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Statistical analysis of the effect of the symmetry energy on the crust-core transition
density and pressure in neutron stars
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There are generally two factors on which the form of the symmetry energy depends. The first one is the model
involved in determining the nuclear matter equation of state, and the second the accuracy of the approximation
of the symmetry energy function given by a Taylor series. Including the fourth-order term in the Taylor series
accounts for a more reasonable representation of the symmetry energy. This paper focuses on understanding
the symmetry energy influence on the neutron star crust-core phase boundary characteristics in terms of the
above factors. All calculations were based on selected models of the relativistic mean field theory. The analysis
begins with determining the analytical form of the fourth-order symmetry energy. The applied method allows
for deriving the potential part of the fourth-order symmetry energy when the model contains various nonlinear
couplings between mesons. The presence of the fourth-order term in the symmetry energy description affects the
neutron star crust-core phase boundary characteristics by changing the transition density nt , the corresponding
pressure Pt , and the equilibrium proton fraction Y eq

p (nt ) value. The performed statistical analysis clarifies the role
of the second- and fourth-order symmetry energy in determining the relationships between the transition density
nt and the leading coefficients characterizing the density dependence of the symmetry energy [Esym(n0), Lsym,
Ksym], where Lsym is the slope and Ksym is the curvature. It is shown that the regression analysis makes it possible
to identify (Pt , Lsym, Ksym) as the group of factors that significantly influence the variability of the transition
density nt . The results also allow for estimating the effect of the fourth-order symmetry energy term inclusion.
Additionally, the correlation analysis points to the individual role of Lsym and Ksym. Only when the fourth-order
term is included are both variables Ksym and Lsym equally anticorrelated with nt , leading to the increasing role of
Lsym in analyzing the variability of nt .

DOI: 10.1103/PhysRevC.108.055801

I. INTRODUCTION

Understanding the properties of dense nuclear matter is rel-
evant for understanding not only nuclear physics experiments
in the laboratory but also for building and testing theoretical
models that describe and predict the behavior of neutron stars.
The quality of the results depends on the accuracy with which
theory can reproduce the energy density of nuclear matter and
thus on how well the physics behind the model parameters
can be controlled. The function describing energy density is
generally calculated based on models of varying complexity
[1–7]. It depends on the baryon number density nb = nn + np,
where nn and np are neutron and proton number densities, and
the parameter δ = (nn − np)/(nn + np) describing the isospin
asymmetry of the system. These two variables describe prop-
erties of the nuclear matter equation of state (EoS), which in
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terms of binding energy can be written as

E (nb, δ) = ε(nb, δ)

nb
− M, (1)

where ε(nb, δ) denotes the energy density and M is the nu-
cleon mass. A convenient method of analyzing the EoS is
decomposing it into the symmetric E0(nb, 0) and isospin-
dependent Easym(nb, δ) parts. Representing the function that
describes the EoS by its Maclaurin series provides the pos-
sibility of separating the symmetric nuclear matter from that
with isospin asymmetry. In such case, the EoS can be written
as [8]

E (nb, δ) = E0(nb) + Easym(nb, δ) =
∞∑

n=0

E2n(nb)δ2n

= E0(nb) + Esym,2(nb)δ2 + Esym,4(nb)δ4 + · · · . (2)

This approximation is valid near δ = 0. For finite nuclei,
values of δ meet this condition, even in the parabolic ap-
proximation case [4,9]. Neutron stars offer an environment
characterized by the extreme value of isospin asymmetry with
a much larger value of δ, even close to unity. Thus, the
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TABLE I. Coefficients characterizing the density dependence of the nuclear matter EoS. Individual coefficients correspond to successive
terms of the Taylor series expansion of the function given by Eq. (3).

Ei(nb) k = 0 k = 1 k = 2 k = 3

E0(nb) E0(n0) 0 K0 = 9n2
0

d2E0 (nb )
dn2

b
|n0

J0 = 27n3
0

d3E0 (nb )
dn3

b
|n0

Esym,2(nb) Esym,2(n0) L2 = 3n0
dEsym,2 (nb )

dnb
|n0

Ksym,2 = 9n2
0

d2Esym,2 (nb )

dn2
b

|n0
Jsym,2 = 27n3

0
d3Esym,2(nb )

dn3
b

|n0

Esym,4(nb) Esym,4(n0) L4 = 3n0
dEsym,4(nb )

dnb
|n0

Ksym,4 = 9n2
0

d2Esym,4(nb )

dn2
b

|n0
Jsym,4 = 27n3

0
d3Esym,4(nb )

dn3
b

|n0

possibility that the parabolic approximation results will di-
verge cannot be excluded.

The usage of the higher-order terms is expected to provide
a better approximation for the description of the isospin-
dependent neutron star matter and neutron star properties,
such as crust-core core transition density and the critical den-
sity for the direct Urca processes [10–16]. No experimental
constraints exist on the fourth-order symmetry energy, even at
the saturation density [17]. Unfortunately, different theoretical
approaches predict Esym,4(n0) values that vary significantly.
Both nonrelativistic and relativistic mean field models (RMF)
[18,19] and the approach based on chiral pion-nucleon dy-
namics [20] predict Esym,4(n0) values less than 2 MeV. In
the relativistic Hartree-Fock (RHF) approach, the values of
the fourth-order symmetry energy Esym,4(nb) are even lower
than those obtained in RMF models for saturation density and
densities more significant than n0. The estimated Esym,4(n0)
values for selected RHF functionals are 0.35–0.58 MeV [21].
The performed quantum molecular dynamic (QMD) simula-
tions of an isospin asymmetric system that contains neutrons,
protons, and electrons leads to larger values of Esym,4(n0).
Depending on the parametrizations, they are 3.27, 7.07,
12.7 MeV [22].

It was found that the kinetic part of the isospin asym-
metric EoS is significantly altered by correlated short-range
nucleon pairs (SRCs) [23–25]. Considering such tensor force-
induced SRC pairs, the kinetic part Ekin

sym,2(n0) is reduced,
and the part Ekin

sym,4(n0) increases. The quartic term is pre-
dicted to be 7.18 ± 2.52 MeV [23] and differs significantly
from the result obtained based on the free Fermi gas model
(FFG), which gives the value of the kinetic part Ekin

sym,4(n0) =
0.45 MeV. A value as significant as 20.0 ± 4.6 MeV for the
quartic term is estimated within an extended semiempirical
nuclear mass formula based on analysis of finite nuclei fourth-
order symmetry energy extracted from nuclear mass data [17].
The expansion coefficients of the series given by Eq. (2) de-
pend on the density. The next step in analyzing the properties
of nuclear matter is the Taylor series expansion of appropriate
functions characterizing symmetric and asymmetric matter
around the saturation point n0:

Ei(nb) =
∞∑

k=0

(3n0)k 1

k!

dkEi(nb)

dnk
b

∣∣∣∣
n0

(
nb − n0

3n0

)k

, (3)

where for i = 0 the case of symmetric nuclear matter E0(nb)
is obtained, i = 2 corresponds to the second-order symmetry
energy Esym,2(nb), and i = 4 corresponds to the fourth-
order symmetry energy Esym,4(nb). Definitions of individual

coefficients in Eq. (3), corresponding to successive values of
Ei(nb), are summarized in Table I.

Considering the case of SNM, the function E0(nb) (i = 0)
expanded up to the third order in density is characterized
by the following coefficients: E0(n0), the binding energy per
nucleon of SNM at saturation density n0, the incompressibility
coefficient K0, and the skewness coefficient J0:

E0(nb) = E0(n0) + K0

2!

(
nb − n0

3n0

)2

+ J0

3!

(
nb − n0

3n0

)3

+ · · · . (4)

The function Esym,2(nb) is represented by a series whose
successive coefficients correspond to the value of the second-
order symmetry energy at n0, Esym,2(n0), the symmetry energy
slope parameter Lsym, and the curvature parameter Ksym,2.
This method can be repeated for the next term in the con-
sidered equation. The function Esym,4(nb) is approximated by
the Taylor series with the following coefficients: the value
of the fourth-order symmetry energy at n0, Esym,4(n0), the
symmetry energy slope parameter Lsym,4, and the curvature
parameter Ksym,4. Making the simplifying assumption of the
Taylor series expansion, which retains only the leading order
terms, satisfactorily represents the binding energy of nuclear
matter; properties of this matter can be characterized by pa-
rameters, which are coefficients in this expansion. Constraints
on the models of EoSs are obtained based on observables
of two types: those that can be measured in terrestrial
laboratories and those determined by astronomical observa-
tions. Accepted constraints are model dependent to varying
degrees and enable EoS to be tested over different tem-
perature, density, and isospin asymmetry ranges. Significant
and still intensified experimental efforts are being under-
taken to put the most reliable constraints on the properties
of nuclear matter. The least uncertain limitations result from
the properties of nuclei, namely nuclear masses and density
distributions.

Laboratory experiments with heavy ion collisions (HIC)
led to establishing a separate group of constraints. Variable
experimental conditions, including beam energies, impact pa-
rameters, and the combination of the projectile and target
nuclei, determine the usage of adequate observables. These
factors allow one to study the properties of nuclear matter
in different densities, temperatures, and isospin asymmetry
ranges [26–28]. Focusing on the parameters characterizing
the symmetry energy dependence on density, their experimen-
tal limitations, in addition to the mass measurements [29]
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mentioned above, are mainly based on the measurements of
neutron skin thickness [30–32], the polarizability of nuclear
dipoles, the giant and pygmy resonance energies [33,34] of the
dipoles flow in heavy ion collisions and isobaric analog states
[35], isospin diffusion in heavy-ion reactions [36], isoscaling
of fragments from intermediate energy heavy ion collisions
[37], the frequency of isovector giant dipole resonances [38],
and optical potentials from studying nucleon-nucleus scat-
terings [39,40]. There are many theoretical studies based on
data from the PREX2 and CREX experiments that deter-
mined the parity-violating asymmetry APV in 48Ca [41] and
208Pb [30]. Nuclear models that allow inferring information
on symmetry energy slope parameter Lsym based on these
data lead to different results and put Lsym in the following
ranges: Lsym = 106 ± 37 MeV [42] and Lsym = 53+14

−15 [43]
MeV. The value Lsym = 54 ± 8 MeV was reported in the
paper [44].

Some analyses try to explain the tension between the pre-
ferred values of Lsym by PREX-II and other experiments or
observations [45]. A comprehensive analysis of correlations
between the quantities of nuclear matter was carried out. The
statistical analysis used in this paper included ordinary and
partial, first- and second-order correlation coefficients, and
multiple correlation coefficients. The correlations between the
symmetry energy parameters were analyzed. The strength of
the correlation between the dependent variables and (group
of) factors used in regression models was calculated, and the
overall statistical significance of these models was checked.
To construct the hierarchy of the regression models for nt vs Pt

and groups of the symmetry energy parameters and to select
the optimal model, type I and type II sums of squares (SS)
were used. The stability of the estimators of the structural
parameters of the regression models was checked using the
variance inflation factor. The necessary information for the
statistical analysis is included in the Appendix, which is quite
sizable to avoid the common ambiguity of designations and
terminology.

II. SYMMETRY ENERGY: FORMULAS
AND A BRIEF OVERVIEW

A. The explicit form of the fourth-order symmetry energy term

The starting point for deriving the explicit forms of the
second- and fourth-order symmetry energy, and thus carry-
ing out a more in-depth analysis of properties of asymmetric
nuclear matter, is selecting the Lagrange density function. Its
general form L, making detailed reference to the system dy-
namic, considers nucleons and mesons as degrees of freedom
and can be written as

L = ψ̄
[
γ μ

(
i∂μ + gωωμ + gρτ

aρa
μ

) − (M − gσ σ )
]
ψ

+ 1
2∂μσ∂μσ − 1

4 FμνFμν − 1
4 Ba

μνBμνa

+UM (σ, ω, ρ), (5)

where ψ denotes the nucleon field, σ , ωμ, ρa
μ are the scalar,

vector, and vector-isovector meson fields, respectively, M is
the nucleon mass, and τ a denotes Pauli matrices. Fμν and Ba

μν

are the vector field tensors:

Fμν = ∂μων − ∂νωμ,

Ba
μν = ∂μρa

ν − ∂νρ
a
μ − gρε

abcρb
μρc

ν .

The function UM (σ, ω, ρ) includes the meson mass terms
and different types of meson self- and mixed-interaction
couplings. All calculations performed in this paper and the
qualitative conclusions drawn neglect the effects beyond the
applied mean field approximation. In this approach, a meson
field is split into the constant classical component and the
component resulting from quantum fluctuations, which vanish
after taking its vacuum expectation value. As a result, only the
classical components remain:

σ → 〈σ 〉 ≡ s,

ωμ → 〈ω〉 ≡ 〈ω0〉 δμ0 ≡ ω0, (6)

�ρ μ → 〈ρ3〉 ≡ 〈ρ0,3〉 δμ0 ≡ r0,3.

Calculations that allow one to determine the analytical form
of the second- and fourth-order symmetry energy are based on
the method and notation presented in [46], and are carried out
generally without specification of the potential function UM .
The presented method, in the case of a system composed of
nucleons and mesons, uses a function representing the energy
density written as a sum of the following components:

ε =
∑
j=n,p

εkin
j (nb, δ, s) + UM (s, ω0, r0,3)

+ gωω0nb + 1

2
gρr0,3n3b

=
∑
j=n,p

εkin
j (nb, δ, s) + UM (s, ω0, r0,3)

+ gωω0nb − 1

2
gρr0,3nbδ. (7)

The baryon number density nb = nn + np is calculated with
the use of the relation

n j =
∫ kF j

0

d3k

(2π )3
= 1

3π2
k3

F j, (8)

j = n, p, and n3b = 〈ψ̄γ 0τ3ψ〉 = np − nn = −nbδ. The ki-
netic energy contribution takes the form

εkin
j = 1

π2

∫ kF j

0
k2

√
k2 + M2

eff dk

= 1

4

{
1

π2
EF jk

3
F j + Meff ρS j (nb, δ, s)

}
, (9)

where the scalar density ρS = 〈ψ̄ψ〉 = ρSn + ρSp, defined as

ρS j = − 1

gσ

∂εkin
j

∂s
= Meff

2π2

{
kF jEF j − M2

eff ln
kF j + EF j

Meff

}
( j = n, p), (10)

depends on the effective nucleon mass Meff ≡ Meff(s) = M −
gσ s and on the energy EF j =

√
k2

F j + M2
eff. Meson fields are

functions that depend on two independent variables nb and δ,
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i.e., s(nb, δ), ω0(nb, δ), and r0,3(nb, δ). Still, this is not explic-
itly stated in the above formulas for simplicity of notation.
Equations of motion resulting from the condition

∂ε

∂φi
= 0 for φi = s, ω0, r0,3 (11)

have to be satisfied for any nb and δ values and can be written
in the following form:

−gσ ρS (nb, δ, s) + ∂UM (s, ω0, r0,3)

∂s
= 0,

gω nb + ∂UM (s, ω0, r0,3)

∂ω0
= 0, (12)

−1

2
gρ nb δ + ∂UM (s, ω0, r0,3)

∂r0,3
= 0.

Following the procedure described in [46], differentiating
the equations of motion with respect to nb, the system of linear
equations for the derivatives of meson fields can be obtained.
These equations can be written succinctly in a matrix form:

m̂2
eff

d�̂

dnb

∣∣∣∣
δ fixed

= −ĝ, (13)

where the effective mass matrix is defined by

m2
φiφ j ,eff = ∂2ε

∂φi∂φ j
for φi = φ j = s or φi �= φ j, (14)

m2
φiφi,eff = − ∂2ε

∂φ2
i

for φi = ω0, r0,3, (15)

and �̂ = (s, ω0, r0,3)T . Based on Eq. (12), the explicit form of
the matrix m̂2

eff is as follows:

m̂2
eff ≡

⎛⎜⎝ m2
σ,eff m2

σω,eff m2
σρ,eff

m2
σω,eff −m2

ω,eff m2
ωρ,eff

m2
σρ,eff m2

ωρ,eff −m2
ρ,eff

⎞⎟⎠

=

⎛⎜⎜⎝
∂2UM
∂s2 − gσ

∂ρS

∂s
∂2UM
∂s∂ω

∂2UM
∂s∂r0,3

∂2UM
∂s∂ω

∂2UM
∂ω2

∂2UM
∂ω∂r0,3

∂2UM
∂s∂r0,3

∂2UM
∂ω∂r0,3

∂2UM

∂r2
0,3

⎞⎟⎟⎠, (16)

with the column matrix ĝ,

ĝ ≡
(

−gσ

∂ρS

∂nb
, gω, −gρδ/2

)T

=
(

−gσ Meff

2

[
1

EF p
+ 1

EFn

]
, gω, −gρδ/2

)T

. (17)

Differentiating the equations of motion (12) with respect to
the variable δ, the following expression can be derived:

m̂2
eff

d�̂

dδ

∣∣∣∣
nb fixed

= −g̃, (18)

where

g̃ ≡
(

−gσ

∂ρS

∂δ
, 0, −gρnb/2

)T

=
(

−gσ Meff

2

[
1

EF p
− 1

EFn

]
, 0, −gρnb/2

)T

. (19)

The particular case of symmetric nuclear matter is considered
separately. The nonzero value of the variable δ is the measure
of the deviation from this state of matter, so δ = 0 corresponds
to symmetric matter. In this case, the fields become functions
of one variable, s(nb, 0), ω0(nb, 0), and r0,3(nb, 0), and the
system of equations of motion takes the form

−gσ ρS (nb, 0, s) + ∂UM (s, ω0, r0,3)

∂s
= 0,

gω nb + ∂UM (s, ω0, r0,3)

∂ω0
= 0, (20)

∂UM (s, ω0, r0,3)

∂r0,3
= 0.

The solution r0,3(nb, 0) ≡ 0 can be obtained from the last
equation of the system given by Eq. (20), under reasonable as-
sumptions about the form of the UM potential. The expectation
value of the ρ meson field is generally an order of magnitude
smaller than that of the ω field, so higher-order nonlinear
couplings of the ρ meson are not considered as they have
only a marginal influence on the properties of finite nuclei and
neutron stars. Taking the solution r0,3(nb, 0) = 0, the first two
equations of Eq. (20) form a nonlinear system of equations for
the unknowns s(nb, 0) and ω0(nb, 0). It is assumed that the
function describing the potential has the following properties:

∂2UM

∂s∂r0,3

∣∣∣∣
δ=0

= ∂2UM

∂ω0∂r0,3

∣∣∣∣
δ=0

= 0. (21)

In the following considerations, the symbol Q (e.g., Qσω ≡
m2

σω,eff) as the symbol of effective meson masses is adopted.
This simplifies the notation and emphasizes that these ef-
fective masses correspond to symmetric matter (cf. [18]).
According to the general procedure given by the formulas (18)
and (19) one can obtain

Q̂
d�̂

dδ

∣∣∣∣
δ=0

= 0, −Qρ

dr0,3

dδ

∣∣∣∣
δ=0

= 1

2
gρnb, (22)

where

Q̂ ≡
(

Qσ Qσω

Qσω −Qω

)

=
((

∂2UM
∂s2 − gσ

∂ρS

∂s

)∣∣
δ=0

∂2UM
∂s∂ω

∣∣
δ=0

∂2UM
∂s∂ω

∣∣
δ=0

∂2UM
∂ω2

∣∣
δ=0

)
, (23)

Qρ = − ∂2UM

∂r2
0,3

∣∣∣∣∣
δ=0

, � = (s, ω0)T . (24)

Solutions of Eq. (22) are

d�̂

dδ

∣∣∣∣∣
δ=0

= (0, 0)T ,
dr0,3

dδ

∣∣∣∣
δ=0

= −gρnb

2Qρ

(25)

The next step in the calculations is to determine the second
derivatives of the fields:

d2�̂

dδ2

∣∣∣∣∣
δ=0

= −nbQ̂−1Ĝ,
d2r0,3

dδ2

∣∣∣∣
δ=0

= 0, (26)
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where

Q̂−1 = 1

1 + x

(
1/Qσ x/Qσω

x/Qσω −1/Qω

)
, x ≡ Q2

σω

Qσ Qω

, (27)

Ĝ = (Gσ , Gω )T

=
(

−gσ

nb

∂2ρS

∂δ2

∣∣∣∣
δ=0

+ 1

nb

∂3UM

∂s ∂2r0,3

(
dr0,3

dδ

)2
∣∣∣∣∣
δ=0

,

1

nb

∂3UM

∂ω0 ∂2r0,3

(
dr0,3

dδ

)2
∣∣∣∣∣
δ=0

)T

. (28)

So the solutions are as follows:

d2s

dδ2

∣∣∣∣
δ=0

= − nb

1 + x

(
Gσ

Qσ

+ x
Gω

Qσω

)
,

d2ω

dδ2

∣∣∣∣
δ=0

= − nb

1 + x

(
x

Gσ

Qσω

− Gω

Qω

)
. (29)

The performed calculations are the basis for determining
the symmetry energy. Note that for all values of nb and δ the
following relation holds:

dε

dδ
= ∂ε

∂δ
= ∂

(
εkin

n + εkin
p

)
∂δ

− 1

2
gρnb r0,3(nb, δ). (30)

Therefore, one can write

Esym,2(nb) = 1

2

d2

dδ2

(
ε

nb
− M

)∣∣∣∣
δ=0

= 1

2nb

d2ε

dδ2

∣∣∣∣
δ=0

= 1

2nb

d

dδ

∂
(
εkin

n + εkin
p

)
∂δ

∣∣∣∣∣
δ=0

− gρ

4

dr0,3

dδ

∣∣∣∣
δ=0

= k2
F

6EF
+ g2

ρ nb

8Qρ

. (31)

Similarly

Esym,4(nb) = 1

24nb

d3

dδ3

∂
(
εkin

n + εkin
p

)
∂δ

∣∣∣∣∣
δ=0

− gρ

48

d3r0,3

dδ3

∣∣∣∣
δ=0

= 1

24nb

{
∂4

(
εkin

n + εkin
p

)
∂δ4

− 3gσ

∂2ρS

∂δ2

d2s

dδ2

}∣∣∣∣∣
δ=0

+ 1

8nb

(
dr0,3

dδ

)2{
∂3UM

∂s∂2r0,3

d2s

dδ2

+ ∂3UM

∂ω0∂2r0,3

d2ω0

dδ2

}∣∣∣∣
δ=0

+ 1

8

{
Gσ

d2s

dδ2
+ Gω

d2ω0

dδ2

}∣∣∣∣
δ=0

. (32)

Finally, after some algebra,

Esym,4(nb) = k2
F

648E5
F

(
10k4

F + 4M4
eff + 11k2

F M2
eff

)
− nb

8(1 + x)

(
G2

σ

Qσ

− G2
ω

Qω

+ 2x
Gσ Gω

Qσω

)
. (33)

B. The case of the explicit form of the meson potential

The performed calculations were based on relativistic
mean-field (RMF) models. This approach describes the nu-
clear many-body problem as a relativistic system of baryons
and mesons. The original Walecka model determines prop-
erties of nuclear matter by the scalar-isoscalar σ (attractive)
and vector-isoscalar ω mesons (repulsive) exchange [47,48].
This model was extended by including the vector-isovector
ρ meson and then underwent further modifications that in-
creased its applicability. Much more sophisticated models
have a variety of nonlinear meson interaction [49] terms that
allow for their classification according to types of nonlinear
meson couplings [50,51].

Determination of the properties of nuclear matter in the
case of RMF models is based on selected groups of param-
eters, which are the subject of the research reported in papers
[51,52]. The justification for choosing these parametrizations
is based on the compliance of the calculated properties of
nuclear matter with different values of isospin asymmetry
with the limitations resulting from the analysis of experimen-
tal data. Considering the isospin-dependent nuclear matter
[53], the experimental constraints refer to the coefficients
characterizing the symmetry energy dependence on density.
The following ranges of constraints can be specified: for
the symmetry energy coefficient Esym(n0), 25–35 and 30–35
MeV [54]; for the symmetry energy slope L0 evaluated at
n0, 25–115 MeV [55,56]; for the volume part of the isospin
incompressibility K0

τ,v at n0, −700 to −400 MeV [51,57,58];
and for the ratio of the symmetry energy at n0/2 to its value at
n0, 0.57–0.86 [59].

Analysis of the nuclear matter EoS, especially its high-
density limit, carried out based on the relativistic mean
field approach and taking into account different types of
nonlinear couplings between mesons has been presented in
[60]. In paper [60], the coupling constants gσ , gω, gρ to-
gether with the parameters that define the strength of the
meson nonlinear interactions are determined by imposing a
set of constraints which includes the nuclear saturation den-
sity n0 = 0.153 ± 0.005 fm−3 [61]; the binding energy per
nucleon E0(n0) = −16.1 ± 0.2 MeV [51]; incompressibility
K0 = 230 ± 40 MeV [62,63]; the symmetry energy at the
nuclear saturation density Esym(n0) = 32.5 ± 1.8 MeV [64];
the pressure of pure neutron matter (PNM) determined at
the densities 0.08, 0.12, and 0.16 fm−3 from a chiral ef-
fective field theory (χEFT) calculation [65], with 2 × N3LO
(next-to-next-to-next-to leading order) uncertainty in the like-
lihood, the pressure of PNM being an increasing function of
density dP/dnb > 0; and in the case of neutron star mod-
els the maximum mass is required to be above two solar
masses [66].

The models used in this paper are also distinguishable
by different types of nonlinear couplings between mesons.
It becomes possible to divide all the models into three
groups. Group I includes BSR models [67] and FSUGZ03,
FSUGZ06 [68] with the following types of the mixed meson
couplings: σ -ω2, σ 2-ω2, σ -ρ2, σ 2-ρ2, ω2-ρ2. Group II of
BKA models [69], G2 [70], and G2� [71] comprises σ -ω2,
σ 2-ω2, σ -ρ2 nonlinear terms. Group III of FSUGold [62],
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FSUGold4 [72], IU FSU, XS [73], and TM1 [74] is char-
acterized by ω2-ρ2 coupling. Parameter values for individual
models are gathered in the paper [75]. In general, the function

UM can contain a variety of self and mixed meson couplings.
For the aims of this paper, it is convenient to write it in
the form

UM (s, ω, r0,3) = 1

2
m2

σ s2 + A

3
s3 + B

4
s4 − 1

2
m2

ωω2
0 − C

4

(
g2

ωω2
0

)2 − 1

2
m2

ρr2
0,3

−gσ s (gωω0)2

(
α1 + 1

2
α′

1gσ s

)
− gσ s (gρr0,3)2

(
α2 + 1

2
α′

2gσ s

)
− 1

2
α′

3(gωω0)2(gρr0,3)2. (34)

Taking the form of the potential given by Eq. (34), the following equations of motion were obtained:

m2
σ s + As2 + Bs3 − gσ (α1 + α′

1gσ s)(gωω0)2 − gσ (α2 + α′
2gσ s)(gρr0,3)2 = gσ ρS,

m2
ωω0 + gω[C(gωω0)3 + (2α1 + α′

1gσ s)gσ sgωω0] = gω nb, (35)

m2
ρr0,3 + gρ[(2α2 + gσα′

2s)gσ sgρr0,3 + α′
3(gωω0)2gρr0,3] = −gρ nb δ.

Knowing the energy density of the system, the second- and the fourth-order symmetry energy can be determined based on
Eqs. (31) and (33). The individual components expressing the explicit form of the second- and fourth-order symmetry energy, in
the case of the selected potential function given by Eq. (34), can be rewritten as

Gσ = −(α2 + gσ α′
2s)

gσ g4
ρnb

2Q2
ρ

+ 1

3

gσ k2
F Meff

E3
F

, (36)

Gω = −α′
3g4

ρg2
ωω0nb

2Q2
ρ

. (37)

The effective meson masses that enter Eqs. (31) and (33) now have the forms

Qρ = m2
ρ + (2α2 + gσα′

2s)g2
ρgσ s + g2

ρα
′
3(gωω0)2, (38)

Qσ = m2
σ + 2As + 3Bs2 − α′

1g2
σ (gωω0)2 + 3g2

σ

(
ρS

Meff
− nb

EF

)
, (39)

Qω = m2
ω + (2α1 + gσ α′

1s)g2
ωgσ s + 3Cg4

ωω2
0, (40)

Qσω = 2(α1 + gσα′
1s)gσ g2

ωω., (41)

In the above expressions, Eqs. (36)–(41), all the fields are calculated for δ = 0 (symmetric nuclear matter). Under the assumption
that all coupling constants except α′

3 equal zero, a simplified form of the potential is obtained:

UM (s, ω, r0,3) = 1

2
m2

σ s2 + A

3
s3 + B

4
s4 − 1

2
m2

ωω2
0 − C

4
(g2

ωω2
0 )2 − 1

2
m2

ρr2
0,3 − 1

2
α′

3(gωω0)2(gρr0,3)2. (42)

In this case, calculations performed for the fourth-order sym-
metry energy reproduce the result obtained by Cai et al. [18].

III. SYMMETRY ENERGY AGAINST CHANGES IN A
NEUTRON STAR CRUST-CORE TRANSITION DENSITY

AND PRESSURE

The existing studies conclude that the parameters of nu-
clear matter are, to varying degrees, correlated with each
other and with the characteristics of nuclei and neutron stars.
A thorough analysis of the symmetry energy and especially
the quality of its approximation by Taylor series requires
an understanding of the necessity of including the fourth-
order term in the Taylor expansion, particularly in the case
of nuclear matter with a significant value of isospin asym-
metry. Only after that does the checking of the symmetry
energy effect on specific physical quantities become more
credible.

The results of terrestrial experiments point to impressive
progress in finding constraints on the nuclear matter EoS. Si-
multaneously, the corresponding improvement also addresses
astrophysical observations, which, applied to determining
neutron star parameters, can lead to additional complemen-
tary constraints. However, an attempt to answer the question
about the dependence of symmetry energy on density based
on information obtained from observations of neutron stars is
still subject to considerable uncertainty.

A separate issue is an analysis and systematics of neutron
star properties to identify those that explicitly depend on the
form of the symmetry energy. One of the essential charac-
teristics of this type is the location of the edge of a neutron
star core, which corresponds to the phase transition from the
homogeneous matter in the core to the inhomogeneous matter
at low densities in the crust.

The questionable point in constructing a neutron star model
is the precise determination of a region in a neutron star
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interior where the crust-core phase boundary occurs. In this
context, the additional limitations on the crust-core transition
density and pressure obtained using the existing experimental
and theoretical constraints on the coefficients describing the
symmetry energy cannot be overestimated. Thus, the density
region relevant for the core-crust transition in neutron stars
offers the possibility to analyze the symmetry energy effect
on neutron star structure.

Several approaches have been developed to evaluate the
value of the transition density. These include the dynamic
method, the thermodynamic method, and the random phase
approximation. The method of determining the density for
which liquid-gas instability appears is widely applicable both
for finite temperature, focusing in this case on the dynamics
of supernovae, as well as considering the limiting case of
zero temperature when describing neutron star crust [76–79].
The thermodynamic method of assessing the transition den-
sity used in this paper consists of determining such a value
of the density at which the instability caused by small am-
plitude density fluctuations in a homogeneous liquid begins
to develop, indicating the beginning of the formation of a
nuclear cluster [80–83]. Accordingly, it is indispensable for
the system to meet the conditions of mechanical and chemical
stability to ensure that any local density fluctuations will not
diverge. The following inequalities express these conditions:

−
(

∂P

∂v

)
μ

> 0, −
(

∂μasym

∂qc

)
v

> 0, (43)

where v and qc are volume and charge per baryon number,
P is the total pressure of the system, and μasym = μn − μp

is the difference of neutron and proton chemical potentials.
The second condition is usually satisfied, whereas the first one
leads to the requirement of positivity of the expression

Vther = 2nb
∂E (nb,Yp)

∂nb
+ n2

b

∂2E (nb,Yp)

∂n2
b

−
(

nb
∂2E (nb,Yp)

∂nb∂Yp

)2/
∂2E (nb,Yp)

∂Y 2
p

, (44)

where E (nb,Yp) is the binding energy, and Yp = (1 − δ)/2.
The chemical composition of neutron star matter is settled
by conditions of the charge neutrality and the β equilibrium,
which determines the relationship between the chemical po-
tentials of the constituents of the matter, and results in the
implicit-like equation for the isospin asymmetry of the system

μasym ≡ μn − μp = μe, (45)

where μe is the electron chemical potential. Assuming that the
relation

E (nb,Yp) = Esym,2(nb)(1 − 2Yp)2 + Esym,4(nb)(1 − 2Yp)4
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FIG. 1. This figure illustrates, for the chosen density, the influ-
ence of the fourth-order symmetry energy term on the solution of the
equation defining the equilibrium concentration of protons.

can approximate the isospin-dependent part of the energy per
nucleon of nuclear matter, the electron chemical potential μe

can be given by

μe = μn − μp = −∂E (nb,Yp)

∂Yp

= 4(1 − 2Yp)Esym,2(nb) + 8(1 − 2Yp)3Esym,4(nb). (46)

In the case of relativistic electrons, their chemical potential is
of the form

μe = h̄c(3π2nb)1/3Y 1/3
e . (47)

The charge neutrality condition Yp(nb) = Ye(nb) can be used
to derive the equation determining the equilibrium proton
fraction Y eq

p :

h̄c(3π2nb)1/3Y 1/3
p = 4(1 − 2Yp)Esym,2(nb)

+8(1 − 2Yp)3Esym,4(nb) (48)

for a given baryon number nb.
The symmetry energy is the decisive factor determining the

protons’ equilibrium concentration. The approximate analyti-
cal form of the solution of Eq.(48) can be obtained when the
symmetry energy is determined in the parabolic approxima-
tion. Including the symmetry energy fourth-order term blurs
the seemingly easy parabolic form of the obtained equilib-
rium proton fraction. The influence of the symmetry energy
fourth-order term on the equilibrium concentration of protons
is illustrated in Fig. 1 by comparing the left and right sides
of Eq. (48). Determining the transition density value comes
down to solving the equation Vther = 0 while considering the
conditions of charge neutrality and β equilibrium. Assum-
ing that the energy in the isospin-dependent sector includes
contributions from the fourth-order symmetry energy term,
Eq. (49) takes the form

Vther = n2
b

[
d2E0(nb)

dn2
b

+ (1 − 2Yp)2

(
d2Esym,2(nb)

dn2
b

+ (1 − 2Yp)2 d2Esym,4(nb)

dn2
b

)]
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+ 2nb

[
dE0(nb)

nb
+ (1 − 2Yp)2

(
dEsym,2(nb)

dnb
+ (1 − 2Yp)2 dEsym,4(nb)

dnb

)]
− 2n2

b(1 − 2Yp)2(Esym,2(nb) + 6(1 − 2Yp)2Esym,4(nb))−1

(
dEsym,2(nb)

dnb
+ 2(1 − 2Yp)2 dEsym,4(nb)

dnb

)2

. (49)

The total pressure P needed to support the considered npe system is supplied by the contributions of nucleons (PN ) and electrons
(Pe), P = PN + Pe. Using the thermodynamic relation the following equation for the pressure at the crust-core transition density
nt and equilibrium proton fraction Yt ≡ Y eq

p (nt ) can be obtained:

P(nt ) = n2
t

dE0(nb)

dnb

∣∣∣∣
nt

+ n2
t (1 − 2Yt )

2

(
dEsym,2(nb)

dnb

∣∣∣∣
nt

+ (1 − 2Yt )
2 dEsym,4(nb)

dnb

∣∣∣∣
nt

)
+ ntYt (1 − 2Yt )[Esym,2(nt ) + 2Esym,4(nt )(1 − 2Yt )

2]. (50)

The values of nt and Pt have been obtained based on numerical
solution of Eqs. (48)–(50) without applying the expansion of
Esym,2(nb) and Esym,4(nb) around n0.

It is instructive to compare the effects of the symmetry
energy function approximations. Two methods of approxima-
tions that lead to different representations of the symmetry
energy can be used for this purpose. The first uses the
parabolic approximation for the Taylor series expansion
around δ = 0. As a result, the function Esym,2(nb) is obtained,
which subsequently is expanded around n0 up to the fourth
order. In the second approach, the expansion around δ = 0 is
additionally supplied by a fourth-order term Esym,4(nb). Cal-
culating the transition density nt , equilibrium proton fraction
Yt , and transition pressure Pt following Eqs. (48), (49), and
(50) includes contributions from both functions Esym,2(nb)
and Esym,4(nb). The functions Esym,2(nb) and Esym,4(nb) are
then also expanded up to the fourth order around n0. The
presented approaches were used to calculate Yt , nt , and Pt .
The calculations were carried out for the selected BRS8
parametrization. The obtained results show differences be-
tween the two approximations and also in comparison to the
values obtained by numerically solving Eqs. (48) and (49)
without applying the expansion of Esym,2(nb) and Esym,4(nb)
around n0. Similarly, the pressure Pt was calculated by insert-
ing into the formula (50) these numerical values of Yt and nt

together with functions Esym,2(nb) and Esym,4(nb) for which
the approximation in the form of expansion around n0 was not
applied. The obtained results are presented for the parabolic
approximation and the case when the fourth-order term is
included (the expansion around δ) in the following order: the
numerically calculated value and then terms that refer to the
expansions around n0 to the fourth, third, and second order,
respectively:

nt2 = (0.0780, 0.0724, 0.0653, 0.0583),

nt24 = (0.0767, 0.0710, 0.0646, 0.0584),

Yt2 = (0.0290, 0.0281, 0.0276, 0.0277),

Yt24 = (0.0309, 0.0279, 0.0275, 0.0277),

Pt2 = (0.2922, 0.2120, 0.1288, 0.0868),

Pt24 = (0.2999, 0.2178, 0.1407, 0.1041). (51)

nt2 and nt24 are given in fm−3 whereas Pt2 and Pt24 in
MeV/fm3. The inclusion of the higher-order terms in the
description of the symmetry energy has also been applied to
analyze the uncertainties in neutron star properties by apply-
ing the Bayesian approach [60,84].

This paper aims to show the impact of including the fourth-
order term in δ to describe the symmetry energy function.
This is justified when we analyze the properties of nuclear
matter with a high value of isospin asymmetry. In this case,
the limitation to the parabolic approximation may give re-
sults inconsistent with exact values, especially significant for
transition pressure Pt . Properties of the neutron star crust-core
phase boundary such as the transition density nt , correspond-
ing pressure Pt , and equilibrium proton fraction Yt calculated
for the considered models are given in Table II.

IV. RESULTS

A. Effect of the symmetry energy on the core-crust phase
boundary in neutron stars

Before a more detailed analysis of the fourth-order sym-
metry energy Esym,4(nb) applicability is provided, it is worth
comparing the density dependence of the Esym,2(nb) and
Esym,4(nb) functions calculated for the considered groups of
models. The results, presented in Fig. 2, show that the sym-
metry energy is an increasing function of the density for each
parametrization. Individual cases differ in the slope Lsym and
the rate of increase, which is reflected in the value of the Ksym

coefficient. The density dependence of Esym,4(nb) has a more
complex form given by Eq. (33). Defining the function, which
represents the second term of Eq. (33), the potential part of
the fourth-order symmetry energy can be identified:

Epot
sym,4(nb) = − nb

8(1 + x)

(
G2

σ

Qσ

− G2
ω

Qω

+ 2x
Gσ Gω

Qσω

)
. (52)

Figure 3 shows a series of figures that visualize the function
defined by Eq. (52). A common feature of plots presented
in this figure is a sequence of local minima and maxima,
which differ in values for individual parametrizations. The
function Epot

sym,4(nb) assumes the highest values at maxima and
deeper minima for models in group III. Differences between
the results obtained for individual models reveal themselves
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TABLE II. Properties of the neutron star crust-core phase boundary [the transition density nt , corresponding pressure Pt , and equilibrium
proton fraction Y eq

p (nt )] are calculated when the parabolic approximation gives the symmetry energy and when the fourth-order term is also
included. The subscript 2 refers to the quantities calculated based on the parabolic approximation, and the subscript 24 indicates the sum of
the second and fourth-order contributions.

Model nt2 (fm−3) Y eq
p (nt2) Pt2 (MeV/fm3) nt24 (fm−3) Y eq

p (nt24) Pt24 (MeV/fm3)

BSR8 0.0777 0.0290 0.2922 0.0767 0.03086 0.2999
BSR9 0.0777 0.0285 0.3394 0.0765 0.0304 0.3424
BSR10 0.0778 0.0284 0.4390 0.0760 0.0300 0.4284
BSR11 0.0794 0.0282 0.5679 0.0769 0.0295 0.5344
BSR12 0.0849 0.0305 0.7219 0.0821 0.0318 0.6758
BSR15 0.0754 0.0273 0.2725 0.0744 0.0292 0.2784
BSR16 0.0761 0.0279 0.3033 0.0750 0.0297 0.3070
BSR17 0.0775 0.0275 0.4016 0.0759 0.0291 0.3929
BSR18 0.0799 0.0279 0.5362 0.0777 0.0294 0.5104
BSR19 0.0830 0.0286 0.6952 0.0800 0.0298 0.6434
BSR20 0.0833 0.0280 0.7778 0.0796 0.0369 0.6988
FSUGZ03 0.0778 0.0283 0.3431 0.0766 0.0301 0.3456
FSUGZ06 0.0763 0.0276 0.3072 0.0751 0.0295 0.3103

BKA20 0.0804 0.0260 0.4941 0.0783 0.0274 0.4704
BKA22 0.0776 0.0263 0.4958 0.0752 0.0276 0.4687
BKA24 0.0796 0.0273 0.6235 0.0766 0.0283 0.5743

G2 0.0866 0.0277 0.9251 0.0817 0.0277 0.8004
G2� 0.0812 0.0210 0.4677 0.0794 0.0222 0.4387
FSUGold 0.0865 0.0336 0.5286 0.0858 0.0369 0.5506
FSUGold4 0.0827 0.0347 0.2721 0.0830 0.0393 0.3125
XS 0.0776 0.0335 0.1829 0.0773 0.0379 0.2069
TM1 0.0947 0.0347 0.6455 0.0939 0.0379 0.6718
IU-FSU 0.0902 0.0368 0.2577 0.0915 0.0425 0.3169

in quantities Qσ , Qω, Qρ , and Qωσ that define Epot
sym,4(nb).

Table III summarizes their detailed forms. These quantities,
considered in terms of effective meson masses and the Gσ and
Gω factors given by Eq. (28), affect the range and strength of
interactions between the mesons. The reader should consider
that, in general, the matrix of effective masses [Eq. (16)] is
not diagonal, and its terms do not necessarily correspond to
physical masses. Another item distinguishing the third group
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FIG. 2. The dependence on the density of the symmetry energy
Esym,2, obtained in the case of the parabolic approximation for three
distinguished groups of models.

is the vanishing of the factor x. Its form for groups I and II is
shown in Fig. 4. The complete form of the fourth-order sym-
metry energy is presented in Fig. 5. A noticeable modification
through the potential part occurs only in the case of models
belonging to the third group. Comparing Figs. 3 and 5, it is
evident that the kinetic part of the symmetry energy prevails
over the potential one. The exceptions are models of group
III, for which the kinetic and potential parts are of comparable
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FIG. 3. Density dependence of the fourth-order symmetry en-
ergy potential part. The results obtained for the three distinguished
groups of models point to the third group as the one having the most
significant contribution of the potential part.
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TABLE III. Factors characterizing the potential part of the fourth-order symmetry energy Esym,4. Qi,0, where (i = σ, ω), denotes the part
of the quantity Qi that does not contain mixed-mesons coupling terms. In the case of ρ meson, Qρ,0 ≡ m2

ρ .

Model Group I Group II Group III

Qσ Qσ,0 − α′
1g2

σ (gωω0)2 Qσ,0 − α′
1g2

σ (gωω0)2 Qσ,0

Qω Qω,0 + (2α1 + gσ α′
1s)g2

ωgσ s Qω,0 + (2α1 + gσ α′
1s)g2

ωgσ s Qω,0

Qρ Qρ,0 + (2α2 + gσ α′
2s)g2

ρgσ s + g2
ρα

′
3(gωω0)2 Qρ,0 + 2α2g2

ρgσ s Qρ,0 + g2
ρα

′
3(gωω0)2

Qωσ 2(α1 + gσ α′
1s)gσ g2

ωω0 2(α1 + gσ α′
1s)gσ g2

ωω0 0

value. Noteworthy is the parametrization of IU FSU, for which
the following values were obtained: Ekin

sym2(n0) = 17.93 MeV,

Epot
sym2(n0) = 13.36 MeV, Ekin

sym4(n0) = 0.76 MeV, Epot
sym4(n0) =

0.41 MeV. The second- and fourth-order symmetry energy
dependence on density is characterized by a sequence of co-
efficients Esym,2(n0), Lsym,2, Ksym,2, Esym,4(n0), Lsym,4, Ksym,4.
Their values are collected in Table IV.

The additional analysis presented in this paper aims to
identify the extent to which the above-mentioned coefficients
impact a neutron star crust-core transition density and pres-
sure, which profoundly affect neutron star crustal phenomena.
As such, significant theoretical and observational efforts are
being made to infer the details of the role of the neutron star
crust in this context. The equilibrium proton fractions Y eq

p for
the considered groups of models are presented in Fig. 6. Many
surveys attempt to measure correlations among coefficients in
the Taylor expansion of the function Easym(nb). Based on the
reported results, some crucial predictions concerning the neu-
tron star crust-core transition density and pressure dependence
on the coefficients characterizing the symmetry energy have
been formulated.

The starting point of the analysis was to check correlations
between the leading coefficients of the Taylor expansion (3).
The study of the correlation between Lsym,2 and Esym,2(n0)
shows that it is positive and strong both for individual groups
of models and for the entire sample (Table V), for which the
the regression function is of the form L̂sym,2 = −177.47 +
7.6 Esym,2(n0), where L̂sym,2 is the conditional mean of Lsym,2
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FIG. 4. The factor x as a function of density for group I (left
panel) and II (right panel); it vanishes for group III.

(see Appendix 1). The regression analysis considering the
fourth-order correction leads to similar conclusions. In this
case, the regression function for the entire sample is given by
L̂sym,24 = −173.19 + 7.36 Esym,24, (Table V). The subscript
24 denotes a quantity obtained as a sum of the second- and
fourth-order contributions in the Taylor expansion. The re-
gression lines that summarize the relations between Lsym,2 and
Esym,2, and Lsym,24 and Esym,24 are given in Fig. 7.

A different result was obtained for the correlation between
Ksym,2 and Lsym,2 (Table VI). Compared to the previous case,
this correlation is weaker and is negative for all groups ex-
cept group II. It is of moderate strength for groups I and II,
although it is pretty strong for group III. But, it practically
disappears for the sample covering all models. This tendency
is confirmed and strengthened by the correlation between
Lsym,24 and Ksym,24, i.e., the cases where fourth-order terms are
included. The regression lines summarizing the relations be-
tween Ksym,2 and Lsym,2, and Ksym,24 and Lsym,24 are presented
in Fig. 8.

The conducted correlation analysis between the main char-
acteristics of the function Esym(nb), namely the correlations
between Lsym,2 and Esym,2(n0) and between Ksym,2 and Lsym,2,
indicates a significant difference between them. Expressing
the correlation strength by variance inflation factor (VIF),
defined as VIFX = 1

1−R2
X

, where X is the reference factor,
Appendix 5, the following results are obtained.

In the case of the correlation between Lsym and Esym(n0),
Lsym or Esym(n0) may be taken as the X factor. By the ranges
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FIG. 5. The dependence on the density of the symmetry energy
Esym,4 for three distinguished groups of models.
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TABLE IV. Saturation properties of the second- [Esym,2(nb)] and fourth-order symmetry energy [Esym,4(nb)]: symmetry energy coefficients
Esym,2(n0 ) and Esym,4(n0), their slopes Lsym,2 and Lsym,4 and curvatures Ksym,2 and Ksym,4.

Model n0 (fm−3) Esym,2(n0) (MeV) Lsym,2 (MeV) Ksym,2 (MeV) Esym,4(n0) (MeV) Lsym,4 (MeV) Ksym,4 (MeV)

BSR8 0.1469 31.07 60.24 −0.76 0.756 2.89 1.39
BSR9 0.1473 31.61 63.89 −11.33 0.762 2.80 1.63
BSR10 0.1474 32.72 70.82 −16.52 0.762 2.76 2.17
BSR11 0.1467 33.68 78.77 −24.72 0.745 2.61 2.72
BSR12 0.1473 33.99 77.89 −44.24 0.743 2.69 4.28
BSR15 0.1455 30.97 61.78 −21.36 0.747 2.64 1.12
BSR16 0.1456 31.24 62.33 −24.17 0.751 2.64 1.23
BSR17 0.1464 31.98 67.43 −31.59 0.740 2.61 2.03
BSR18 0.1459 32.73 72.64 −42.24 0.748 2.53 2.06
BSR19 0.1467 33.78 79.46 −50.12 0.742 2.48 2.30
BSR20 0.1461 34.53 88.02 −39.89 0.725 2.33 1.93
FSUGZ03 0.1473 31.54 63.98 −11.67 0.76 2.79 1.65
FSUGZ06 0.1457 31.17 62.42 −24.49 0.75 2.64 1.25

BKA20 0.1465 32.32 75.61 −14.87 0.70 2.45 2.82
BKA22 0.1477 33.25 79.02 −8.72 0.74 2.66 2.96
BKA24 0.1470 34.19 84.78 −14.95 0.75 2.58 2.96
G2 0.1535 36.39 100.66 −7.48 0.67 2.02 1.60
G2� 0.1537 30.41 69.74 −21.92 0.69 2.30 2.31

FSUGold 0.1483 32.59 60.49 −51.34 0.99 2.55 −4.83
FSUGold4 0.1474 31.40 51.75 −16.53 1.09 1.81 −3.72
XS 0.1484 31.83 54.96 −28.80 1.083 1.988 −1.39
TM1 0.1455 31.66 55.74 −71.55 0.965 2.794 −10.39
IU-FSU 0.1546 31.29 47.20 28.48 1.17 1.07 −4.81

for R2
X ≡ R2 given in Appendix 3 and for the VIF given

in Appendix 5, the correlation between Lsym and Esym(n0)
for both the parabolic and fourth-order approximations is
strong for all individual groups of models and the entire
sample (Table V). Even more, the correlations in groups I
and II are very strong. Namely, VIF is equal respectively to
34.5 and 20.8 in the parabolic case and to 35.7 and 21.7,

0 0.2 0.4
0

0.1

0.2

Y peq

0 0.2 0.4

nb (fm
-3)

0 0.2 0.4

BSR FSU BKA
20

19
18
17

15,16

11,12

10

9

Gold
TM1

Gold4
IU

G*2
24

22
20

G2

FIG. 6. The equilibrium proton fraction Y eq
p dependence on

the density for three distinguished groups of models. The lowest
equilibrium concentration of protons characterizes the third group,
with the highest value of fourth-order symmetry energy potential
contribution.

in the fourth-order approximation. Therefore, the VIF-based
criterion (Appendix 5) says that Lsym and Esym(n0) should
not be entered simultaneously as independent variables into
the regression model for the dependent variables, in groups
I and II. In the whole sample, this correlation is strong
(parabolic case) or moderate (the fourth-order case); see
Table V.

The correlation between Ksym,2 and Lsym,2 (Table VI)
is moderate for groups I and II and strong for group III.
However, this correlation, according to the VIF criterion, is
not very strong even in group III. The correlation between
Ksym,2 and Lsym,2 is weak for the sample covering all models
(Table VI). Considering the stability of estimators of structural
parameters being coefficients of independent variables Ksym,2

and Lsym,2, these actual variables can be introduced simulta-
neously in the regression models of a dependent variable for
the entire sample (Appendix 5).

Compared to the sample of 263 models analyzed in the
paper by Dutra et al. [51], the number of models in the
current document has been narrowed down to the group that
meets the maximum number of experimental constraints.
Thus, the carried-out calculations are based on the sample of
models optimal in this sense. The choice of such a sample is
one of the factors affecting the obtained results. In general,
statistical analysis of theoretical models for which there is a
justified concern that they do not describe the observational
reality optimally implies that only correlations between
models are reflected in the results. At the same time, authentic
relationships between physical variables can be different.
The reason is that, for the theoretical modeling alone, the
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TABLE V. The characteristics of Y ≡ Lsym vs X ≡ Esym regression for the parabolic and fourth-order approximations: the mean square due
to regression MSR, the mean squared error MSE, and the coefficient of determination R2; a and b are the estimates of the structural parameters
of a particular regression model for the empirical significance level p. The sign of the Pearson linear correlation coefficient between nt and
Esym agrees with the sign of b in the linear term of the regression, i.e., rnt Esym = sgn(b)

√
R2.

a b MSR MSE R2 p

L̂sym,2 = a + b Esym,2 MeV MeV2 MeV2

Group I (BSR & all) −151.94609 6.85229 893.29848 2.45488 0.971 <10−9

Group II (BKA, G2�, G2) −91.04198 5.19376 529.15228 8.91087 0.952 0.005
Group III (FSUGold & all) −225.8971 8.81521 81.72374 5.24873 0.838 0.03
All groups −177.4703 7.59893 2648.30862 42.77592 0.747 <10−6

L̂sym,24 = a + b Esym,24 MeV MeV2 MeV2

Group I (BSR & all) −152.97528 6.80835 872.67583 2.27561 0.972 <10−9

Group II (BKA, G2�, G2) −90.82786 5.14986 518.2869 8.34095 0.954 0.004
Group III (FSUGold & all) −268.90264 9.90337 83.80918 12.95099 0.683 0.08
All groups −173.18842 7.35965 2345.49608 59.6366 0.652 <10−5

consistency requirement necessary for data analyses must be
spoken of (Appendix 2).

The analysis allows for considering the existing correla-
tions in the context of groups of the models, which comply
with the experimental constraints. If correlations are observed
only for selected groups of models but are hardly visible
in the entire sample, one can assume that these correlations
are strongly model dependent. The obtained results indicate
that compliance with the results obtained in other papers is
sometimes obtained only for given groups of models. A weak
correlation is obtained in the case of the correlation between
Ksym and Lsym for the entire sample of models. [14,85–87].
The obtained correlations between the main symmetry energy
characteristics are of great use in analyzing the properties of
neutron stars. For example, in papers [88,89], the correlation
results between the radius of a neutron star and symmetry
energy parameters. The analysis of the relationship between
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FIG. 7. The dependence Lsym on Esym(n0). In the left panel,
dashed lines represent the regression lines obtained for individual
groups, whereas the black straight line corresponds to the regression
analysis results performed for the entire sample of models. The right
panel shows analogous results after considering fourth-order terms
in the Taylor expansion.

the Esym(n0), Lsym, and Ksym parameters and the properties of
neutron stars is the subject of our current research.

B. The statistical analysis of factors determining the neutron
star crust-core phase boundary.

The goal of this paper is to study relations between
the main coefficients characterizing the symmetry energy
and quantities relevant at the neutron star crust-core phase
boundary, namely the transition density nt , the correspond-
ing pressure Pt , and equilibrium proton fraction Y eq

p (nt ).
The applied regression analysis allows one to study the in-
fluence of selected independent variables on the crust-core
transition density nt . The regression models were built
based on the following set of independent variables:
Esym,2, Lsym,2, Ksym,2, K0,Y eq

p,2, their squares, and Pt,2 and their
counterparts in the fourth-order approximation. The presented
results include only those variables for which the regression
models have the highest value of R2 (Appendix 3). The only
exception has been discussed in Secs. IV B 1 and IV B 2.

1. The symmetry energy encoded in characteristics
of the edge of a neutron star core

Numerous statistical analyses exist of the transition density
correlation with coefficients describing the symmetry energy.
The reported results are not unambiguous; therefore, a more
in-depth analysis of this problem is welcome, and these issues
are at the roots of this research. Constructing a hierarchy of
the linear regression models will show which independent
variables are suitable for describing the crust-core transition
density.

Considering the coefficient of determination R2 as a mea-
sure of the strength of a correlation for the whole sample of
models, the strongest correlation occurs between factors nt,2

and the K2
sym,2 (Table VII). Additionally, also for the whole

sample of models, the regression model nt,2 against Pt,2 as the
only factor does not compare well with such factors as (Y eq

p,2)2,
Y eq

p,2 (Table VIII), K2
0 , and K0 (Table IX), although it outper-

forms the cases with factors Ksym,2, E2
sym,2(n0), Esym,2(n0),

Lsym,2, and L2
sym,2. The existence of a strong correlation
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TABLE VI. The characteristics of Y ≡ Ksym vs X ≡ Lsym regression for the parabolic and fourth-order approximations: the mean square
due to regression MSR, the mean squared error MSE, and the coefficient of determination R2, where a and b are the estimates of the structural
parameters of a particular regression model for the empirical significance level p. The sign of the Pearson linear correlation coefficient between
Ksym and Lsym agrees with the sign of b in the linear term of the regression, i.e., rKsymLsym = sgn(b)

√
R2.

a b MSR MSE R2 p

Ksym,2 = a + b Lsym,2 MeV MeV2 MeV2

Group I (BSR & all) 58.6152 −1.21485 1358.24242 110.74235 0.527 0.005
Group II (BKA, G2�, G2) −43.97695 0.37074 76.4046 19.18188 0.57 0.14
Group III (FSUGold & all) 325.84887 −6.54812 4179.30806 528.03821 0.725 0.07
All groups −12.0558 −0.17206 104.99437 431.57163 0.011 0.63
Ksym,24 = a + b Lsym,24 MeV MeV2 MeV2

Group I (BSR & all) 59.85996 −1.16044 1208.86825 110.66292 0.498 0.007
Group II (BKA, G2�, G2) −40.49781 0.34893 66.14803 21.27145 0.509 0.18
Group III (FSUGold & all) 311.71854 −6.14732 4635.35078 559.53819 0.734 0.06
All groups −21.61385 −0.024538 2.16624 481.00552 0.0002 0.95

between nt and Pt in groups of models (Table X) could be the
first statistical premise for building a hierarchy of regression
models starting from the independent variable Pt .

Detailed studies performed in the paper [89] concerning
the core-crust transition density nt and proton fraction Yt sug-
gested that they are correlated with Lsym. Analysis has been
done for different models. However, the relation between Lsym

and the transition pressure Pt was shown to be much more
model dependent. Similar conclusions have been drawn based
on the analysis performed in this paper. Below, it will be
shown that there are more reasons behind this choice. One
of the reasons is that, due to the value of R2, the model with
factors (Pt , Lsym ) outperforms the second-ranking two-factor
regression models, that is (Ksym, K2

sym ) (Tables VII and X), for
both parabolic and fourth-order approximations.

The analysis starts with the calculation of partial corre-
lation coefficients [90,91]. Partial correlation (Appendix 6)
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FIG. 8. The dependence Ksym on Lsym. In the left panel, dashed
lines represent the regression lines obtained for individual groups.
The right panel shows analogous results after considering fourth-
order terms in the Taylor expansion. Due to the lack of correlation
when the whole sample of models is considered, the regression line,
in this case, is not marked.

is directly linked to correlation: if one investigates the cor-
relation between two given variables, other variables may
influence their relationship. The accurate results can only be
obtained after removing the effect of possible third variables.
Such an approach is adopted in this paper. Therefore, be-
fore examining the regression nt vs Pt , the partial correlation
coefficient rnt Pt |Lsym for nt and Pt with Lsym under control is
calculated [90–93].

The first part of the calculations considers the repre-
sentation of the function describing the symmetry energy
through the parabolic approximation. To determine the coef-
ficient rnt,2Pt,2|Lsym,2 , three correlation coefficients are needed.
The relevant ones are rnt,2Pt,2 = 0.483, rnt,2Lsym,2 = −0.0348,
and rPt,2Lsym,2 = 0.828. It is noticed that the moderate value
rnt,2Pt,2 = 0.483 jumps to a higher value rnt,2Pt,2|Lsym,2 = 0.9151.
This large influence of Lsym,2 on the correlation between nt,2

and Pt,2 lies in the residuals of the regression model nt,2 vs Pt,2

[90]. Therefore, the solution to the problem of better fitting to
the sample points is to extend the regression model nt,2 vs
Pt,2 to the model with factors (Pt,2, Lsym,2). From the partial
correlation coefficient analysis, it appears that taking Lsym,2

under control reveals a very strong (devoid of the influence
of Lsym,2) direct correlation (Appendix 6) between nt,2 and
Pt,2 even in the whole sample of models. As an illustration
the regression lines summarizing the relations between nt,2

and Pt,2 and between nt,24 and Pt,24 are presented in Fig. 9.
The analysis of the other significant partial correlations will
be performed later.

Type II sum of squares (SS) (Appendix 4) is another
method justifying the choice of Pt as the first independent
variable in constructing the hierarchy of regression models.
The model with factors (Pt,2, Lsym,2) can be reduced to ei-
ther (Lsym,2) or (Pt,2). In the first case the obtained type
II SS is SS(Pt,2|Lsym,2) = 4.3875 × 10−4, and in the second
case SS(Lsym,2|Pt,2) = 3.1684 × 10−4. This means that re-
ducing the higher hierarchical model (Pt,2, Lsym,2) to (Pt,2)
is less harmful to the goodness of the fit than reducing
(Pt,2, Lsym,2) to (Lsym,2) alone. This suggests that when build-
ing the model (Pt,2, Lsym,2), Pt,2 should be introduced first as a
factor on which nt,2 depends. Then, eventually, this procedure
can be extended by adding Lsym,2. However, neglecting the
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TABLE VII. The characteristics of Y ≡ nt vs X ≡ K2
sym and Y ≡ nt vs X ≡ (Ksym, K2

sym) regressions: the mean square due to regression
MSR, the mean squared error MSE, and the coefficient of determination R2, where a, b, and c are the estimates of the structural parameters of
a particular regression model for the empirical significance level p. The sign of the Pearson linear correlation coefficient between nt and K2

sym

in the regression n̂t = a + b K2
sym agrees with the sign of b in the linear term of the regression, i.e., rnt K2

sym
= sgn(b)

√
R2.

a b c MSR MSE R2 p

n̂t,2 = a + b K2
sym,2 fm−3 MeV−2 fm−3 fm−6 fm−6

Group I (BSR & all) 0.076316 2.99457 × 10−6 7.02666 × 10−5 3.43843 × 10−6 0.65 0.001
Group II (BKA, G2�, G2) 0.08152 −1.36327 × 10−6 2.14099 × 10−7 1.53097 × 10−5 0.005 0.91
Group III (FSUGold & all) 0.081699 2.40147 × 10−6 9.15593 × 10−5 2.7916 × 10−5 0.522 0.17
All groups 0.078349 2.80879 × 10−6 0.000247898 1.31771 × 10−5 0.473 0.0003
n̂t,2 = a + b Ksym,2 + c K2

sym,2 fm−3 MeV−1 fm−3 MeV−2 fm−3 fm−6 fm−6

All groups 0.080459 0.00020043 5.5757 × 10−6 0.00018782 7.44851 × 10−6 0.716 <10−5

n̂t,24 = a + b K2
sym,24 fm−3 MeV−2 fm−3 fm−6 fm−6

Group I (BSR & all) 0.075359 2.25268 × 10−6 3.19356 × 10−5 2.45133 × 10−6 0.542 0.004
Group II (BKA, G2�, G2) 0.077856 2.70655 × 10−6 6.01721 × 10−7 8.17361 × 10−6 0.024 0.8
Group III (FSUGold & all) 0.082795 1.48893 × 10−6 6.36808 × 10−5 3.78248 × 10−5 0.359 0.29
All groups 0.077024 2.3736 × 10−6 0.00027298 1.42773 × 10−5 0.477 0.0003
n̂t,24 = a + b Ksym,24 + c K2

sym,24 fm−3 MeV−1 fm−3 MeV−2 fm−3 fm−6 fm−6

All groups 0.079818 0.00024953 5.45594 × 10−6 0.00022085 6.55494 × 10−6 0.771 <10−6

influence of Lsym,2 makes the impact of this factor fall into
the residuals (errors) of the nt,2 vs Pt,2 regression model.
This fact has already been noticed in the analysis of the
partial correlation coefficient rnt,2Pt,2|Lsym,2 . Consequently, the
strong correlations between nt,2 and Pt,2 in groups I, II, and
III suggest that Lsym,2 explains the group differentiation. The
Lsym,2 factor is also responsible for the high dispersion of
pairs (Pt,2, nt,2) around the regression line n̂t,2 = 0.0753 +
0.0122 Pt,2 for the whole sample of models (see Table X).
The above conclusion is reinforced by the fact that for the
whole sample of models, the values of the partial correla-
tion coefficients rnt,2Pt,2|Ksym,2 = 0.425, rnt,2Ksym,2|Lsym,2 = −0.27,
rnt,2Lsym,2|Ksym,2 = −0.066 are much smaller than rnt,2Pt,2|Lsym,2 =
0.9151. The multiple correlation coefficient Rnt,2|Pt,2,Lsym,2 =
0.9152, describing the strength of the correlation between
nt,2 and the group of variables (Pt,2, Lsym,2), and the multiple
correlation coefficient Rnt,2|Pt,2,Lsym,2,Ksym,2 = 0.917, describing
the strength of the correlation between nt,2 and the group
of variables (Pt,2, Lsym,2, Ksym,2), hardly change if compared
to the value of rnt,2Pt,2|Lsym,2 . On the other hand, the value
of Rnt,2|Pt,2,Lsym,2,Ksym,2 = 0.917 means that practically all the

variability of nt,2 is explained by the group of variables
(Pt,2, Lsym,2, Ksym,2). Hence the adopted maximal regression
model is nt,2 vs (Pt,2, Lsym,2, Ksym,2). The standard error val-
ues of the estimators of the parameters of the nt,2 vs (Pt,2),
(Pt,2, Lsym,2) and (Pt,2, Lsym,2, Ksym,2) regression models are
collected in Table XI. The residuals for regression mod-
els nt,2 vs (Pt,2, Lsym,2) and (Pt,2, Lsym,2, Ksym,2) pass the
Kolmogorov-Smirnov test for normality at the significance
levels of 0.01 and 0.15, respectively.

Remodeling the symmetry energy by including the fourth-
order term in the Taylor expansion (3) modifies the obtained
results. According to the decreasing values of R2 and for the
whole sample of models, there is the following order of factors
correlated with nt,24: (Y eq

p,24)2, K2
sym,24, Y eq

p,24, K2
0 , K0, Pt,24 (see

Tables VIII and IX), Ksym,24, Lsym,24, L2
sym,24 Esym,24, E2

sym,24.
For the entire sample, the correlation strength between nt,24

and both Y eq
p,24 and (Y eq

p,24)2 increases when the fourth-order
approximation is included (Table VIII).

The model with factors (Pt,24, Lsym,24) also outperforms
the second-ranking two-factor regression models, that is
(Ksym,24, K2

sym,24) (Tables VII and X). The model with

TABLE VIII. The characteristics of Y ≡ nt vs X ≡ Yp and X ≡ Y 2
p regressions: the mean square due to regression MSR, the mean squared

error MSE, and the coefficient of determination R2, where a and b are the estimates of the structural parameters of a particular regression
model for the empirical significance level p. The Pearson correlation coefficient between nt and Yp is rnt Yp = sgn(b)

√
R2.

a b MSR MSE R2 p

n̂t,2 = a + bYp,2 fm−3 fm−3 fm−6 fm−6

All groups 0.058583 0.77317 0.00015885 1.74175 × 10−5 0.303 0.01
n̂t,2 = a + bY 2

p,2

All groups 0.069344 13.67456 0.00017781 1.65148 × 10−5 0.339 0.004
n̂t,24 = a + bYp,24

All groups 0.056255 0.7424 0.00026212 0.00026212 0.458 0.0004
n̂t,24 = a + bY 2

p,24

All groups 0.067872 11.61228 0.00028384 1.37603 × 10−5 0.496 0.0002
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TABLE IX. The characteristics of Y ≡ nt,2 (and Y ≡ nt,24) vs X ≡ K2
0 or K0 regressions: the mean square due to regression MSR, the mean

squared error MSE, and the coefficient of determination R2 (Appendix 3). a and b are the estimates of the structural parameters of a particular
regression model for the empirical significance level p. The sign of the Pearson linear correlation coefficient between Y ≡ nt,2 (Y ≡ nt,24) and
X ≡ K2

0 or K0 agrees with the sign of b in the linear term of the regression, i.e., rY X = sgn(b)
√

R2.

a b MSR MSE R2 p

n̂t,2 = a + b K2
0 fm−3 MeV−1 fm−3 fm−6 fm−6

All groups 0.059705 4.05699 × 10−7 0.00014627 1.80166 × 10−5 0.279 0.01
n̂t,2 = a + b K0 fm−3 MeV−1 fm−3 fm−6 fm−6

All groups 0.036273 0.0001955 0.0001374 1.84388 × 10−5 0.262 0.01
n̂t,24 = a + b K2

0 fm−3 MeV−1 fm−3 fm−6 fm−6

All groups 0.054131 4.78932 × 10−7 0.00020384 1.75696 × 10−5 0.356 0.003
n̂t,24 = a + b K0 fm−3 MeV−1 fm−3 fm−6 fm−6

All groups 0.025712 0.00023409 0.000197 1.78952 × 10−5 0.344 0.003

factors (Pt,24, Lsym,24) can be reduced to either (Lsym,24)
or (Pt,24). In the first case the obtained type II SS is
SS(Pt,24|Lsym,24) = 4.3646 × 10−4, and in the second case
SS(Lsym,24|Pt,24) = 4.147 × 10−4. This means that reducing

the higher hierarchical model (Pt,24, Lsym,24) to (Pt,24) is still
less harmful to the goodness of the fit than reducing it to
(Lsym,24) alone, although the difference is smaller than in
the parabolic case. Thus, building a regression model nt,24

TABLE X. The characteristics of the regression of Y ≡ nt,2 vs X ≡ Pt,2 or X ≡ (Pt,2, Lsym,2) or X ≡ (Pt,2, Lsym,2, Ksym,2): the mean square
due to regression MSR, the mean squared error MSE, and the coefficient of determination R2, where a, b, c, and d are the estimates of the
structural parameters of a particular regression model for the empirical significance level p. The Pearson correlation coefficient between nt and
Pt in the regression n̂t = a + b Pt is rnt Pt = sgn(b)

√
R2.

a b c d MSR MSE R2 p

n̂t,2 = a + b Pt,2 fm−3 MeV−1 MeV−1 fm−3 MeV−1 fm−3 fm−6 fm−6

Group I (BSR & all) 0.071632 0.015961 9.82314 × 10−5 8.96171 × 10−7 0.909 <10−6

Group II (BKA, G2�, G2) 0.072688 0.014211 2.94546 × 10−5 5.56289 × 10−6 0.638 0.1
Group III (FSUGold & all) 0.077041 0.024651 9.60264 × 10−5 2.64269 × 10−5 0.548 0.15
All groups 0.075288 0.012231 0.00012255 1.91462 × 10−5 0.234 0.02
n̂t,2 = a + b Pt,2 + c Lsym,2

Group I (BSR & all) 0.0896 0.033668 −0.00037351 5.28702 × 10−5 2.34877 × 10−7 0.978 <10−8

Group II (BKA, G2�, G2) 0.10431 0.055473 −0.00068843 2.22889 × 10−5 7.82724 × 10−7 0.966 0.03
Group III (FSUGold & all) 0.12885 0.04028 −0.001068 8.43015 × 10−5 3.35212 × 10−6 0.962 0.04
All groups 0.098399 0.041324 −0.0005337 0.00021969 4.26152 × 10−6 0.838 <10−7

n̂t,2 = a + b Pt,2 + c Lsym,2

+ d Ksym,2

Group I (BSR & all) 0.092081 0.039342 −0.00042845 4.75418 × 10−5 3.59226 × 10−5 3.5726 × 10−8 0.997 <10−10

Group II (BKA, G2�, G2) 0.12409 0.07011 −0.0010005 0.00022088 1.51972 × 10−5 5.51623 × 10−7 0.988 0.14
Group III (FSUGold & all) 0.11265 0.045096 −0.00076925 6.3074 × 10−5 5.75042 × 10−5 2.79473 × 10−6 0.984 0.16
All groups 0.10408 0.052582 −0.00065805 0.00010105 0.00016646 1.32869 × 10−6 0.952 <10−11

n̂t,24 = a + b Pt,24

Group I (BSR & all) 0.071324 0.013069 4.76008 × 10−5 1.02723 × 10−6 0.808 <10−4

Group II (BKA, G2�, G2) 0.072381 0.010676 1.00983 × 10−5 5.00809 × 10−6 0.402 0.25
Group III (FSUGold & all) 0.076335 0.024156 8.70972 × 10−5 3.00194 × 10−5 0.492 0.19
All groups 0.074125 0.011386 7.4197 × 10−5 2.37432 × 10−5 0.13 0.09
n̂t,24 = a + b Pt,24 + c Lsym,24

Group I (BSR & all) 0.08905 0.033155 −0.00036682 2.79707 × 10−5 2.95889 × 10−7 0.95 <10−6

Group II (BKA, G2�, G2) 0.10068 0.061474 −0.00066683 1.15222 × 10−5 1.03903 × 10−6 0.917 0.08
Group III (FSUGold & all) 0.12605 0.040517 −0.001007 8.57682 × 10−5 2.80944 × 10−6 0.968 0.03
All groups 0.096677 0.041234 −0.00050694 0.00024445 4.19542 × 10−6 0.854 <10−8

n̂t,24 = a + b Pt,24

+ c Lsym,24 + d Ksym,24

Group I (BSR & all) 0.090736 0.038966 −0.00040919 4.86088 × 10−5 1.93893 × 10−5 8.13773 × 10−8 0.988 <10−8

Group II (BKA, G2�, G2) 0.13212 0.096521 −0.0012229 0.00034574 8.28011 × 10−6 2.82223 × 10−7 0.989 0.13
Group III (FSUGold & all) 0.11244 0.044959 −0.0007654 5.35919 × 10−5 5.81194 × 10−5 2.79715 × 10−6 0.984 0.16
All groups 0.10141 0.053666 −0.00062099 9.80938 × 10−5 0.00018214 1.38883 × 10−6 0.954 <10−12
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FIG. 9. The dependence of the transition density nt on the cor-
responding transition pressure Pt . In the left panel, dashed lines
represent the regression lines obtained for individual groups. The
right panel shows analogous results with fourth-order terms in the
Taylor expansion.

vs (Pt,24, Lsym,24), one should introduce Pt,24 first as a fac-
tor. Values of three correlation coefficients are necessary
to determine the value of rnt,24Pt,24|Lsym,24 (Appendix 6). The
relevant ones are rnt,24Pt,24 = 0.36, rnt,24Lsym,24 = −0.303, and
rPt,24Lsym,24 = 0.743. Their values have changed if compared
to their parabolic approximation counterparts. The discussed
partial correlation coefficient for the whole sample of mod-
els is rnt,24Pt,24|L24 = 0.916. Its value is almost the same as in
the parabolic case. The other coefficients rnt,24Pt,24|K24 = 0.262,
rnt,24K24|L24 = −0.329, rnt,24L24|K24 = −0.323 are much smaller
than rnt,24Pt,24|L24 . They also differ from their parabolic approx-
imation counterparts. The multiple correlation coefficients
Rnt,24|Pt,24,L24 = 0.924 and Rnt,24|Pt,24,L24,K24 = 0.977 are higher

than their parabolic approximation counterparts. Comparing
the increase of rnt,24Pt,24|L24 to the value of Rnt,24|Pt,24,L24 and
then to Rnt,24|Pt,24,L24,K24 , it is seen that the effect of Lsym,24

after Pt,24, and especially the effect of Ksym,24 added af-
ter Lsym,24 to explain nt,24, are more significant than in the
parabolic case. The correlation between nt,24 and Pt,24 in
group I is strong, but in groups II and III it is moderate.
Comparing the values rnt,24Pt,24 = 0.36 and rnt,24Pt,24|Lsym,24 =
0.916 for the whole sample of models, the same conclu-
sion as in the case of the parabolic approximation can be
drawn; namely, the Lsym,24 factor is still responsible for
group differentiation and for the high dispersion of pairs
(Pt,24, nt,24) around the regression line n̂t,24 = 0.0741 +
0.0114 Pt,24 for the whole sample of models (Table X). The
value Rnt,24|Pt,24,Lsym,24,Ksym,24 = 0.977 suggests that practically all
the variability of nt,24 is explained by a group of variables
(Pt,24, Lsym,24, Ksym,24). Hence the adopted maximal model
is (Pt,24, Lsym,24, Ksym,24). Finally, the standard error values
of the estimators of the parameters of the nt,24 vs (Pt,24),
(Pt,24, Lsym,24), and (Pt,24, Lsym,24, Ksym,24) regression models
are given in Table XI. The residuals for regression models
nt,24 vs (Pt,24, Lsym,24) and (Pt,24, Lsym,24, Ksym,24) pass the
Kolmogorov-Smirnov test for normality at the significance
levels of 0.05 and 0.1, respectively.

2. The analysis of the nt versus Pt , Lsym, Ksym regression
via types I and II SS

The results of using type I sum of squares (SS) in a hi-
erarchical building of the regression model for nt vs chosen
factors in the parabolic and fourth-order approximations are
presented in Table XIII. Due to the higher value of R2 in the
model with factors (Pt , Lsym ) than in the second-ranking two-
factor regression model (Ksym, K2

sym ) (Tables VII and X), the
construction of the hierarchy of regression models starts with
the model with Pt only. The legitimacy of such an approach

TABLE XI. The regression functions n̂t = a + b Pt , n̂t = a + b Pt + c Lsym, and n̂t = a + b Pt + c Lsym + d Ksym give the approximations
of the expectation values nth

t = α0 + α1 Pt , nth
t = α0 + α1 Pt + α2 Lsym, and nth

t = α0 + α1 Pt + α2 Lsym + α3 Ksym, respectively. The estimates
a, b, c, and d are the values of the estimators α̂i, i = 0, 1, 2, 3, of the structural parameters αi, i = 0, 1, 2, 3, and σ̂α̂i , i = 0, 1, 2, 3, are the
corresponding standard errors of α̂i.

α̂0 = a α̂1 = b α̂2 = c α̂3 = d σ̂α̂0 σ̂α̂1 σ̂α̂2 σ̂α̂3

fm−3 MeV−1 MeV−1 fm−3 MeV−1 fm−3 fm−3 MeV−1 MeV−1 fm−3 MeV−1 fm−3

n̂t,2 = a + b Pt,2

All groups 0.075288 0.012231 0.0024642 0.0048346
n̂t,2 = a + b Pt,2 + c Lsym,2

All groups 0.098399 0.041324 −0.0005337 0.0029216 0.0040727 6.18949 × 10−5

n̂t,2 = a + b Pt,2

+ c Lsym,2 + d Ksym,2

All groups 0.10408 0.052582 −0.00065805 0.00010105 0.0018376 0.0028246 3.92041 × 10−5 1.50393 × 10−5

n̂t,24 = a + b Pt,24

All groups 0.074125 0.011386 0.0031326 0.0064408
n̂t,24 = a + b Pt,24

+ c Lsym,24

All groups 0.096677 0.041234 −0.00050694 0.0026229 0.0040427 5.09896 × 10−5

n̂t,24 = a + b Pt,24

+ c Lsym,24 + d Ksym,24

All groups 0.10141 0.053666 −0.00062099 9.80938 × 10−5 0.0016789 0.0030236 3.42737 × 10−5 1.52425 × 10−5
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TABLE XII. The characteristics of nt vs Lsym, nt vs Ksym, nt vs (Lsym, Ksym) and Lsym,2 vs Pt,2 regressions in the whole sample for the
parabolic and fourth-order approximations: the mean square due to regression MSR, the mean squared error MSE, and the coefficient of
determination R2. a, b, and c are the estimates of the structural parameters of a particular regression model for the empirical significance level
p. For the regression Ksym vs Lsym see Table VI. The sign of the Pearson linear correlation coefficient between variables Y and X agrees with
the sign of b in the regression function of the type Ŷ = a + b X , i.e., r2

Y X = sgn(b)
√

R2.

a b MSR MSE R2 p

n̂t,2 = a + b Lsym,2 fm−3 MeV−1 fm−3 fm−6 fm−6

All groups 0.082005 −1.33923 × 10−5 6.36096 × 10−7 2.49515 × 10−5 0.001 0.87
n̂t,24 = a + b Lsym,24

All groups 0.088004 −0.00012072 5.24345 × 10−5 2.47795 × 10−5 0.092 0.16
a b MSR MSE R2 p

n̂t,2 = a + b Ksym,2 fm−3 MeV−1 fm−3 fm−6 fm−6

All groups 0.079561 −6.33728 × 10−5 3.68197 × 10−5 2.32285 × 10−5 0.07 0.22
n̂t,24 = a + b Ksym,24

All groups 0.077641 −7.3687 × 10−5 5.48586 × 10−5 2.46641 × 10−5 0.096 0.15
a b c MSR MSE R2 p

n̂t,2 = a + b Lsym,2 + c Ksym,2 fm−3 MeV−1 fm−3 MeV−1 fm−3 fm−6 fm−6

All groups 0.081221 −0.00002458 −0.00006501 1.94687 × 10−5 2.4284 × 10−5 0.074 0.46
n̂t,24 = a + b Lsym,24 + c Ksym,24

All groups 0.086388 −0.00012256 −7.47579 × 10−5 5.44435 × 10−5 2.31958 × 10−5 0.19 0.12
a b MSR MSE R2 p

L̂sym,2 = a + b Pt,2 MeV fm3 MeV2 MeV2

All groups 43.30356 54.51278 2434.22106 52.97057 0.686 <10−5

L̂sym,24 = a + b Pt,24 MeV fm3 MeV2 MeV2

All groups 44.48693 58.879 1984.20258 76.84106 0.551 <10−4

is supported by the analysis presented in Sec. IV B 1. From
Table XIII, it is seen that the group of factors in the selected
hierarchy are (Pt,2), (Pt,2, Lsym,2) and (Pt,2, Lsym,2, Ksym,2),
where the last one is chosen to be the maximal one. A sim-
ilar analysis for the fourth-order approximation leads to a
hierarchy of regression models nt,24 vs, consecutively, (Pt,24),
(Pt,24, Lsym,24) and (Pt,24, Lsym,24, Ksym,24); cf. Table XIII.

Then type II SS, for both the parabolic and fourth-order
approximations, was used to analyze the size of the fit loss
when reducing the maximum model by one of the considered
factors. The obtained results are gathered in Table XIII.

In the fourth-order approximation, removing Lsym from
the maximal model worsens the fit quality of the regression
function if compared to removing Pt . In the parabolic approx-
imation, the roles of Lsym and Pt are reversed in analogous
regression analysis.

In the fourth-order approximation, removing Lsym from
the maximal model worsens the fit quality of the regression
function compared to neglecting Pt . In the parabolic approx-
imation, it is the other way around. However, removing the
factor Ksym from the maximal model to reduce the model to
a simpler one brings the smallest loss of fit in both approx-
imations, leading to the regression model nt vs (Pt , Lsym ).
Thus, the hierarchy of models in both the parabolic and fourth-
order approximations is the same, i.e., (Pt ), (Pt , Lsym ), and
(Pt,, Lsym, Ksym ). The structural parameters (Appendix 1) of
these regression models are given in Table X.

C. Correlations between the core-crust transition density and
the slope and curvature of the symmetry energy

Based on the correlation analysis between the symme-
try energy slope Lsym and curvature coefficients Ksym, it
becomes possible to quantify how these symmetry energy
characteristics affect the crust-core transition density nt and
to estimate the individual role of each factor. This was
done by checking the strength of the following correlation
coefficients: rnt Lsym , rnt Ksym , rnt Lsym |Ksym , rnt Ksym |Lsym . Earlier calcu-
lations showed that the correlation between Ksym,2 and Lsym,2

is weak, rKsym,2Lsym,2 = −0.107 (see Table VI, Sec. IV A). So,
both variables can be used simultaneously in the regression
of nt vs (Ksym,2, Lsym,2). A similar result was obtained when
considering the fourth-order term in the definition of symme-
try energy; in that case, the correlation is even weaker, and
rKsym,24Lsym,24 = −0.015. It was found that, when the parabolic
approximation represents the symmetry energy, the transition
density nt,2 is rather weakly anticorrelated with Ksym,2 with
the correlation coefficient equal to rnt2Ksym,2 = −0.265 (see
Table XII). The correlation between nt,2 and Lsym,2 is also
negative, but very weak: rnt2Lsym,2 = −0.035 (Table XII). The
next step of the analysis was using the concept of partial corre-
lation. The partial correlation of the transition density nt2 and
Ksym,2 with the slope Lsym,2 under control is rnt2Ksym,2|Lsym,2 =
−0.27. Taking under control the symmetry energy curvature
Ksym,2, the partial correlation gives rnt2Lsym,2|Ksym,2 = −0.066.
In the case when the fourth-order term is included, the
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obtained values of the correlations are rnt24Lsym,24 = −0.30256
and rnt24Ksym,24 = −0.30947 (Table XII) and those of the
partial correlation coefficients are rnt24Ksym,24|Lsym,24 = −0.329
and rnt24Lsym,24|Ksym,24 = −0.323. The performed calculations
indicate a significant role of the approximation used in de-
termining the symmetry energy. Suppose only the parabolic
approximation was taken into account. In that case, the above
values of the correlation and partial correlation coefficients
show that the factor correlated with nt2 is Ksym,2, while the
correlation between nt and Lsym,2 is practically negligible.
Taking the sum of the second and fourth-order terms as a func-
tion representing the symmetry energy changes this result. In
this case, the correlation analysis shows that both Ksym,24 and
Lsym,24 factors are more strongly anticorrelated with nt,24, and
in the case of Lsym,24 this correlation increased meaningfully.
The regression line equations in the parabolic approxi-
mation have the forms n̂t,2 = 0.082 − 1.339 × 10−5 Lsym,2

and n̂t,2 = 0.0796 − 6.337 × 10−5 Ksym,2. In the case when
both factors Lsym,2 and Ksym,2 are considered, n̂t,2 =
0.0812 − 0.0000246 Lsym,2 − 0.000065 Ksym,2. Taking into
account the quartic-term contributions, the following results
were obtained: n̂t,24 = 0.088 − 0.000121 Lsym,24 and n̂t,24 =
0.0776 − 7.369 × 10−5 Ksym,24. In the case when both fac-
tors Lsym,24 and Ksym,24 are considered, n̂t,24 = 0.0864 −
0.000123 Lsym,24 − 7.476 × 10−5 Ksym,24. The statistical sig-
nificance of the regression model built with the inclusion of
the fourth-order term is higher than for the parabolic approx-
imation. This can be seen by comparing the values of the
slopes of the respective regression functions and the p values
in Table VI).

V. CONCLUSIONS

This paper aims to deepen the understanding of the mutual
relations between the characteristics of the nuclear matter EoS
and selected neutron star properties related to its core edge
location [94]. With this in mind, the study of the underlying
problem stated in this paper was conducted in two directions.
First, the accuracy of the symmetry energy approximation was
checked. To do this, it was shown that there is a need to
include a term beyond the parabolic approximation to describe
a function representing the symmetry energy.

The analysis of the dependence of the symmetry energy
on the density in terms of the applied approximations was
performed based on the RMF models, which are character-
ized by a sophisticated meson sector. The parametrizations
allowed dividing all models into groups with a similar form
of the nonlinear meson coupling terms. The obtained ana-
lytical formulas for the second- and fourth-order symmetry
energy enable their in-depth analysis. Considering the sym-
metry energy kinetic and potential parts separately, it can be
observed that in the case of the fourth-order approximation,
the potential part is a small percentage of the kinetic part for
most models. The exceptions are the third group of models,
for which the kinetic and potential parts are of comparable
value. In this case, the fourth-order symmetry energy appears
to be similar to the second-order symmetry energy, for which
the value of the kinetic part is comparable to the value of
the potential part. The inclusion of the fourth-order term in

the description of the symmetry energy affects the charac-
teristics of the crust-core phase boundary by changing the
transition density nt , the corresponding pressure Pt , and the
value of the equilibrium proton fraction Y eq

p (nt ). However,
the most significant impact of the fourth-order approximation
was found in the correlation analysis between the transition
density nt and the leading symmetry energy characteristics,
i.e., the slope Lsym and the curvature Ksym. In the case of
the parabolic approximation, nt is anticorrelated with Ksym,
while the anticorrelation with Lsym is practically nonexistent.
This picture changes when the fourth-order term is consid-
ered; then, it turns out that both variables Ksym and Lsym are
equally anticorrelated with nt . Thus, it can be concluded and
emphasized that only, in this case, the individual role of Lsym

in the analysis of the variability of the transition density nt

increases.
It is interesting to compare the obtained results with those

reported in the paper [95], where the effect of the nonlin-
ear ω-ρ and σ -ρ coupling terms on the crust-core transition
density and pressure is studied. The dynamical spinodals are
calculated to estimate the crust-core transition density and
pressure for all the models. In the paper [95], several groups
of relativistic mean field models are considered, which differ
by mixed ω-ρ or σ -ρ meson interaction terms that were in-
troduced to modify the density dependence of the symmetry
energy.

Analyzing how the crust-core transition density nt and
pressure Pt depend on the symmetry energy slope Lsym of the
given model, one can point out similarities between the results
obtained in [95] and those in this paper. The first concerns
the anticorrelation between nt and Lsym presented in [95] for
mixed ω-ρ and σ -ρ terms. It has been shown that the weak
anticorrelation between nt and Lsym exists for the entire sam-
ple of models considered in this paper. Similarly, as in [95]
for models that include σ -ρ coupling terms—this concerns
group I, especially BSR models—the transition pressure Pt

increases with the symmetry energy slope Lsym. This very
group of models is characterized by the symmetry energy
slope Lsym > 60 MeV.

Research shows that different physical conditions, which
include the presence of a magnetic field that is susceptible to
the behavior of the symmetry energy, influence the neutron
star’s inner crust matter. Analysis carried out within a dynamic
spinodal approach suggests that a magnetic field could cause
extension of the nonhomogenous region with the crust-core
transition shifted to higher densities [96]. This entails changes
in other parameters characterizing the shell-nucleus transition,
such as proton concentration and pressure. Also, the multiple
correlation coefficient of nt and the set of factors (Pt , Lsym,
Ksym) is higher than in the parabolic approximation. The over-
all conclusion is that the influence of the pair of variables
(Lsym, Ksym) on the nt change is more meaningful than in the
parabolic case.

The main goal of the statistical analysis was to find a
regression model for nt against selected factors that would
fit well the optimal sample of models. This was done by
building the hierarchy of regression models nt vs (Pt ), (Pt ,
Lsym), (Pt , Lsym, Ksym), where the last one is the maximal one,
and the partial correlations and type I and II SS analyses were
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used. The regression with factors (Pt , Lsym, Ksym), for which
R2 = 0.952 and 0.954 for the parabolic and fourth-order ap-
proximations, respectively, gives a good fit in the discussed
optimal sample of models. Although Ksym is statistically sig-
nificant in the maximal model (Pt , Lsym, Ksym), the analysis
indicates that the simpler, lower model (Pt , Lsym) remains still
preferable to other two-dimensional models. The nt vs (Pt ,
Lsym) regression model may also be suitable for astrophysical
research. Moreover, for factors Pt and Lsym, the VIF values
are equal to 3.2 and 2.2 for the parabolic and fourth-order ap-
proximations, respectively. Therefore, from the point of view
of the stability of the estimators of the structural parameters
of the regression model, there is no indication to remove
any of them from the nt vs (Pt , Lsym) regression model. This
means that the estimated regression models, n̂t,2 = 0.0984 +
0.0413 Pt,2 − 0.000534 Lsym,2 for the parabolic approximation
and n̂t,24 = 0.0967 + 0.0412 Pt,24 − 0.000507 Lsym,24 for the
fourth-order approximation, can be reliably used in another
optimal sample of models. Partial correlation analysis also
indicates that Lsym clearly explains the differentiation between
groups I, II, and III. More details on the statistical methods
used are given in the Appendix.

APPENDIX: THE REGRESSION ANALYSIS
OF THE DISCUSSED MODELS

1. The regression function

Regression analysis aims to estimate relationships between
a dependent random variable Y and one or more independent
variables X1, X2, . . . , Xk . It assesses the extent and direction
of the relationship between variables. It can also determine
the importance of independent variables in predicting the de-
pendent ones. For a given model, the dependent variable Y
(the response) is written as

Y = Y th + E , (A1)

where the superscript “th” means the theoretical value and E
denotes the error, which is a random variable. In the case of a
multiple linear regression model in the examined population
of models, the theoretical value Y th is the conditional expec-
tation value μY |X1,X2,...,Xk ≡ E[Y |X1, X2, . . . , Xk] of Y given as
follows:

Y th = α0 + α1 X1 + α2 X2 + · · · + αk Xk, (A2)

where αi, i = 0, 1, 2, . . . , k are the structural parameters with
the intercept α0, and Xi denote independent (explanatory)
variables, also called factors.

If a sample of N models is randomly chosen from the pop-
ulation of models, then the corresponding regression model
(A1) is estimated by

Y = Ŷ + Ê . (A3)

Here Ŷ , which gives the approximation of Y th,

Ŷ = α̂0 + α̂1 X1 + α̂2 X2 + · · · + α̂k Xk, (A4)

is the conditional mean μ̂Y |X1,X2,...,Xk , that is the estimator of
μY |X1,X2,...,Xk , and α̂0, α̂1, α̂2, . . . , α̂k are the estimators of the
structural parameters α0, α1, α2, . . . , αk of a particular regres-
sion model. The error term E in Eq. (A1) is replaced by its

estimator Ê . Throughout this paper, the variance of the error
term Ê is denoted by MSE (mean squared error, Appendix 3)
[90].

2. The consistency assumption for considered models

This paper assumes that every theoretical point in the sam-
ple of N = 23 models is estimated consistently, that is without
any bias, at least asymptotically. Therefore, every theoretical
point on the scatter diagram coincides with the estimate ob-
tained for n of hypothetical experiments testing this model. It
follows that in the limits n → ∞ and for all the population
of models, the finite sample error Ê tends to E . Therefore,
the requirement to use the method is the assumption that it
is possible to determine the values of the estimators’ model
parameters from the experiment. Each model introduced into
the analysis satisfies as many experimental constraints as pos-
sible. This group is referred to as an optimal sample of models
in this paper.

3. The characteristics of the regressions

The total sum of squares (SS) of the dependent variable
Y , SSY ≡ SS(Y ) = ∑N

i=1(Yi − Y )2, is the sum of squares
of deviations of the observed Yi from their mean Y . SS(Y )
can be partitioned to the sum of squares due to regression,
SSR = ∑N

i=1(Ŷi − Y )2, and due to error, SSE = ∑N
i=1(Yi −

Ŷi )2, where SSE is called the residual (error) sum of squares.
Thus, the analysis of variance (ANOVA) equation for the
linear regression, SSY = SSR + SSE, is valid [90]. The char-
acteristics of the regressions used are also the mean square
due to regression MSR = SSR/dfSSR, the mean squared error
MSE = SSE/dfSSE (the variance of the error term Ê ), and the
coefficient of determination R2 = SSR/SSY ∈ 〈0, 1〉. Here,
dfSSR = k and dfSSE = N − k − 1 are the numbers of degrees
of freedom of SSR and SSE, respectively. The descriptive lim-
its of the correlation strength in the paper were assumed to be
0.1 < R2 < 0.25 for weak correlation and R2 � 0.64 (|R| �
0.8) for strong correlation. In the case of one-dimensional
linear regression, Y = a + b X + Ê , the sign of the (Pearson)
linear correlation coefficient rY X between Y and X [90] agrees
with the sign of b, i.e., rY X = sgn(b) |R|.

Given a linear regression model, Eq. (A2), with k factors,
the null hypothesis

H0 : α1 = α2 = · · · = αk = 0 (A5)

is a question about the irrelevance of the correlation between
the dependant variable Y and the group of explanatory vari-
ables Xi, i = 1, 2, . . . , k. Suppose the null hypothesis H0 is
true. In that case, the test statistics F = MSR/MSE, which
is the random variable on the sample space, has the F dis-
tribution Fk,N−k−1 with the number of degrees of freedom
of the numerator dfSSR = k and denominator dfSSE = N −
k − 1. The method used to verify the hypothesis H0 consists
in calculating the value of the F statistic based on an ob-
served sample denoted by Fobs. Thus, Fobs is the observed
value of the F statistics in the sample of N = 23 examined
models (or in groups I, II, and III). The empirical signifi-
cance level, the so-called p value, is defined as the probability
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p = Prob(F � Fobs). If p > α, where α is the chosen signif-
icance level (e.g., 0.05 or 0.1), the regression is considered
statistically insignificant. If p � α, then the null hypothesis
(A5) is rejected, and the conclusion is that there is a signif-
icant relationship between the set of independent variables
X1, X2, . . . Xk and the dependent variable Y .

4. Type I and II sums of squares

In this paper the possible interaction terms between fac-
tors are neglected. If the maximal model includes k′ = 3
factors X1, X2, and X3, then SSEk′ ≡ SSE(X1, X2, X3) can be
calculated. The lower models with k = 2 factors are treated
similarly, i.e., SSEk = SSE(X1, X2). The impact of a partic-
ular factor can be tested by examining the SS differences.
For example, to determine the significance of X3, the partial
Fp statistics for the models (X1, X2, X3) and (X1, X2) can be
calculated [90]:

Fp = (SSEk − SSEk′ )/(dfSSR,k′ − dfSSR,k )

MSEk′
. (A6)

The statistics Fp is a random variable on the sample space,
having the F distribution Fk′−k,N−k′−1 with the number of
degrees of freedom of the numerator equal to dfSSR,k′ −
dfSSR,k = k′ − k and of the denominator equal to dfSSE,k′ =
N − k′ − 1 (see Appendix 3). For a particular sample, Fp takes
the observed value F obs

p . In this case, the p value can be
calculated:

p = Prob
(
Fp � F obs

p

)
. (A7)

If in the observed sample, for a chosen significance level α,
p > α, then there is no reason to reject the null hypothesis H0,
which now reads, “the lower model fits the observed data as
well as the higher model.” This means no hints are coming
from the sample to extend the model. The lower model is
rejected if p � α. With the hierarchical development of the
regression model, the value of the partial statistics Fp in the
observed sample and the corresponding p values [Eq. (A7)]
for the factors added last can be determined at all stages of
model construction.

The different types of sum of squares are used depending
on the model building procedure; among others, type I and II
SS are of value [90].

The type I SS is defined as the difference in the sum of
squares and is often called the sequential sum of squares.
Initially, while building a model for the dependent variable
Y , the only variable by the free term (intercept) in the regres-
sion model is a constant, denoted here by I . At this stage,
if a variable X1 has the largest value of R2, it can be added
to the model. The so extended model with added variable
X1 has k′ = 1. Beginning the regression analysis with the
single nontrivial independent variable X1, the Fp test for the
hypothesis that there is a fit to the sample in the intercept-only
regression model coincides with the nonsignificance test for
the slope coefficient, standing by the variable X1 [90]. Sub-
sequently, if an additional factor X2 is needed, it must have
the highest value of Fp at this stage, and so on. Type I SS is
now SS(X2|X1) = SSE(X1) − SSE(X1, X2) = SSR(X1, X2) −

SSR(X1), which is the sum of squares for the X2 factor after
the X1 factor is taken into account. The Fp test coincides with
the test for the statistical non-significance of the slope coeffi-
cient standing in the regression model next to the independent
variable X2, which was added at this stage. Subsequently, type
I SS of SS(X3|X1, X2) = SSE(X1, X2) − SSE (X1, X2, X3) =
SSR(X1, X2, X3) − SSR(X1, X2), which is in the numerator of
Fp for k′ = 3 and k = 2, Eq. (A6), is calculated. It gives the
sum of squares for X3 factor after two factors X1 and X2

are taken into account. Although the main tool in extending
the model is type I SS, it is informative to check whether
all the variables in the model are statistically significant af-
ter constructing the model that is accepted as the maximal
one. Therefore, type II SS, which comes down to calcu-
lating SS(one of the considered variables | other variables) is
used to check the loss in the fit due to the removal of the
particular variable from the maximal model [90].

For the purpose of the analysis presented in Secs. IV B 1
and IV B 2, type I SS and type II SS are calculated
for the dependent variable nt,2 and the following fac-
tors in the model hierarchy: (Pt,2), (Pt,2, Lsym,2), and
(Pt,2, Lsym,2, Ksym,2). The same analysis is also performed for
factors Pt,24, Lsym,24, Ksym,24 and the dependent variable nt,24

(see Table XIII).

5. The stability of estimators of structural parameters

The primary indicator of the strength of the correlation
between two independent variables X and Z is Pearson’s linear
correlation coefficient squared R2

X ≡ R2 = r2
XZ (Appendix 3)

with X being the selected (reference) factor. Based on the
value of R2

X , the variance inflation factor can be introduced
[90]:

VIFX = 1

1 − R2
X

. (A8)

If VIFX = 1 the variables X and Z are not correlated. In
accord to ranges of values of R2, the variables are moder-
ately correlated if VIFX ∈ (1.3, 2.8). High collinearity in
the sample is understood if VIFX � 2.8. It is customary to
assume that if VIFX > 10, which corresponds to R2

X > 0.9,
then X should be removed from the group of factors [90].
The reason for removing factors with too large VIFX is as
follows. It can be shown that the estimator σ̂ 2

α̂X of the vari-
ance σ 2

α̂X
of the estimator α̂X of the structural parameter αX

in the Y = α0 + αX X + αZ Z + E regression model has the
following form [90]:

σ̂ 2
α̂X = cX VIFX , (A9)

where the corresponding coefficient cX depends on the data
[90]. Therefore, removing the independent variable X , which
has too big VIFX , leads to a regression model for the de-
pendent variable Y , which could be reliably used in another
sample of models.

In the case of more factors, the square of the multiple
correlation coefficient R2

X is determined between the selected
factor X and the group of other independent variables [90]. In
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TABLE XIII. Type I SS and type II SS for Y ≡ nt with factors in the model hierarchy (Pt ), (Pt , Lsym ) and maximal model (Pt , Lsym, Ksym ),
for the parabolic (index 2) and fourth-order (index 24) approximations. I [e.g., in SSE(I )] denotes a constant variable standing by the intercept
coefficient. The analysis is performed for all groups.

Parabolic approximation
SSE(I ) = SSY SSE(I, Pt,2) SSE(I, Pt,2, Lsym,2) SSE(I, Pt,2, Lsym,2, Ksym,2)
0.00052462 0.00040207 0.00008523 0.00002525
SSR(I ) SSR(I, Pt,2) SSR(I, Pt,2, Lsym,2) SSR(I, Pt,2, Lsym,2, Ksym,2)
0 0.00012255 0.00043939 0.00049937
Type I SS Type I SS Type I SS
SS(Pt,2|I ) SS(Lsym,2|I, Pt,2) SS(Ksym,2|I, Pt,2, Lsym,2) SS(Pt,2|I )
= SSE(I ) − SSE(I, Pt,2) = SSE(I, Pt,2) − SSE(I, Pt,2, Lsym,2) = SSE(I, Pt,2, Lsym,2) +SS(Lsym,2|I, Pt,2)
= SSR(I, Pt,2) − SSR(I ) = SSR(I, Pt,2, Lsym,2) − SSR(I, Pt,2) −SSE(I, Pt,2, Lsym,2, Ksym,2) +SS(Ksym,2|I, Pt,2, Lsym,2)

= SSR(I, Pt,2, Lsym,2, Ksym,2) = SSR(I, Pt,2, Lsym,2, Ksym,2)
−SSR(I, Pt,2, Lsym,2)

0.00012255 0.00031684 0.00005999
Type II SS Type II SS Type II SS

SS(Ksym,2|I, Pt,2, Lsym,2) SS(Pt,2|I, Lsym,2, Ksym,2) SS(Lsym,2|I, Pt,2, Ksym,2)
= SSE(I, Pt,2, Lsym,2) = SSE(I, Lsym,2, Ksym,2) = SSE(I, Pt,2, Ksym,2)

−SSE(I, Pt,2, Lsym,2, Ksym,2) −SSE(I, Lsym,2, Ksym,2, Pt,2) −SSE(I, Pt,2, Ksym,2, Lsym,2)
0.00005999 0.00046043 0.00037434

Fourth-order approximation
SSE(I ) = SSY SSE(I, Pt,2) SSE(I, Pt,24, Lsym,24) SSE(I, Pt,24, Lsym,24, Ksym,24)
0.0005728 0.00049861 8.39083 × 10−5 2.63879 × 10−5

SSR(I ) SSR(I, Pt,24) SSR(I, Pt,24, Lsym,24) SSR(I, Pt,24, Lsym,24, Ksym,24)
0 7.4197 × 10−5 0.0004889 0.00054642
Type I SS Type I SS Type I SS
SS(Pt,24|I ) SS(Lsym,2|I, Pt,24) SS(Ksym,24|I, Pt,24, Lsym,24) SS(Pt,24|I )
= SSE(I ) − SSE(I, Pt,24) = SSE(I, Pt,24) − SSE(I, Pt,24, Lsym,24) = SSE(I, Pt,24, Lsym,24) +SS(Lsym,24|I, Pt,24)
= SSR(I, Pt,24) − SSR(I ) = SSR(I, Pt,24, Lsym,24) − SSR(I, Pt,24) −SSE(I, Pt,24, Lsym,24, Ksym,24) +SS(Ksym,24|I, Pt,24, Lsym,24)

= SSR(I, Pt,24, Lsym,24, Ksym,24) = SSR(I, Pt,24, Lsym,24, Ksym,24)
−SSR(I, Pt,24, Lsym,24)

7.4197 × 10−5 0.0004147 5.75205 × 10−5

Type II SS Type II SS Type II SS
SS(Ksym,24|I, Pt,24, Lsym,24) SS(Pt,24|I, Lsym,24, Ksym,24) SS(Lsym,24|I, Pt,24, Ksym,24)

= SSE(I, Pt,24, Lsym,24) = SSE(I, Lsym,24, Ksym,24) = SSE(I, Pt,24, Ksym,24)
−SSE(I, Pt,24, Lsym,24, Ksym,24) −SSE(I, Lsym,24, Ksym,24, Pt,24) −SSE(I, Pt,24, Ksym,24, Lsym,24)

0.00005752 0.00043753 0.00045592

this sense, the variance inflation factor measures the amount
of multicollinearity in regression analysis.

6. Partial and multiple correlations

A notorious problem in data analysis is avoiding spurious
correlations caused, e.g., by the amplified or masking effect
of other variables. To this aim, partial correlation analysis is
often helpful. The main tool is the first-order partial correla-
tion coefficient rY X |Z between, presumably linearly related to
Z , variables X and Y , adjusted for the variable Z [90,91]:

rY X |Z = rY X − rY Z rXZ√
1 − r2

Y Z

√
1 − r2

XZ

. (A10)

It measures the strength and direction of the linear relationship
between two variables Y and X after the effect of the vari-
able Z is under control, and obviously, rY X |Z ∈ 〈−1, 1〉. The
square of the partial correlation coefficient rY X |Z can take the

form

r2
Y X |Z = SSE(Z ) − SSE(X, Z )

SSE(Z )
, (A11)

and thus measures the proportion of the residual sum of
squares that is accounted for by adding X to a regression
model already involving Z . It can be shown that the partial
correlation coefficient rY X |Z equals the correlation of the resid-
uals of the linear regression of Y vs Z and of X vs Z , i.e.,

rY X |Z = rY −Ŷ ,X−X̂ . (A12)

If |rY X |Z | < |rY X |, the variable Z is referred to as a con-
founder, and if |rY X |Z | > |rY X |, the variable Z is often called
a mediator. In the case of Z being a mediator, the partial
correlation between X and Y with Z being under control is
interpreted as a direct influence of X on Y .

To measure associations linked to multiple regression, one
introduces the multiple correlation coefficient. It describes the
linear relationship between a dependent variable Y and several
independent variables. Considering two independent variables
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X and Z , the multiple correlation coefficient RY |ZX = RY |XZ ∈
〈0, 1〉 is given by

RY |XZ =
√

1 − (
1 − r2

Y X

)(
1 − r2

Y Z|X
)
. (A13)

In the case of three different independent variables X , Z ,
and W , the multiple correlation coefficient RY |XZW ∈ 〈0, 1〉 is
given by the formula

RY |XZW =
√

1 − (
1 − r2

Y X

)(
1 − r2

Y Z|X
)(

1 − r2
YW |XZ

)
, (A14)

where rYW |XZ = rYW |ZX is the second-order partial correlation
coefficient [90]:

rYW |XZ = rYW |X − rY Z|X rW Z|X√
1 − r2

Y Z|X
√

1 − r2
W Z|X

. (A15)

The coefficient rYW |XZ ∈ 〈−1, 1〉 is the measure of the cor-
relation between Y and W with the variables X and Z under
control.

[1] N. K. Glendenning, Compact Stars: Nuclear Physics, Par-
ticle Physics, and General Relativity (Springer, New York,
1997).

[2] F. Weber, Pulsars as Astrophysical Laboratories for Nuclear
and Particle Physics (Institute of Physics, Bristol, 1999).

[3] J. M. Lattimer and M. Prakash, Science 304, 536 (2004).
[4] A. W. Steiner, M. Prakash, J. M. Lattimer, and P. J. Ellis, Phys.

Rep. 411, 325 (2005).
[5] P. Haensel, A. Potekhin, and D. Yakovlev, Neutron Stars 1:

Equation of State and Structure (Springer, Berlin, 2007).
[6] M. Baldo and G. F. Burgio, Prog. Part. Nucl. Phys. 91, 203

(2016).
[7] M. Oertel, M. Hempel, T. Klähn, and S. Typel, Rev. Mod. Phys.

89, 015007 (2017).
[8] J. W. Holt and Y. Lim, Phys. Lett. B 784, 77 (2018); S. S.

Avancini, L. Brito, J. R. Marinelli, D. P. Menezes, M. M. W.
de Moraes, C. Providência, and A. M. Santos, Phys. Rev. C 79,
035804 (2009).

[9] V. Baran, M. Colonna, V. Greco, and M. Di Toro, Phys. Rep.
410, 335 (2005).

[10] F. S. Zhang and L. W. Chen, Chin. Phys. Lett. 18, 142 (2001).
[11] A. W. Steiner, Phys. Rev. C 74, 045808 (2006).
[12] J. Xu, L.-W. Chen, B.-A. Li, and H.-R. Ma, Astrophys. J. 697,

1549 (2009).
[13] W. M. Seif and D. N. Basu, Phys. Rev. C 89, 028801 (2014).
[14] B.-A. Li, P. G. Krastev, D.-H. Wen, and N.-B. Zhang, Eur. Phys.

J. A 55, 117 (2019).
[15] I. Bednarek, J. Sładkowski, and J. Syska, J. Phys. Soc. Jpn. 88,

124201 (2019).
[16] I. Bednarek, J. Sładkowski, and J. Syska, Symmetry 12, 898

(2020).
[17] R. Wang and L.-w. Chen, Phys. Lett. B 773, 62 (2017).
[18] B. J. Cai and L. W. Chen, Phys. Rev. C 85, 024302 (2012).
[19] J. Pu, Z. Zhang, and L.-W. Chen, Phys. Rev. C 96, 054311

(2017).
[20] N. Kaiser, Phys. Rev. C 91, 065201 (2015).
[21] Z. W. Liu, Z. Qian, R. Y. Xing, J. R. Niu, and B. Y. Sun, Phys.

Rev. C 97, 025801 (2018).
[22] R. Nandi and S. Schramm, Phys. Rev. C 94, 025806 (2016).
[23] B.-J. Cai and B.-A. Li, Phys. Rev. C 92, 011601(R) (2015).
[24] B.-J. Cai and B.-A. Li, Phys. Rev. C 93, 014619 (2016).
[25] O. Hen, B. A. Li, W. J. Guo, L. B. Weinstein, and E. Piasetzky,

Phys. Rev. C 91, 025803 (2015).
[26] C. J. Horowitz, E. F. Brown, Y. Kim, W. G. Lynch, R. Michaels,

A. Ono, J. Piekarewicz, M. B. Tsang, and H. H. Wolter, J. Phys.
G: Nucl. Part. Phys. 41, 093001 (2014).

[27] Y. Zhang, P. Danielewicz, M. Famiano, Z. Li, W. G. Lynch, and
M. B. Tsang, Phys. Lett. B 664, 145 (2008).

[28] M. Zielinska-Pfabe, Acta Phys. Pol. B Proc. Suppl. 10, 153
(2017).

[29] J. M. Pearson, N. Chamel, A. F. Fantina, and S. Goriely, Eur.
Phys. J. A 50, 43 (2014).

[30] D. Adhikari et al. (PREX Collaboration), Phys. Rev. Lett. 126,
172502 (2021).

[31] T.-G. Yue, L.-W. Chen, Z. Zhang, and Y. Zhou, Phys. Rev. Res.
4, L022054 (2022).

[32] L.-W. Chen, Ch. M. Ko, and B.-A. Li, Phys. Rev. C 72, 064309
(2005).

[33] Z. Z. Li, Y. F. Niu, and W. H. Long, Phys. Rev. C 103, 064301
(2021).

[34] V. Baran, M. Colonna, M. Di Toro, A. Croitoru, and D. Dumitru,
Phys. Rev. C 88, 044610 (2013).

[35] P. Danielewicz and J. Lee, Nucl. Phys. A 922, 1 (2014).
[36] M. B. Tsang, T. X. Liu, L. Shi, P. Danielewicz, C. K. Gelbke,

X. D. Liu, W. G. Lynch, W. P. Tan, G. Verde, A. Wagner, H. S.
Xu, W. A. Friedman, L. Beaulieu, B. Davin, R. T. de Souza, Y.
Larochelle, T. Lefort, R. Yanez, V. E. Viola, Jr., R. J. Charity,
and L. G. Sobotka, Phys. Rev. Lett. 92, 062701 (2004).

[37] Z. Chen, S. Kowalski, M. Huang, R. Wada, T. Keutgen et al.,
Phys. Rev. C 81, 064613 (2010).

[38] J. Piekarewicz, Eur. Phys. J. A 50, 25 (2014).
[39] X.-H. Li, B.-J. Cai, L.-W. Chen, R. Chen, and B.-A. Li, C. Xu,

Phys. Lett. B 721, 101 (2013).
[40] B.-A. Li, Nucl. Phys. News 27, 7 (2017).
[41] D. Adhikari et al. (CREX Collaboration), Phys. Rev. Lett. 129,

042501 (2022).
[42] B. T. Reed, F. J. Fattoyev, C. J. Horowitz, and J. Piekarewicz,

Phys. Rev. Lett. 126, 172503 (2021).
[43] R. Essick, I. Tews, P. Landry, and A. Schwenk, Phys. Rev. Lett.

127, 192701 (2021).
[44] P. G. Reinhard, X. Roca-Maza, and W. Nazarewicz, Phys. Rev.

Lett. 127, 232501 (2021).
[45] C. Mondal and F. Gulminelli, Phys. Rev. C 107, 015801

(2023).
[46] K. Tuchitani, Y. Horinouchi, K.-I. Makino, N. Noda, H. Kouno,

T. Iwamitsu, M. Nakano, and A. Hasegawa, Int. J. Mod. Phys.
E 14, 955 (2005).

[47] B. D. Serot and J. D. Walecka, Adv. Nucl. Phys. 16, 1 (1986).
[48] B. D. Serot and J. D. Walecka, Int. J. Mod. Phys. E 06, 515

(1997).
[49] J. Boguta and A. R. Bodmer, Nucl. Phys. A 292, 413 (1977).
[50] I. Bednarek, R. Manka, and M. Pienkos, PLoS ONE 9, e106368

(2014).
[51] M. Dutra, O. Lourenço, S. S. Avancini, B. V. Carlson, A.

Delfino, D. P. Menezes, C. Providência, S. Typel, and J. R.
Stone, Phys. Rev. C 90, 055203 (2014).

055801-22

https://doi.org/10.1126/science.1090720
https://doi.org/10.1016/j.physrep.2005.02.004
https://doi.org/10.1016/j.ppnp.2016.06.006
https://doi.org/10.1103/RevModPhys.89.015007
https://doi.org/10.1016/j.physletb.2018.07.038
https://doi.org/10.1103/PhysRevC.79.035804
https://doi.org/10.1016/j.physrep.2004.12.004
https://doi.org/10.1088/0256-307X/18/1/350
https://doi.org/10.1103/PhysRevC.74.045808
https://doi.org/10.1088/0004-637X/697/2/1549
https://doi.org/10.1103/PhysRevC.89.028801
https://doi.org/10.1140/epja/i2019-12780-8
https://doi.org/10.7566/JPSJ.88.124201
https://doi.org/10.3390/sym12060898
https://doi.org/10.1016/j.physletb.2017.08.007
https://doi.org/10.1103/PhysRevC.85.024302
https://doi.org/10.1103/PhysRevC.96.054311
https://doi.org/10.1103/PhysRevC.91.065201
https://doi.org/10.1103/PhysRevC.97.025801
https://doi.org/10.1103/PhysRevC.94.025806
https://doi.org/10.1103/PhysRevC.92.011601
https://doi.org/10.1103/PhysRevC.93.014619
https://doi.org/10.1103/PhysRevC.91.025803
https://doi.org/10.1088/0954-3899/41/9/093001
https://doi.org/10.1016/j.physletb.2008.03.075
https://www.actaphys.uj.edu.pl/index_n.php?I=S&V=10&N=1
https://doi.org/10.1140/epja/i2014-14043-8
https://doi.org/10.1103/PhysRevLett.126.172502
https://doi.org/10.1103/PhysRevResearch.4.L022054
https://doi.org/10.1103/PhysRevC.72.064309
https://doi.org/10.1103/PhysRevC.103.064301
https://doi.org/10.1103/PhysRevC.88.044610
https://doi.org/10.1016/j.nuclphysa.2013.11.005
https://doi.org/10.1103/PhysRevLett.92.062701
https://doi.org/10.1103/PhysRevC.81.064613
https://doi.org/10.1140/epja/i2014-14025-x
https://doi.org/10.1016/j.physletb.2013.03.005
https://doi.org/10.1080/10619127.2017.1388681
https://doi.org/10.1103/PhysRevLett.129.042501
https://doi.org/10.1103/PhysRevLett.126.172503
https://doi.org/10.1103/PhysRevLett.127.192701
https://doi.org/10.1103/PhysRevLett.127.232501
https://doi.org/10.1103/PhysRevC.107.015801
https://doi.org/10.1142/S0218301305003673
https://doi.org/10.1142/S0218301397000299
https://doi.org/10.1016/0375-9474(77)90626-1
https://doi.org/10.1371/journal.pone.0106368
https://doi.org/10.1103/PhysRevC.90.055203


STATISTICAL ANALYSIS OF THE EFFECT … PHYSICAL REVIEW C 108, 055801 (2023)

[52] M. Dutra, O. Lourenço, O. Hen, E. Piasetzky, and D. P.
Menezes, Chin. Phys. C 42, 064105 (2018).

[53] M. B. Tsang, Y. Zhang, P. Danielewicz, M. Famiano, Z. Li,
W. G. Lynch, and A. W. Steiner, Phys. Rev. Lett. 102, 122701
(2009).

[54] J. R. Stone and P. G. Reinhard, Prog. Part. Nucl. Phys. 58, 587
(2007).

[55] M. B. Tsang, J. R. Stone, F. Camera, P. Danielewicz, S.
Gandolfi, K. Hebeler, C. J. Horowitz, J. Lee, W. G. Lynch, Z.
Kohley, R. Lemmon, P. Moller, T. Murakami, S. Riordan, X.
Roca-Maza, F. Sammarruca, A. W. Steiner, I. Vidaña, and S. J.
Yennello, Phys. Rev. C 86, 015803 (2012).

[56] B.-A. Li et al., J. Phys.: Conf. Ser. 312, 042006 (2011).
[57] M. Centelles, X. Roca-Maza, X. Viñas, and M. Warda, Phys.

Rev. Lett. 102, 122502 (2009).
[58] T. Li, U. Gang, Y. Liu, R. Marks, B. K. Nayak, P. V. R.

Madhusudhana, M. Fujiwara, H. Hashimoto, K. Kawase, K.
Nakanishi, S. Okumura, M. Yosoi, M. Itoh, M. Ichikawa, R.
Matsuo, T. Terazono, M. Uchida, T. Kawabata, H. Akimune, Y.
Iwao, T. Murakami et al. Phys. Rev. Lett. 99, 162503 (2007).

[59] P. Danielewicz, Nucl. Phys. A 727, 233 (2003).
[60] T. Malik, M. Ferreira, M. B. Albino, and C. Providência, Phys.

Rev. D 107, 103018 (2023).
[61] S. Typel and H. H. Wolter, Nucl. Phys. A 656, 331 (1999).
[62] B. G. Todd-Rutel and J. Piekarewicz, Phys. Rev. Lett. 95,

122501 (2005).
[63] S. Shlomo, V. M. Kolomietz, and G. Col’o, Eur. Phys. J. A 30,

23 (2006).
[64] R. Essick, P. Landry, A. Schwenk, and I. Tews, Phys. Rev. C

104, 065804 (2021).
[65] K. Hebeler, J. M. Lattimer, C. J. Pethick, and A. Schwenk,

Astrophys. J. 773, 11 (2013).
[66] E. Fonseca et al., Astrophys. J. Lett. 915, L12 (2021).
[67] S. K. Dhiman, R. Kumar, and B. K. Agrawal, Phys. Rev. C 76,

045801 (2007).
[68] R. Kumar, B. K. Agrawal, and S. K. Dhiman, Phys. Rev. C 74,

034323 (2006).
[69] B. K. Agrawal, Phys. Rev. C 81, 034323 (2010).
[70] R. J. Furnstahl, B. D. Serot, and H. B. Tang, Nucl. Phys. A 615,

441 (1997).
[71] A. Sulaksono and T. Mart, Phys. Rev. C 74, 045806 (2006).
[72] J. Piekarewicz and S. P. Weppner, Nucl. Phys. A 778, 10 (2006).
[73] F. J. Fattoyev, C. J. Horowitz, J. Piekarewicz, and G. Shen,

Phys. Rev. C 82, 055803 (2010).

[74] Y. Sugahara and H. Toki, Nucl. Phys. A 579, 557 (1994).
[75] I. Bednarek, W. Olchawa, J. Sladkowski, and J. Syska, Phys.

Rev. C 106, 055805 (2022).
[76] C. Providência, L. Brito, S. S. Avancini, D. P. Menezes, and Ph.

Chomaz, Phys. Rev. C 73, 025805 (2006).
[77] C. Ducoin, C. Providência, A. M. Santos, L. Brito, and Ph.

Chomaz, Phys. Rev. C 78, 055801 (2008).
[78] S. S. Avancini, S. Chiacchiera, D. P. Menezes, and C.

Providência, Phys. Rev. C 82, 055807 (2010).
[79] S. S. Avancini, S. Chiacchiera, D. P. Menezes, and C.

Providência, Phys. Rev. C 85, 059904(E) (2012).
[80] S. Kubis, Phys. Rev. C 70, 065804 (2004).
[81] S. Kubis, Phys. Rev. C 76, 025801 (2007).
[82] J. M. Lattimer and M. Prakash, Phys. Rep. 442, 109

(2007).
[83] J. Xu, L. W. Chen, B. A. Li, and H. R. Ma, Phys. Rev. C 79,

035802 (2009).
[84] P. Char, Ch. Mondal, F. Gulminelli, and M. Oertel,

arXiv:2307.12364.
[85] I. Vidaña, C. Providência, A. Polls, and A. Rios, Phys. Rev. C

80, 045806 (2009).
[86] C. Providência, S. S. Avancini, R. Cavagnoli, S. Chiacchiera, C.

Ducoin, F. Grill, J. Margueron, D. P. Menezes, A. Rabhi, and I.
Vidaña, Eur. Phys. J. A 50, 44 (2014).

[87] I. Tews, J. M. Lattimer, A. Ohnishi, and E. E. Kolomeitsev,
Astrophys. J. 848, 105 (2017).

[88] N. Alam, B. K. Agrawal, M. Fortin, H. Pais, C. Providência,
Ad. R. Raduta, and A. Sulaksono, Phys. Rev. C 94, 052801(R)
(2016).

[89] C. Ducoin, J. Margueron, C. Providência, and I. Vidaña, Phys.
Rev. C 83, 045810 (2011).

[90] D. G. Kleinbaum, L. L. Kupper, K. E. Muller, and A. Nizam,
Applied Regression Analysis and Other Multivariable Method
(Cengage Learning, Boston, 2014).

[91] M. G. Kendall, The Advanced Theory of Statistics (Charles
Griffin & Company, London, 1945), Vol. 1.

[92] S. Wright, J. Agric. Res. 20, 557 (1921).
[93] D. F. Alwin and R. M. Hauser, Am. Sociol. Rev. 40, 37

(1975).
[94] W. G. Newton, M. Gearheart, and B.-A. Li, Astrophys. J. Suppl.

Series 204, 9 (2013).
[95] H. Pais and C. Providência, Phys. Rev. C 94, 015808 (2016).
[96] H. Pais, B. Bertolino, J. Fang, X. Wang, and C. Providência,

Eur. Phys. J. A 57, 193 (2021).

055801-23

https://doi.org/10.1088/1674-1137/42/6/064105
https://doi.org/10.1103/PhysRevLett.102.122701
https://doi.org/10.1016/j.ppnp.2006.07.001
https://doi.org/10.1103/PhysRevC.86.015803
https://doi.org/10.1088/1742-6596/312/4/042006
https://doi.org/10.1103/PhysRevLett.102.122502
https://doi.org/10.1103/PhysRevLett.99.162503
https://doi.org/10.1016/j.nuclphysa.2003.08.001
https://doi.org/10.1103/PhysRevD.107.103018
https://doi.org/10.1016/S0375-9474(99)00310-3
https://doi.org/10.1103/PhysRevLett.95.122501
https://doi.org/10.1140/epja/i2006-10100-3
https://doi.org/10.1103/PhysRevC.104.065804
https://doi.org/10.1088/0004-637X/773/1/11
https://doi.org/10.3847/2041-8213/ac03b8
https://doi.org/10.1103/PhysRevC.76.045801
https://doi.org/10.1103/PhysRevC.74.034323
https://doi.org/10.1103/PhysRevC.81.034323
https://doi.org/10.1016/S0375-9474(96)00472-1
https://doi.org/10.1103/PhysRevC.74.045806
https://doi.org/10.1016/j.nuclphysa.2006.08.004
https://doi.org/10.1103/PhysRevC.82.055803
https://doi.org/10.1016/0375-9474(94)90923-7
https://doi.org/10.1103/PhysRevC.106.055805
https://doi.org/10.1103/PhysRevC.73.025805
https://doi.org/10.1103/PhysRevC.78.055801
https://doi.org/10.1103/PhysRevC.82.055807
https://doi.org/10.1103/PhysRevC.85.059904
https://doi.org/10.1103/PhysRevC.70.065804
https://doi.org/10.1103/PhysRevC.76.025801
https://doi.org/10.1016/j.physrep.2007.02.003
https://doi.org/10.1103/PhysRevC.79.035802
http://arxiv.org/abs/arXiv:2307.12364
https://doi.org/10.1103/PhysRevC.80.045806
https://doi.org/10.1140/epja/i2014-14044-7
https://doi.org/10.3847/1538-4357/aa8db9
https://doi.org/10.1103/PhysRevC.94.052801
https://doi.org/10.1103/PhysRevC.83.045810
https://books.google.co.ao/books?id=lNNdIV_qpwIC&hl=pt-PT&pg=PA557#v=onepage&q&f=false
https://doi.org/10.2307/2094445
https://doi.org/10.1088/0067-0049/204/1/9
https://doi.org/10.1103/PhysRevC.94.015808
https://doi.org/10.1140/epja/s10050-021-00506-8

