow data from heavy ion collisions, the neutron skin
thickness of 208Pb from PREX-II results, the mass-radius rela-
tions measured from NICER, and the limits of dimensionless
tidal deformability of canonical neutron star from both binary
neutron star merger events, GW170817 (�1.4 = 190+390

−120) [6]
and GW190814 (�1.4 = 616+273

−158) [28].
The paper is organized as follows, a brief summary of the

RMF model with nonlinear, self-, and cross-couplings has
been provided in Sec. II. In Sec. III, we present our numerical
results and detailed discussions. Finally, we summarize the
results of the present work in Sec. IV.

II. THEORETICAL MODEL

The recently updated model for Lagrangian density in
RMF approximation is motivated for the construction of the
EoS for nuclear and neutron star matter. The effectiveLa-
grangian density for the RMF model generally describes the
interaction of the baryons via the exchange of σ , ω, ρ, and
δ mesons up to the quartic order. The Lagrangian density
[20,24,26,29] of the nucleon system is given by

L =
∑

N = n,p

	N

[
iγ μ∂μ − (MN − gσNσ − gδNδ.τN )

−
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2
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δNσ 2δ2 +
∑

�=e,μ

	�(iγ μ∂μ − M�)	�, (1)

where MN is the nucleon mass, (mσ , mω, mρ , mδ) are the
meson masses, and (gσN , gωN , gρN , gδN ) represent coupling
constants for nucleons with the corresponding mesons. In
addition κ , λ are the self-interaction coefficients of the σ

meson, and ζ represents the self-interaction coefficient of the
ω meson. For cross coupling terms we have included coeffi-
cients (�ωρ , �σδ) which represent coupling between (ω − ρ),
(σ − δ) mesons, respectively, in the Lagrangian density.

To obtain the equation of motion for nucleons and mesons
one can solve the standard Euler-Lagrange equation of motion
[24,26,29] as

∂μ

(
∂L

∂ (∂μφ)

)
− ∂L

∂φ
= 0. (2)

The equation of motion for baryons, mesons, and photons can
be derived from the Lagrangian density defined in Eq. (1). The
equation of motion for baryons can be given as

[
γ μ

(
i∂μ − gωNωμ − 1

2
gρNτN .ρμ − e

1 + τ3B

2
Aμ

)

− (MN − gσNσ − gδNδ · τ3)

]
	N = εN	N . (3)

The Euler-Lagrange equations for the ground-state expec-
tation values of the mesons fields are

(−� + m2
σ

)
σ =

∑
N

gσNρsN − κ

2
g3

σNσ 2 − λ

6
g4

σNσ 3

+ 2�σδg2
σN g2

δNσδ2, (4)
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(−� + m2
ω

)
ω =

∑
N

gωNρN − ζ

6
g4

ωNω3

−�ωρg2
ωN g2

ρNωρ2, (5)
(−� + m2

ρ

)
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∑
N

gρNτ3NρN − �ωρg2
ωN g2

ρNω2ρ, (6)

(−� + m2
δ

)
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∑
N

gδNρs3N + 2�σδg2
σN g2

δNσ 2δ (7)

−�A0 = eρp, (8)

where the baryon vector density ρN , scalar density ρsN , and
charge density ρp are, respectively,

ρN = 〈	Nγ 0	N 〉 = γ k3
N

6π2
, (9)

ρsN = 〈	N	N 〉 = γ

(2π )3

∫ kN

0
d3k

M∗
N√

k2 + M∗2
N

, (10)

ρN =
〈
	Nγ 0 1 + τ3N

2
	N

〉
(11)

with γ the spin-isospin degeneracy. The Dirac effective mass
for the neutron and proton can be written as

M∗
p = (MN − gσ σ − gδδ), (12)

M∗
n = (MN − gσ σ + gδδ). (13)

Following the Euler-Lagrange formalism one can readily find
the expressions for energy density E and pressure P as a
function of density from Eq. (1) [30]. From Lagrangian den-
sity one can also obtain the energy-momentum (T μν) tensor,
which can be used to find pressure (P) and energy density (E)
[31,32]:

T μν =
∑
φa

∂L
∂ (∂μφa)

∂νφa − gμνL, (14)

P = 1

3

3∑
j=1

〈T j j〉, (15)

E = 〈T 00〉. (16)

III. RESULTS AND DISCUSSION

In this section, we discuss the optimization of model
parameters for RMF models. The model parametrizations ob-
tained are then used to calculate the properties of finite nuclei,
bulk nuclear matter, and neutron stars.

A. Parametrizations of RMF model

In the present study, seven new relativistic interactions
HPNL, HPNL0, HPNL1, HPNL2, HPNL3, HPNL4, and
HPNL5 have been generated for the Lagrangian density given
by Eq. (1) to investigate the effect of isoscalar and isovector
scalar meson mixed interactions σ 2δ2 on the properties of
finite nuclei and neutron star matter. Here, HPNL0, HPNL1,
HPNL2, HPNL3, HPNL4, and HPNL5 parametrizations cor-
respond to different values of the isoscalar and isovector scalar

meson mixed couplings (�σδ) of σ -δ mesons, i.e., �σδ =
0.00, 0.01, 0.02, 0.03, 0.04, and 0.05, respectively. For the
sake of comparison, we also construct the HPNL parameter
set that does not include the coupling (gδ) of the δ meson to the
nucleon and couplings (�σδ) of σ -δ mesons. As the effect of
δ meson is predominantly important at suprasaturation densi-
ties, one can a priori anticipate its insignificant impact in finite
nuclei, which is primarily sensitive to the EoS at subsaturation
densities. This is the reason why we kept fixed the �σδ at
aforementioned values optimizing the rest of the parameters
in Eq. (1). This is not far from the strategy recently used
by Li et al. in Ref. [32]. The optimization of the parameters
(p) appearing in the Lagrangian [Eq. (1)] has been performed
by using the simulated annealing method (SAM) [33,34] by
following χ2 minimization procedure which is given as

χ2(p) = 1

Nd − Np

Nd∑
i=1

(
Oexp

i − Oth
i

σi

)2

, (17)

where Nd is the number of experimental data points and Np

is the number of fitted parameters. The σi denotes adopted
errors [20,25,35] and Oexp

i and Oth
i are the experimental and

the corresponding theoretical values, respectively, for a given
observable. The model optimization in the HPNL family is
performed so as to fit the experimental data [36] on binding
energies (BE) and charge rms radii (rch) [37] of some spher-
ical nuclei 16,24O, 40,48Ca, 56,68,78Ni, 88Sr, 90Zr, 100,116,132Sn,
144Sm, and 208Pb. For the open shell nuclei, the pairing has
been included using Bardeen-Cooper-Schrieffer formalism
with constant pairing gaps [20,38,39] that are taken from
the nucleon separation energies of neighboring nuclei [36].
Neutron and proton pairing gaps are evaluated by using the
fourth-order finite difference mass formula (five-point dif-
ference) [40]. The pairing correlation energies for a fixed
gap � is calculated by using the paring window of 2h̄ω,
where h̄ω = 45A−1/3–25A−2/3 MeV [21]. We also incorpo-
rated the recently measured neutron skin thickness of 208Pb
(�rnp = 0.283 ± 0.071 fm) using the parity-violating elec-
tron scattering experiment [10] in our fit data to constrain the
density dependence of symmetry energy. In addition, we have
also included the observed maximum neutron star mass M =
2.08 ± 0.07 M� for pulsar PSR J0740+6620 determined by
relativistic Shapiro time delay [41] in our fitting protocol.
We have incorporated the maximum mass of the neutron star
in our fitting protocol to constrain the high density behavior
of the equation of state. As reported in Refs. [21,29,42,43],
the ω meson self-interaction term ζ plays an important role
in determining the soft and stiff behavior of EoS at high
densities. The neutron-star mass decreases with the increase in
value of the coupling term ζ [21,29,42,43]. So, by including
the maximum mass of the neutron star in the fitting protocol,
we can constrain the coupling term ζ and hence soft and stiff
behavior of EoS at high densities.

The model parameters for HPNL’s parametrizations are
searched by fitting the available experimental data on finite
nuclei, bulk nuclear matter, and observed maximum neu-
tron star mass of PSR J0740+6620 [41] by following the
χ2 minimization procedure based on Eq. (17). The HPNL’s
parametrizations obtained in the present work give an equally
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TABLE I. Model parameters for various HPNL’s models of RMF Lagrangian given in Eq. (1). The parameters κ in fm−1. The values of
κ and λ are expressed in (×10−2). The mass mσ is in units of MeV. The mass for nucleon, ω, ρ, and δ meson is taken as MN = 939 MeV,
mω = 782.5 MeV, mρ = 770 MeV, and mδ = 983 MeV.

Models gσ gω gρ gδ κ λ �ωρ ζ �σδ mσ

HPNL 10.35592 13.38333 10.00201 0.00000 1.73624 −0.29854 0.02174 0.02422 0.00000 498.451
HPNL0 10.44500 13.44016 10.28253 1.20129 1.64916 −0.17551 0.02756 0.02466 0.00000 501.825
HPNL1 10.20379 13.01953 11.23260 2.32189 1.90575 −0.60060 0.03375 0.01976 0.01000 501.459
HPNL2 9.99613 12.59637 11.57539 2.67798 2.09276 −0.85452 0.03417 0.01621 0.02000 503.914
HPNL3 9.97109 12.68522 11.57440 2.63218 2.05093 −0.79781 0.03819 0.01783 0.03000 500.164
HPNL4 10.11818 12.81430 12.32052 2.29541 1.89353 −0.45684 0.04527 0.02201 0.04000 504.565
HPNL5 10.17421 13.02147 12.62197 2.98371 1.76088 −0.15718 0.03799 0.02520 0.05000 500.972

good fit to the properties of finite nuclei, bulk nuclear matter,
and astrophysical observables. The value of χ2 obtained after
optimization of the model parameters by following Eq. (17) in
a minimization procedure comes out as 1.05, 1.07, 1.10, 1.25,
1.55, 1.89, and 1.99 for HPNL, HPNL0, HPNL1, HPNL2,
HPNL3, HPNL4, and HPNL5 parameter sets, respectively.
In Table I we display optimum values of the model param-
eters for all seven HPNL’s parameter sets. It can be seen that
the parameter gρ increases with the increase in the value of
�σδ . A larger value of gρ is required in the presence of the
�σδ-meson mixed interactions to fit the properties of finite
nuclei. As the contribution of the mixed couplings �σδ of σ -δ
mesons is attractive, increased binding due to this coupling
has to be compensated by the higher value of the repulsion
by the gρ field. The parameter gρ has its lowest value for
HPNL parametrization (gδ = 0.00, �σδ = 0.00). For any fi-
nite value of δ coupling (gδ > 0), i.e., for HPNL0, HPNL1,
HPNL2, HPNL3, HPNL4, and HPNL5 parametrizations, the
strength of ρ-meson coupling to the nucleon (gρ) increases
gradually.

B. Finite nuclei and infinite nuclear matter

The newly generated parametrizations HPNL’s give a good
fit to the properties of finite nuclei. The binding energies
(B/A) and charge radii (rch) of several closed/open-shell nu-
clei obtained using HPNL’s parametrizations are summarized
in Table II and in harmony with the available experimental
data [36,49]. In addition, we have also given the root relative
squared errors (RRSEs),

�RRSE =
√√√√1

n

n∑
i=1

(
X exp

i − X calcu
i

X exp
i

)2

, (18)

for X = B/A and rch in the last column of Table II. It is
observed that the HPNL family can reproduce the properties
of finite nuclei very well. The neutron skin thickness for 208Pb
comes out to be 0.259, 0.245, 0.226, 0.220, 0.213, 0.207, and
0.206 fm for HPNL parametrizations, respectively, and is in
close proximity with the limits put by PREX-II results [10,15].
The values of the neutron skin thickness of �rnp(48Ca) pre-
dicted for these parametrizations 0.220, 0.213, 0.204, 0.201,
0.197, 0.193, 0.194 fm, respectively, are overestimated with
the CREX results reported in Ref. [14]. The theoretical re-
sults for �rnp(48Ca) obtained for HPNL1, HPNL2, HPNL3,

HPNL4, and HPNL5 parametrizations are well consistent
with the experimental data: the electrical dipole polarizability
of 48Ca RCNP; (�rnp) = 0.14–0.20 fm [50]. Therefore it is
very hard to satisfy the PREX-II and CREX results simultane-
ously even if we include the δ-N and σ -δ mixing interactions
in the RMF model.

In Table III, we present our results for the several bulk
properties of symmetric nuclear matter (SNM) at the sat-
uration density. The properties such as binding energy per
nucleon (E/A), incompressibility (K), symmetry energy co-
efficient (J), density dependence of symmetry energy (L), and
the ratio of effective mass to the mass of nucleon (M∗

N/MN ).
The Q0 represents the third order of incompressibility coef-
ficient of SNM around saturation density ρ0. Ksym and Qsym

are the curvature parameter of symmetry energy and third
order coefficient of symmetry energy around ρ0, respectively.
The Ksat,2 (Kτ ) characterize the isospin dependence of in-
compressibility of asymmetric nuclear matter and KN reflects
the neutron matter incompressibility. The bulk properties are
given by the coefficients in the power series expansion of
asymmetric nuclear EoS around ρ0 [51]. The Ksat,2 (Kτ )
and KN are expressed as Ksat,2 = Ksym − 6L − Q0L

K and KN =
Ksym + K [52,53]. These properties play a very important role
in constructing the EoS for dense nuclear matter. These bulk
nuclear matter parameters characterize the EoS of asymmetric
nuclear matter and its density dependence at normal nuclear
density ρ0. They provide reliable information concerning the
isospin dependence of saturation properties of asymmetric
nuclear matter as well as its properties at both low and
high densities. In Table III, E/A is more or less the same
for all HPNL parametrizations. The value of nuclear incom-
pressibility K lies in the range 224.09–234.04 MeV which
is consistent with the value of K = 240 ± 20 MeV deter-
mined from the isoscalar giant monopole resonance (ISGMR)
for 90Zr and 208Pb nuclei [54,55]. It can be observed from
Tables I and III that the value of the slope of symmetry energy
L is strongly correlated with coupling �σδ of σ -δ mesons.
HPNL interactions cover a wide range of couplings �σδ of
σ -δ mesons mixed interactions. As we move from the HPNL0
model (�σδ = 0.0) to the HPNL5 model (�σδ = 0.05), the
value of L decreases from 78.38 MeV to 52.29 MeV. The
values of J and L obtained by HPNL, HPNL0 parametriza-
tions are consistent with the values J = 38.1 ± 4.7 MeV and
L = 106 ± 37 MeV as inferred by Reed et al. [11]. The val-
ues of J and L at saturation density calculated for HPNL1,
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TABLE II. Theoretical calculations of ground state properties, binding energy (B/A), and charge radii rch of closed/open-shell nuclei for
various HPNL models. Experimental data for binding energy per nucleon and charge radius are taken from [36,37,44].

B/A (MeV)

Models 16O 24O 40Ca 48Ca 56Ni 68Ni 78Ni 88Sr 90Zr 100Sn 116Sn 132Sn 144Sm 208Pb �RRSE (%)

HPNL −8.003 −7.103 −8.585 −8.647 −8.605 −8.712 −8.217 −8.726 −8.708 −8.284 −8.516 −8.352 −8.321 −7.874 0.358
HPNL0 −8.034 −7.114 −8.587 −8.654 −8.607 −8.710 −8.225 −8.722 −8.701 −8.275 −8.508 −8.351 −8.313 −7.867 0.417
HPNL1 −8.044 −7.080 −8.599 −8.647 −8.581 −8.712 −8.216 −8.723 −8.703 −8.262 −8.514 −8.353 −8.317 −7.875 0.409
HPNL2 −8.092 −7.055 −8.630 −8.651 −8.572 −8.715 −8.193 −8.728 −8.709 −8.258 −8.518 −8.338 −8.319 −7.863 0.567
HPNL3 −7.999 −7.017 −8.582 −8.622 −8.545 −8.700 −8.196 −8.715 −8.696 −8.244 −8.512 −8.350 −8.315 −7.879 0.422
HPNL4 −8.043 −7.024 −8.594 −8.640 −8.576 −8.706 −8.205 −8.719 −8.698 −8.252 −8.508 −8.350 −8.311 −7.869 0.392
HPNL5 −8.067 −6.999 −8.630 −8.650 −8.593 −8.720 −8.183 −8.743 −8.727 −8.286 −8.538 −8.347 −8.343 −7.886 0.545
Experiments −7.976 −7.040 −8.551 −8.666 −8.643 −8.682 −8.238 −8.732 −8.709 −8.251 −8.523 −8.350 −8.304 −7.867 −

rch (fm)

HPNL 2.711 2.73 3.454 3.461 3.712 3.857 3.942 4.218 4.273 4.512 4.606 4.711 4.954 5.520 0.308
HPNL0 2.710 2.735 3.458 3.469 3.720 3.867 3.953 4.229 4.284 4.523 4.619 4.725 4.968 5.535 0.321
HPNL1 2.712 2.741 3.455 3.470 3.721 3.868 3.953 4.227 4.281 4.521 4.616 4.721 4.963 5.528 0.311
HPNL2 2.702 2.737 3.443 3.463 3.718 3.861 3.946 4.217 4.270 4.513 4.605 4.710 4.950 5.513 0.327
HPNL3 2.701 2.732 3.436 3.453 3.704 3.849 3.932 4.203 4.257 4.497 4.589 4.692 4.932 5.492 0.517
HPNL4 2.689 2.725 3.428 3.447 3.693 3.844 3.928 4.198 4.252 4.487 4.585 4.689 4.928 5.489 0.664
HPNL5 2.707 2.747 3.452 3.475 3.729 3.875 3.961 4.232 4.285 4.527 4.621 4.728 4.967 5.534 0.386
Experiments 2.699 – 3.478 3.477 3.723 – – 4.224 4.269 – 4.625 4.709 4.952 5.501 –

HPNL2, HPNL3, HPNL4, and HPNL5 parametrizations are
consistent with the constraints from the observational analy-
sis J = 31.61 ± 2.66 and L = 58.9 ± 16 MeV [56] and also
satisfies the recently reported limit L = 54 ± 8 MeV [15]
and L = 15.3+46.8

−41.5 [57]. The value of the curvature of sym-
metry energy Ksym for HPNL’s parameter sets also satisfies
the theoretical analyses based on neutron star observables,
Ksym ≈ −107 ± 88 MeV [47] and empirical limit discussed
in [58]. The value of neutron matter incompressibility, KN , is
also in good agreement with that predicted by chiral effec-
tive field theory, KN = 152.2 ± 38.2 MeV [53]. Furthermore,
the asymmetry term of nuclear incompressibility, Kτ , for the
HPNL and HPNL0 parameter sets satisfy the experimental
constraints from isoscalar giant monopole resonance in the
Sn and Cd isotopes, Kτ = −550 ± 100 MeV [59] and Kτ =
−555 ± 75 MeV [60].

In Figs. 1 and 2, we plot the EoSs, i.e., pressure as
a function of baryon density scaled to saturation density

( ρ

ρ0
) for SNM and pure neutron matter (PNM) using HPNL

parametrizations. We also show (shaded regions) the EoSs
extracted from the analysis of particle flow data in heavy ion
collisions [13] and experimental data taken from Ref. [45]. It
is evident from Figs. 1 and 2 that the EoSs for SNM and PNM
obtained for HPNL parametrizations lie in the upper portion of
the allowed region with the EoS extracted from the analysis of
the particle flow in heavy ion collision [13] and from Ref. [45].
The EoS calculated for HPNL5 parametrization is the softest
amongst all EoSs and it might be due to the relatively some-
what higher value of coupling �σδ for this parameter set. In
Fig. 3, we plot the symmetry energy as a function of baryon
density for various HPNL parametrizations. It is evident from
the figure that the value of symmetry energy coefficient (J)
increases with baryon density for various models considered
in the present work. It can be noticed from the figure that
in the high-density regime, the curve of J becomes softer as
we move from HPNL0 to HPNL5 interactions, i.e., the value

TABLE III. Properties of symmetric nuclear matter at saturation density (ρ0). E/A denotes the binding energy per nucleon. The bulk
properties are given by the coefficients in the power series expansion of asymmetric nuclear EoS around saturation density, ρ0 [51]. The Kτ

and KN are expressed as Ksat,2(Kτ ) = Ksym − 6L − Q0L
K and KN = Ksym + K [52,53]. All nuclear parameters except ρ0 and M∗

N/MN are in units
of MeV. The ρ0 is in fm−3.

Models ρ0 M∗
N/MN E/A K Q0 J L Ksym Qsym Ksat,2 KN

HPNL 0.149 0.600 −16.17 224.09 −201.80 35.90 86.71 −66.38 310.12 −508.55 157.71
HPNL0 0.148 0.603 −16.10 227.38 −219.99 34.63 78.38 −69.63 489.01 −464.08 157.75
HPNL1 0.149 0.611 −16.13 226.95 −251.93 33.57 67.02 −71.08 893.24 −398.80 155.87
HPNL2 0.150 0.624 −16.15 234.04 −293.58 33.66 63.03 −89.01 1084.97 −388.12 145.02
HPNL3 0.152 0.616 −16.23 232.03 −263.54 33.13 60.22 −74.03 1121.46 −366.95 158.01
HPNL4 0.152 0.615 −16.19 232.74 −283.04 33.76 55.44 −62.57 1153.09 −327.79 170.17
HPNL5 0.148 0.618 −16.18 230.32 −328.05 33.04 52.29 −84.22 1186.42 −323.48 146.10
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FIG. 1. Variation of pressure as a function of baryon den-
sity for symmetric nuclear matter (SNM) computed with HPNL’s
parametrizations. The shaded region represents the experimental data
taken from Refs. [13,45].

of J is strongly correlated to mixed interaction �σδ of σ -δ
mesons. The value of J obtained for HPNL, HPNL0, HPNL1,
HPNL2 parametrizations is 61.46, 58.03, 54.28, 53.06 MeV,
respectively, and satisfies the constraints on the magnitude of
symmetry energy coefficient at J (2ρ0): J (2ρ0) = 62.8 ± 15.9
MeV [46], J (2ρ0) = 51 ± 13 MeV from nine new analyses of
neutron star observables since GW170817 [47]. The value of
J obtained for HPNL3, HPNL4, and HPNL5 parametrizations
is 52.08, 51.25, and 49.16 MeV, respectively, and is well
consistent with J (2ρ0) = 40.2 ± 12.8 MeV based on micro-
scopic calculations with various energy density functionals
[48]. Amongst HPNL parametrizations, the value of J is found
to be stiffest for HPNL and softest for HPNL5 models in a
higher density regime. This might be due to the larger value of

FIG. 2. Variation of pressure as a function of baryon density for
pure neutron matter (PNM) computed with HPNL’s parametriza-
tions. The shaded region represents the experimental data taken from
Ref. [13].

FIG. 3. Symmetry energy coefficient (J) as a function of baryon
density scaled to saturation density for various HPNL parametriza-
tions. The constraints on the magnitude of the symmetry energy
coefficient at J (2ρ0): J (2ρ0 ) = 62.8 ± 15.9 MeV [46], J (2ρ0) =
51 ± 13 MeV from nine analyses of neutron star observables since
GW170817 [47] and J(2ρ0) = 40.2 ± 12.8 MeV based on micro-
scopic calculations with various energy density functionals [48] are
also shown.

coupling �σδ in the case of the HPNL5 model as this coupling
term is found to play an important role in constraining the
symmetry energy and its density dependence.

In Fig. 4 we depict the density dependence of symme-
try energy (L) as a function of baryon density for HPNL
parametrizations. The value of the slope of symmetry energy
L is strongly correlated with coupling �σδ of σ -δ mesons. The
HPNL0–HPNL5 interactions cover a wide range of couplings
�σδ of σ -δ mesons mixed interactions. It can be seen from
the figure that in low- or medium-density regimes the behav-
ior of HPNL5 is softest (low value of L at a given baryon

FIG. 4. Variation of density dependence of symmetry energy
(L) as a function of baryon density scaled to saturation density for
various HPNL parametrizations considered in the present work.
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FIG. 5. Variation of third order coefficient of symmetry energy,
Qsym, with coupling parameters �σδ .

density) amongst all parametrizations and changes to stiffest
in high-density regimes. This may be attributed to the large
value of coupling parameter �σδ for the HPNL5 parameter
set. The large value of coupling parameter �σδ is responsible
for changing the behavior of L from soft in low and medium
density regimes to stiff in high-density regime. The stiffness
of L for HPNL0 parameter sets may also be due to not in-
cluding the coupling parameter �σδ whereas in the case of
the HPNL parameter set, the stiffness of L might be due to not
including δ-N coupling parameter gδ , which is responsible for
softening of EoS in the low to medium density regime [20]
and noninclusion of mixed-coupling �σδ .

In Fig. 5 the dependence of third order coefficient of sym-
metry energy, Qsym, on mixed interaction coupling parameter
�σδ of σ -δ mesons is depicted. The value of Qsym shows
strong dependence on �σδ and increases with �σδ . The value
of Qsym increases from 489.01 MeV to 1186.42 MeV as we
proceed from HPNL0 (�σδ = 0.00) to HPNL5 (�σδ = 0.05)
interactions. The value of Qsym calculated for the HPNL pa-
rameter set that does not include the coupling gδ and �σδ

comes out to be 310.12 MeV.

C. Neutron star properties

In this subsection the model parametrizations obtained are
used to calculate the properties of neutron stars like maximum
mass, radius, and tidal deformability.

In Fig. 6 we display the speed of sound squared c2
s in

neutron star matter as a function of scaled baryon density
ρ/ρ0, where the condition of charge neutrality and β equi-
librium under weak processes are established. The horizontal
dashed line represents the conformal limit given by c2

s = 1/3
[61]. As discussed by Alford et al. [61], the c2

s for all HPNL
parametrizations lies above the conformal limit c2

s = 1/3 at
high densities. The c2

s rises slowly with density and stays
almost constant at high densities. The rapid growth in c2

s for
HPNL parametrizations occurs around 2.5 ρ0, where the EoS
of dense nuclear matter changes due to δ-N f and σ -δ mesons
mixing.

FIG. 6. Speed of sound squared as a function of scaled baryon
density ρ/ρ0 in units of speed of light squared. The horizontal dashed
line represents the conformal limit given by c2

s = 1/3 [61].

In order to discuss the properties of neutron stars, the
low-density EoS which covers the crust region of a neutron
star must be taken into consideration. The radius of canonical
neutron stars is found to be more sensitive to the EoS of the
crust region than those of maximum mass configurations. In
the present work, for the low-density region (crust), we em-
ployed Baym-Pethick-Sutherland (BPS) EoS [62] matching it
to the model EoS. The mass and radius of a neutron star are
obtained by solving the Tolman-Oppenheimer-Volkoff (TOV)
equations [63,64] given as

dP(r)

dr
= −{ε(r) + P(r)}{4πr3P(r) + m(r)}

r2(1 − 2m(r)/r)
, (19)

dm

dr
= 4πr2ε(r), (20)

m(r) = 4π

∫ r

0
drr2ε(r), (21)

where P(r) is the pressure at radial distance r and m(r)
is the mass of neutron stars enclosed in the sphere of
radius r. In Fig. 7, we present the results for the grav-
itational mass of static neutron stars and their radius for
various HPNL parametrizations considered in the present
work. It is observed that the maximum gravitational mass
of the nonrotating neutron star for HPNL parameter sets
lies in the range 2.01–2.12 M� which is in good agree-
ment with the mass constraints (1.97 ± 0.04 M�, 2.01 ±
0.04 M�, 2.072+0.067

0.066 M�) from GW170817 event, pulsars
PSR J1614+2230, PSR J0348+0432, PSR J0030+0451, and
PSR J0740+6620 [1,3,4,65–68]. The radius of canonical
mass (R1.4) including BPS crust [62] for the low-density
region for HPNL parametrizations lies in the range 12.75
Km–13.40 Km, which satisfies the radius constraints from
NICER on R1.4. The neutron star mass radius computed by
using HPNL parametrizations are in good agreement with
the NICER measurements [3,4] as shown by shaded regions
labeled with NICER. The radius R1.4 corresponding to 1.4 M�
neutron star is also well consistent with the inferences on the
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FIG. 7. Mass radius relationship of neutron star for various
HPNL parametrizations. The shaded regions labeled with NICER
representing the mass-radius constraints from NICER observations
[3,4] are also shown.

radius constraints from NICER [67–69]. It can be observed
from Table IV that the radius R1.4 has a strong dependence
on mixed interaction coupling �σδ of σ -δ mesons. The value
of radius R1.4 decreases from 13.35 Km to 12.75 Km when
we proceed from HPNL0 (�σδ = 0.00) to HPNL5 (�σδ =
0.05) parametrization. The value of R1.4 is consistent with
the softness and stiffness behavior of the symmetry energy
coefficient. The decrease in the radius might be due to the fact
the larger value of isoscalar and isovector scalar meson mixed
interaction �σδ makes the EoSs somewhat softer in low to
medium density regime.

In Fig. 8 we display a plot of radius R1.4 and isoscalar
and isovector scalar meson mixed interaction coupling �σδ . It
can be noticed from the figure that R1.4 is strongly correlated
with �σδ . A larger value of �σδ might be responsible for
the decrease in R1.4 as we move from HPNL0 to HPNL5
parametrization as the slope of the symmetry energy coeffi-
cient and EoSs in the low- to medium-density regime becomes
somewhat softer with the increase in coupling �σδ . For the
sake of simplicity, we have also shown the result for the HPNL
model which does not include gδ and �σδ coupling parame-

FIG. 8. Plot representing the dependence of radius R1.4 on cou-
pling �σδ .

ters. In Fig. 9 we show the correlations between �rnp and R1.4.
The symbols (colored) in the figure express the calculated
value of �rnp for 208Pb and 48Ca. The solid line (red) is the
fitting function of �rnp/fm = 1.0 × 10−4(R1.4/km)2.96 for
208Pb and the solid line (blue) represents the fit �rnp/fm =
1.85 × 10−7(R1.4/km)5.45 for 48Ca. In general, the larger
value of R1.4 provides the thicker neutron skin (�rnp) of 208Pb
in the usual RMF models. Also reported by Reed et al., in
Ref. [11], that to satisfy the PREX-II result, L should be larger,
i.e., L = 106 ± 37 MeV as inferred. Meanwhile, the HPNL
interactions can support the PREX-II data with the smaller
value of L due to the σ -δ mesons mixed interaction coupling
�σδ . In addition, the HPNL1 to HPNL5 parametrizations also
fulfill the experimental result of �rnp, implied by the determi-
nation of electric dipole strength distribution in 48Ca at RCNP
[50]. However, it is difficult to explain the latest data reported
by the CREX collaboration [14]. From this fact, we may infer
that the results of the PREX-II and CREX experiments seem
to be incompatible with the present calculations. The tidal de-
formability rendered by the companion stars on each other in a
binary system can provide significant information on the EoS
of neutron stars [8,9]. The tidal influences of its companion
in the binary neutron star (BNS) system will deform neutron

TABLE IV. Properties of the neutron star at canonical and maximum mass for various HPNL parameter sets. The Mmax(M�) and Rmax

denote the maximum gravitational mass and radius corresponding to the maximum mass of the nonrotating compact stars, respectively. The
values for R1.4 and �1.4 and ρ1.4 denote radius and dimensionless tidal deformability and central density at 1.4 M�.

R1.4 ρ1.4 Mmax Rmax

Models (km) (fm−3) �1.4 (M�) (km)

HPNL 13.40 0.386 671.51 2.03 11.76
HPNL0 13.35 0.387 663.67 2.03 11.75
HPNL1 13.15 0.383 641.20 2.09 11.83
HPNL2 13.05 0.385 615.96 2.12 11.78
HPNL3 12.93 0.390 596.92 2.10 11.75
HPNL4 12.80 0.405 557.14 2.04 11.50
HPNL5 12.75 0.411 548.01 2.01 11.46
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FIG. 9. Correlation between neutron skin thickness �rnp and
radius R1.4. The shaded regions depict the neutron skin thickness of
208Pb �rnp=0.283 ± 0.071 fm from PREX-II [10], �rnp = 0.19 ±
0.02 fm) from Reinhard et al. [15] and �rnp for 48Ca (�rnp = 0.14–
0.20 fm) at RCNP [50].

stars in the binary system and the resulting change in the
gravitational potential modifies the BNS orbital motion and
its corresponding gravitational wave (GW) signal. This effect
on GW phasing can be parametrized by the dimensionless
tidal deformability parameter, �i = λi/M5

i , i = 1, 2. For each
neutron star, its quadrupole moment Q j,k must be related to
the tidal field E j,k caused by its companion as Q j,k = −λE j,k ,
where j and k are spatial tensor indices. The dimensionless
tidal deformability parameter � of a static, spherically sym-
metric compact star depends on the neutron star compactness
parameter C and a dimensionless quadrupole Love number k2

as � = (2k2/3)C−5. The � critically parametrizes the defor-
mation of neutron stars under the given tidal field, therefore
it should depend on the EoS of nuclear dense matter. To
measure the Love number k2 along with the evaluation of
the TOV equations we have to compute y2 = y(R) with initial
boundary condition y(0) = 2 from the first-order differential
equation [8,9,70,71] simultaneously,

y′ = 1

r
[−r2Q − yeλ{1 + 4πGr2(P − E )} − y2], (22)

where Q ≡ 4πGeλ(5E + 9P + E+P
c2

s
) − 6 eλ

r2 − ν ′2 and eλ ≡
(1 − 2Gm

r )−1 and ν ′ ≡ 2Geλ ( m+4πPr3

r2 ). First, we get the solu-
tions of Eq. (22) with boundary condition, y2 = y(R), then the
electric tidal Love number k2 is calculated from the expression
as

k2 = 8

5
C5(1 − 2C)2[2C(y2 − 1) − y2 + 2]

{
2C(4(y2 + 1)C4

+ (6y2 − 4)C3 + (26 − 22y2)C2

+ 3(5y2 − 8)C − 3y2 + 6) − 3(1 − 2C)2(2C(y2 − 1)

− y2 + 2) ln

(
1

1 − 2C

)}−1

. (23)

FIG. 10. (a) Correlations between the slope of symmetry en-
ergy L and radius R1.4. (b) Correlation between �1.4 and R1.4.
The constraints on �1.4 from GW170817(�1.4 = 190+390

−120 ) [6] and
GW190814 (�1.4 = 616+273

−158) [28] are also displayed.

In the upper panel of Fig. 10, we present the correlation
between the slope of symmetry energy L and radius R1.4. It can
be observed that L is strongly intercorrelated with R1.4. It can
be inferred that a smaller value of R1.4 favors a small value of
L which in turn demands a larger coupling of �σδ . Thus radius
R1.4 depends upon L via σ -δ meson mixing coupling �σδ .
The lower panel of Fig. 10 shows the results of dimensionless
tidal deformability �1.4 as a function of R1.4 for the neutron
star for HPNL parametrizations. It is noteworthy that the
value of �1.4 obtained for canonical mass with HPNL4 and
HPNL5 parameter sets is 557.14 and 548.01 which satisfies
the constraints on �1.4 from GW170817 (�1.4 = 190+390

−120 )
(�1.4 � 580 within 1σ uncertainty) [6] for the EoS of dense
nuclear matter. The �1.4 obtained for canonical mass with
HPNL–HPNL3 parameter sets lies in the range 671.51 to
596.92 and satisfies the constraint imposed by GW190814
event (�1.4 = 616+273

−158) [28]. The �1.4 strongly interrelates
with R1.4. It is noteworthy that the observed �1.4 from the
GW170817 event favors the small value of R1.4 and hence
L too which in turn prefers a somewhat larger value of �σδ

(HPNL4, HPNL5 models). From this, it can be concluded that
if both restrictions on �1.4 from GW170817 and GW190814
are taken into account, then only the HPNL4 and HPNL5
interactions are acceptable as the appropriate EoSs for neu-
tron stars. It is thus possible to mention that R1.4 lies around
12.75–12.80 km and L around 52.29–55.44 MeV. In Fig. 11,
we display the results of dimensionless tidal deformability
�1.4 as a function of mass (M) of neutron stars for various
HPNL parametrizations. The value of � decreases with an
increase in the gravitational mass of the neutron star. It is
noteworthy that the value of �1.4 obtained for canonical mass
with HPNL4 and HPNL5 parameter sets is 557.14 and 548.01
which satisfies the limit �1.4 � 580 [6]. The � calculated
for HPNL to HPNL3 parametrizations is also consistent with
the findings from [11,72] and satisfies the �1.4 = 616+273

−158

055802-9



KUMAR, KUMAR, KUMAR, AND DHIMAN PHYSICAL REVIEW C 108, 055802 (2023)

FIG. 11. Variation of dimensionless tidal deformability (�) with
respect to gravitational mass of neutron star for various HPNL
parametrizations.

from GW190814 [28] for the EoS of dense nuclear matter.
It can be observed from the figure that the inclusion of mixed
interactions �σδ in the Lagrangian of the RMF model has a
significant effect on tidal deformability �.

In Table IV, we summarize the results for nonrotating
neutron star properties such as maximum gravitational mass
(Mmax), neutron star radius corresponding to the maximum
mass (Rmax), radius R1.4, central density ρ1.4, and tidal de-
formability (�1.4) corresponding to canonical mass of neutron
star.

IV. SUMMARY

Using the RMF model which includes the isoscalar and
isovector-scalar mesons mixed interaction (�σδ) of σ 2-δ2,
in addition to different nonlinear, self-couplings and vec-
tor meson mixing of ω2-ρ2, the properties of finite nuclei,
bulk nuclear matter, and neutron stars are investigated which
can sustain the available experimental data both from terres-
trial experiments and astrophysical observations of a neutron
star. Seven relativistic interactions HPNL, HPNL0, HPNL1,
HPNL2, HPNL3, HPNL4, and HPNL5 have been generated
for the Lagrangian density given by Eq. (1) to investigate the
effect of isoscalar and isovector scalar meson mixed interac-
tions, �σδ , on the properties of finite nuclei and neutron star

matter. The HPNL0, HPNL1, HPNL2, HPNL3, HPNL4, and
HPNL5 parametrizations correspond to different values of the
isoscalar and isovector scalar meson mixed couplings (�σδ) of
σ -δ mesons, i.e., �σδ = 0.00, 0.01, 0.02, 0.03, 0.04, and 0.05,
respectively. For the sake of comparison, we have also con-
structed the HPNL parameter set that does not include the cou-
pling (gδ) of δ meson to the nucleon and couplings (�σδ) of
σ -δ mesons. The isoscalar and isovector scalar meson mixed
interactions σ 2δ2 have a significant influence on the density
dependence of symmetry energy and neutron star properties.
The HPNL interactions successfully account for the binding
energies and charge rms radii of several closed/open-shell
nuclei. The thick neutron skin thickness (�rnp) observed from
PREX-II results is achieved with a somewhat smaller value
of L using larger σ -δ meson mixed interaction �σδ . The
density dependence of symmetry energy becomes softer in
the low to medium density regime by using larger coupling
�σδ . The σ -δ mixing is found to have a large influence on
the radius and tidal deformability of a neutron star. These new
RMF models are found to be simultaneously compatible with
the constraints on the equation of state of symmetric nuclear
and pure neutron matter from particle flow data in heavy ion
collisions, the neutron skin thickness of 208Pb from PREX-II
results [14], the mass-radius relations measured from NICER
[3,4], and the limits of dimensionless tidal deformability of
a canonical neutron star from binary neutron star merger
GW170817 [6] and GW190814 events [28]. The value of
neutron skin thickness (�rnp) for 48Ca nucleus predicted for
HPNL parametrizations overestimates the CREX results re-
ported in Ref. [14]. So, it puts serious tension to fit CREX
and PREX-II results simultaneously without compromising
the properties of finite nuclei, bulk nuclear, and dense matter.
In Refs. [11,16,19,20,31,57,73] it is reported that the CREX
result pushes the density dependence of symmetry energy (L)
towards a lower value, while PREX-II results shifts it towards
a higher value and shows the tension to understand the CREX
and PREX-II results simultaneously within relativistic mean
field models. We are hoping that novel experimental studies
are necessary to resolve this tension or discrepancies.
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