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Momentum dependence of the spin alignment of the φ meson
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We study the rapidity and azimuthal angle dependences of the global spin alignment ρ00 for φ mesons with
respect to the reaction plane in Au+Au collisions at the BNL Relativistic Heavy Ion Collider by the relativistic
coalescence model in the spin transport theory. The global spin alignment of φ mesons arises from local
fluctuations of strong force fields whose values are extracted from the STAR’s data. The calculated results show
that ρ00 < 1/3 at the rapidity Y = 0, and then it increases with rapidity and becomes ρ00 > 1/3 at Y = 1. Such
a rapidity dependence is dominated by the relative motion of the φ meson in the bulk matter. We also give a
prediction for the azimuthal angle dependence of ρ00 at different rapidities.
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I. INTRODUCTION

In noncentral heavy-ion collisions, the colliding nuclei
carry a global orbital angular momentum (OAM). A small
portion of the global OAM is transferred into the quark-gluon
plasma (QGP) in the form of vorticity fields. Quarks are
then polarized by vorticity fields through spin-orbit couplings
and form polarized hadrons by coalescence or recombina-
tion [1–5], see Refs. [6–11] for recent reviews. The effect of
the vorticity field is supported by the global spin polarization
of � and � hyperons observed by the STAR collaboration in
Au+Au collisions [12,13]. According to the spin-flavor wave
functions of � and � in the quark model [1,14], the spins of
� and � are carried by s and s quarks, respectively, indicating
that strange quarks in the QGP are also globally polarized.

It was proposed by Liang and Wang in 2005 that the po-
larized quarks can also form vector mesons by recombination
with nonvanishing spin alignment [15]. The spin of a vector
meson is described by a 3 × 3 spin density matrix ρ with
elements ρλ1λ2 , where subscripts λ1, λ2 = 0,±1 label the spin
quantum number along a specific spin quantization direction.
The spin alignment refers to the element ρ00, which denotes
the probability for the spin state with λ = 0. The polarization
vector of the vector meson is preferably aligned in the spin
quantization direction when ρ00 > 1/3, while it is preferably
aligned in the perpendicular direction when ρ00 < 1/3. In
experiments, the spin alignment can be measured through po-
lar angle distributions of daughter particles in p-wave strong
decays, such as φ → K+ + K− [14–18], or dilepton decays,
such as J/ψ → μ+ + μ− [19–22].

Recently, the STAR collaboration has measured the global
spin alignment of φ mesons with respect to the reaction plane
in Au+Au collisions [18], and the results show a signifi-
cant positive deviation from 1/3. Such a deviation is much
larger than contributions from conventional mechanisms such
as vorticity fields and magnetic fields [14,15,23–25]. Other
possible contributions are proposed in [26–30] but without
quantitative results that can be compared with experimental

data. Up to now, the effect of local correlation or fluctuation
of a kind of the strong force field called the φ field [31–33]
was the only mechanism that could quantitatively explain the
STAR data. According to the chiral quark model [34–39], the
SU(3) octet vector fields in the form of a 3 × 3 matrix can be
induced by vector currents of pseudo-Goldstone bosons that
surround s and s quarks in the hadronization stage. The φ field
is just the “33” component of the SU(3) octet vector fields that
is coupled to s and s.

In this paper, we study the momentum dependence of ρ
y
00

in the relativistic coalescence model based on the spin Boltz-
mann equation in nonequilibrium transport theory [32,33].
Here, the superscript i = x, y, z in ρ i

00 denotes the spin quan-
tization direction. In this paper, we choose the beam direction
along the z axis, the normal direction of the reaction plane
along the y axis, and the impact parameter along the x axis.
The parameters for the φ field’s local fluctuations are ex-
tracted by fitting the STAR data for ρ

y
00 and ρx

00 as functions
of collision energy [18], and the values of these parameters
are the same as in Ref. [33]. Some recent reviews on the
STAR experiment and theoretical models can be found in
Refs. [40–42].

The paper is organized as follows. In Sec. II we give the
formula for ρ00 as functions of the φ field’s fluctuations.
Assuming that the fluctuations are isotropic in the labora-
tory frame, we derive a compact formula for the momentum
dependence of ρ00. In Sec. III we compute the rapidity and az-
imuthal angle dependence of the global spin alignment ρ

y
00 for

φ mesons in Au+Au collisions. Finally we make a summary
and a discussion on the our result in Sec. IV. As notational
convention, we use boldface symbols for three-dimensional
vectors, such as p = (px, py, pz ).

II. THEORETICAL MODEL

In nonrelativistic quark coalescence model, the spin align-
ment of the φ meson depends on the spin polarizations of its
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constituent quark and antiquark [14,15,31]. In Refs. [32,33],
some of us constructed a relativistic quark coalescence model
based on spin Boltzmann equation in transport theory to de-
scribe the spin phenomena of vector mesons. Considering the
quark polarization induced by Fμν

φ , the field strength tensor
of the φ field, the spin alignment for the φ meson is given
by [32,33]

ρ00(x, p) = 1

3
− 4g2

φ

m2
φT 2

h

C1

[
1

3
B′

φ · B′
φ − (ε0 · B′

φ )2

]

− 4g2
φ

m2
φT 2

h

C2

[
1

3
E′

φ · E′
φ − (ε0 · E′

φ )2

]
, (1)

where C1 and C2 are two coefficients depending on mφ (the
φ meson’s mass) and ms (mass of constituent strange quark),
Th is the local temperature at the hadronization time, and ε0

denotes the unit vector along the measuring (spin quantiza-
tion) direction which is also the φ meson’s polarization vector
for the spin state λ = 0. Here, E′

φ and B′
φ are electric and

magnetic parts of the φ field in the meson’s rest frame, which
are functions of spacetime. When boosted to the laboratory
frame, E′

φ and B′
φ also depend on the meson’s momentum p,

i.e., they can be expressed in terms of fields in the laboratory
frame Bφ and Eφ as

B′
φ = γ Bφ − γ v × Eφ + (1 − γ )

v · Bφ

v2
v,

E′
φ = γ Eφ + γ v × Bφ + (1 − γ )

v · Eφ

v2
v, (2)

where γ = Eφ
p /mφ is the Lorentz contraction factor and v =

p/mφ is the φ meson’s velocity. Substituting Eq. (2) into
Eq. (1), we are able to express ρ00 in terms of Bφ and Eφ

which depend only on spacetime but not on momentum.
We learn from Eq. (1) that the deviation from 1/3 for ρ00

is caused by the anisotropy of local field fluctuations in the
meson’s rest frame. The deviation is positive (negative) when
the fluctuation of B′

φ or E′
φ in the measuring direction ε0

is larger (smaller) than the average fluctuation in directions
perpendicular to ε0. We assume that the fluctuations in the
laboratory frame are parametrized in an anisotropic form,〈

g2
φBi

φB j
φ/T 2

h

〉 = 〈
g2

φEi
φE j

φ/T 2
h

〉 = F 2δi j + 
âiâ j, (3)

while the correlation between Bφ and Eφ is neglected,
〈g2

φBi
φE j

φ/T 2
h 〉 = 0. Here, 〈· · · 〉 denotes the spacetime aver-

age, â denotes the direction of anisotropy, F 2 is the isotropic
part of the fluctuation, and 
 denotes the difference between
the fluctuation in â and the average fluctuation in directions
perpendicular to â. The field configuration in Eq. (3) becomes
isotropic when 
 = 0. The field fluctuations in the meson’s
rest frame can be obtained using Eqs. (2) and (3).

By substituting Eq. (2) into Eq. (1), averaging over space-
time, and then applying Eq. (3) with 
 = 0, we obtain the
spin alignment in the y direction, the direction of the global
OAM with ε0 = (0, 1, 0),

〈
δρ

y
00

〉
(p) = 8

3m4
φ

(C1 + C2)F 2

(
p2

x + p2
z

2
− p2

y

)
, (4)

where δρ
y
00 ≡ ρ

y
00 − 1/3 and (C1 + C2)F 2 is a positive num-

ber. Obviously, for static φ mesons with p = 0 we should have
ρ

y
00 = 1/3 because field fluctuations are isotropic in the labo-

ratory frame. However, the motion of the φ meson will break
the symmetry. According to the Lorentz transformation of
fields in Eq. (2), field components perpendicular to the motion
direction are enhanced by the γ factor, while the component in
the motion direction is not. Therefore when observing in the
meson’s rest frame, the fluctuation in the direction of motion
will be smaller than fluctuations in perpendicular directions.
For a meson with px = pz = 0 and py �= 0, we obtain the re-
lation 〈(B′

φ,y)2〉 < 〈(B′
φ,x )2〉 = 〈(B′

φ,z )2〉, leading to ρ
y
00 < 1/3

according to Eq. (1) or (4). Similarly, motions along x and z
directions lead to ρ

y
00 > 1/3.

We can also rewrite the result in Eq. (4) in terms of the
transverse momentum pT , the azimuthal angle ϕ, and the
rapidity Y ,

〈
δρ

y
00

〉
(p) ∝ 1

2
p2

T [3 cos(2ϕ) − 1] +
√

m2
φ + p2

T sinh2 Y. (5)

The azimuthal angle dependence shows a cos(2ϕ) structure,
which was first derived in Ref. [33]. We also find that the
spin alignment increases with rapidity. This is because the
anisotropy of field fluctuations in the meson’s rest frame be-
comes more significant in the direction of the meson’s larger
momentum.

We note that Eqs. (4) and (5) are based on the assump-
tion (3) with vanishing anisotropy 
 = 0 in the laboratory
frame. A nonzero 
 will contribute to ρ

y
00, but the analytical

formula is too complicated to be given here. Our numerical
results for nonzero 
 in the next section will show that its
contribution is small compared with the results for 
 = 0. So
the spin alignment is dominated by the isotropic part of the
field fluctuations.

III. NUMERICAL RESULTS

Similar to the previous work [33] by some of us, we con-
sider the anisotropy with respect to the z direction or the
beam direction in heavy-ion collisions. So we assume that
transverse and longitudinal fluctuations are different F 2

T = F 2

and F 2
z = F 2 + 
, which are regarded as parameters that can

be extracted from the STAR’s data on momentum integrated
ρ

y
00 [18]. At collision energies

√
sNN = 11.5, 19.6, 27, 39,

62.4, and 200 GeV, the extracted values of F 2 and 
 are
F 2/m2

π = 16.5, 3.74, 3.42, 1.02, 2.85, 0.359 and 
/m2
π =

3.33, −0.468, −0.9, 0.218, 0.336, 0.128, respectively.
In Fig. 1, we present ρ

y
00 as functions of the φ meson’s ra-

pidity Y at collision energies
√

sNN = 11.5–200 GeV. At each
rapidity and energy, we assume that the spacetime averages of
fluctuations follow Eq. (3). We take averages over the meson’s
transverse momentum in the range 1.2 GeV < pT < 5.4 GeV
and the azimuthal angle in the range 0 < ϕ < 2π , weighted
by the φ meson’s momentum spectra

Ep
d3N

d3p
= d2N

2π pT d pT dY
[1 + 2v2(pT ) cos(2ϕ)], (6)

where the transverse momentum spectra and v2(pT ) are taken
from STAR’s data [43–46]. At all energies, the derivation
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FIG. 1. The global spin alignment ρ
y
00 (solid lines) as functions

of rapidity at collision energies
√

sNN = 11.5, 19.6, 27, 39, 62.4, and
200 GeV. The shaded areas are error bands from fitting parameters
for local fluctuations in strong force fields. The dashed lines indicate
the value of 1/3 without spin alignment.

from 1/3 is negative at the midrapidity Y = 0, while it in-
creases at larger Y . To see the influence of the anisotropy in
the field fluctuation, we isolate the contribution from 
 to
ρ

y
00 by taking the difference between results in Fig. 1 with

nonvanishing 
 and those obtained with the same F 2 but

 = 0. As shown in Fig. 2, the effects of nonvanishing 
 are
one order of magnitude smaller than ρ

y
00 − 1/3 in Fig. 1. This

indicates that the rapidity dependence in Fig. 1 is dominated
by the isotropic part F 2 in Eq. (3).

The theoretical model in Sec. II provides a clear picture
for the rapidity dependence of the spin alignment. The bulk
matter in which φ mesons are produced can be treated as a
nearly isotropic medium with a small anisotropy along the z
direction in fluctuations of strong force fields described by
Eq. (3), i.e., F 2 
 
. The φ meson’s motion relative to the
bulk matter breaks the rotational symmetry in meson’s rest
frame, leading to a larger probability for spin ±1 states than

FIG. 2. Contributions from the anisotropy parameter 
 in the
laboratory frame to the ρ

y
00 versus rapidity at different collision

energies.

FIG. 3. The contour plots for δρ
y
00 in the transverse momentum

plane (px, py ) for φ mesons at Y = 0 (left panel) and Y = 1 (right
panel) in Au+Au collisions at 200 GeV.

the spin 0 state with respect to the motion direction. For ex-
ample, if mesons move in the z direction, we have ρz

00 < 1/3,
or equivalently ρx

00 = ρ
y
00 > 1/3 because of the normalization

condition ρx
00 + ρ

y
00 + ρz

00 = 1.
In order to study the transverse momentum dependence

of ρ
y
00 in different rapidity regions, we present in Fig. 3 the

contour plot for the deviation δρ
y
00 in (px, py) plane at Y = 0

(left panel) and Y = 1 (right panel) at 200 GeV. We observe a
significant quadrupole structure: the mesons with |px| 
 |py|
have δρ

y
00 > 0, while those with |px| � |py| have δρ

y
00 < 0.

Such a structure is the result of Eq. (4) or (5).
We also calculated the azimuthal angle dependence of δρ

y
00

at a fixed transverse momentum pT = 2 GeV, see Fig. 4. For
mesons at Y = 0, δρ

y
00 is positive at ϕ = 0 and decreases to

a negative minimum value at ϕ = π/2. The curve shows a
cos(2ϕ) behavior, as expected from Eq. (5). At a more forward
rapidity Y = 1, δρ

y
00 is shifted by a positive value relative

to the Y = 0 curve, which is also described by Eq. (5). The
effects of the anisotropy in strong force field fluctuations in
the laboratory frame, which are quantified by 
 in Eq. (3), are
also shown in Fig. 4. We see that the effects of nonvanishing

 are small, implying that the azimuthal angle dependence is
dominated by the isotropic part F 2 in Eq. (3).

FIG. 4. Azimuthal angle ϕ dependence of δρ
y
00 at rapidity Y = 0

(blue lines) and Y = 1 (orange lines) at 200 GeV. Solid lines are
calculated using fluctuations parameters F 2 and 
 given in the first
paragraph of Sec. III and dashed lines are calculated using the same
F 2 but 
 = 0.
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IV. SUMMARY

The momentum dependence of the φ meson’s global spin
alignment in heavy-ion collisions is studied. According to
the relativistic quark coalescence model in the spin transport
theory for vector mesons [32,33], the derivation from 1/3
for ρ00 for the φ meson is driven by the anisotropy of local
fluctuations of strong force fields in the vector meson’s rest
frame, which can be related to fluctuations in the laboratory
frame through Lorentz transformation. From the geometry
of the quark-gluon plasma produced in heavy-ion collisions,
it is natural to assume that fluctuations are nearly isotropic
in the laboratory frame, with tiny anisotropy in the z direc-
tion or beam direction. By neglecting the anisotropy part,
we derive an analytical expression for ρ

y
00 − 1/3 which is

proportional to (p2
x + p2

z )/2 − p2
y, indicating that the meson’s

motion along x and z directions will enhance ρ
y
00, while the

motion along y direction will decrease ρ
y
00. We then predict the

rapidity dependence of ρ
y
00 using fluctuation parameters that

are extracted from the STAR experiment data on momentum-
integrated ρ

y
00 [18]. Our results show that ρ

y
00 has a negative

derivation from 1/3 at midrapidity Y = 0 and a positive

derivation at slightly forward rapidity Y = 1. Predictions for
the azimuthal angle dependence of ρ

y
00 at these two rapidities

have also been made.
Although we assume that fluctuations in the laboratory

frame contain an isotropic part F 2 and an anisotropic part

, we find in our calculation that the contribution from the
anisotropic part is negligible compared with the isotropic part,
as manifested in Fig. 4. This means that we may safely set

 = 0 and still obtain nearly the same results as Fig. 1.
The momentum dependence is mainly caused by the broken
rotational symmetry due to the motion of the φ meson relative
to the bulk matter. Such a mechanism can be tested in future
experiments.
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