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Matter density distributions and radii from small-angle differential
cross sections of proton-nucleus elastic scattering at 0.8 GeV
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We determined the matter density distributions and root-mean-square radii of 12,13C, 14N, 20,22Ne, 24,26Mg,
30Si, 40,42,44,48Ca, 46,48Ti, 54Fe, 58,64Ni, 90,92Zr, 116,124Sn, and 208Pb through fitting the relative and the abso-
lute small-angle differential cross sections of proton-nucleus elastic scattering at 0.8 GeV with the Glauber
model, respectively. Compared to the absolute cross section analysis method, the radius systematic errors
originating from the absolute cross section normalization factors were obviously reduced by the relative cross
section analysis method. In particular, with the obtained matter density of the soft nucleus 30Si, an impact of
the dynamical correlations on the diffuse density distribution caused by the deformation mixing configurations
was discussed. The theoretical calculations were performed within the framework of the particle-number and
angular-momentum projected generator coordinate method (PNAMP + GCM) based on the deformed relativistic
mean field plus the Bardeen-Cooper-Schrieffer (RMF + BCS) model.
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I. INTRODUCTION

As one of nuclear fundamental properties, matter (pro-
ton + neutron) density distributions are sensitive to nucleon
occupation number [1,2], radial wave function [3], and defor-
mation [4,5]. Many efforts, including the calculations beyond
the mean field, were made to study such as the density bubble
structures in the interior of nuclei [6–10]. Root-mean-square
(rms) matter radii Rm characterize the sizes of nuclei, which
can be directly determined by the matter density distributions.
Since the halo phenomenon of 11Li was observed through
its remarkably large matter radius by Tanihata et al. [11],
large amounts of experiments [12–15] have been carried out
to investigate the matter radius evolution. For more contents
see review articles [16–19] and references cited therein. Com-
bined with proton distribution radii Rp, neutron distribution
radii Rn of nuclei can be extracted from the matter radii. The
neutron radii are also essential to search new physics via the
atomic parity violation [20] and the coherent elastic neutrino-
nucleus scattering experiments [21]. Moreover, the difference
of the neutron and proton distribution radii in a nucleus,
namely, �Rnp = Rn − Rp, known as neutron skin thickness,
plays an important role in constraining the symmetry energy
slope L at the saturation density [22,23]. They are also widely
applied to constrain the effective interaction parameters of the
self-consistent mean field models [24,25].
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Because of the importance including but not limited to
those mentioned above, precise radius measurements continue
to attract much attention. Recently, besides the model-
independent parity violation electron scattering experiments
[26,27], the in-ring reaction experimental techniques were
also developed [28–30]. One aim of the in-ring reaction ex-
periments is to determine the matter density distributions
and radii through measuring the small-angle differential cross
sections of hadron-nucleus elastic scattering [31–37]. The
novel methods were initiated at Gesellschaft für Schwerionen-
forschung GmbH (GSI) [29]. Such kinds of experiments are
operated in inverse kinematics, where stored heavy ions re-
peatedly interact with an internal gas-jet target in experimental
storage ring. These experiments are characterized by win-
dowless target, low momentum detection sensitivity, and low
background [28–37]. Recently, a significant core rearrange-
ment effect from 56Ni to 58Ni was found through their matter
density difference extracted from the small-angle differential
cross sections [31], which were measured by the in-ring reac-
tion facility at the Experimental Storage Ring (ESR) at GSI
[33].

The Cooler Storage Ring at the Heavy Ion Research Fa-
cility in Lanzhou (HIRFL-CSR) [38] is similar to the heavy
ion synchrotron-experimental storage ring facility (SIS-ESR)
at GSI [28]. The HIRFL-CSR consists of the main storage
ring (CSRm) and the experimental cooler storage ring (CSRe).
These two rings are connected by the projectile fragment
separator (RIBLL2). The CSRe equipped with the internal
gas-jet target [39] and electron cooler [40] also provides an
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opportunity for performing the in-ring proton-nucleus elastic
scattering experiments to determine the matter density distri-
butions and radii of nuclei. Experiments of 58Ni(p, p) 58Ni and
78Kr(p, p) 78Kr elastic scatterings at low momentum transfer
were successfully performed at the HIRFL-CSR [35,36]. For
more details for the in-ring reaction facility at the HIRFL-CSR
see Refs. [35–37].

Matter density distributions and radii were usually deter-
mined by fitting the absolute differential cross sections with
suitable reaction models [14,15]. As known, reaction lu-
minosities are essential for determining the absolute cross
sections. However, as mentioned by the review article [41],
precise measurements of the reaction luminosities are chal-
lenging work for the in-ring experiments, since it is difficult
to precisely determine gas-target density, beam intensity, and
the overlap between the target and beam. The luminosity
normalization uncertainty was around 15% for the in-ring
56Ni(p, p) 56Ni experiment at the ESR [33]. As a result,
theoretical atomic cross sections were sometimes adopted to
determine the absolute cross sections for the in-ring reaction
experiments [35,42,43]. The uncertainty of the absolute cross
section normalization would result in large systematic errors
for the density distribution and radius measurements. In order
to reduce the effects of the absolute normalization, a free
cross section normalization parameter, L0, was introduced to
extract matter density distributions and radii through fitting
the relative differential cross sections. That is to say, matter
densities and radii were determined through comparing the
shapes of the experimental and calculated differential cross
sections. This relative cross section fit method was employed
to extract the matter radii in previous work [2,36,44]. How-
ever, the validity and the precision of the relative method are
not systematically examined.

In the present work, the matter density distributions and
root-mean-square radii of 25 nuclei were extracted through
fitting the relative and the absolute differential cross sec-
tions with the Glauber model, respectively. The effects of
the cross section normalization uncertainties on the matter
radii were checked. To study the validity and the precision
of the relative method, the radii deduced from the density
distributions were compared to the results of the antiprotonic
atom x-ray experiments [45]. This is not only important for
investigating physics related to the matter radii, but also plays
an important role in constructing the in-ring reaction facilities
at next-generation heavy-ion storage rings, such as the High
Intensity heavy ion Accelerator Facility (HIAF) [46] and the
Facility for Antiproton and Ion Research (FAIR) [29]. In par-
ticular, with the determined matter density distribution of the
soft nucleus 30Si, the impact of the dynamical correlations be-
yond the mean field on the diffuse surface density distribution
was discussed within the framework of particle-number and
angular-momentum projected generator coordinate method
(PNAMP + GCM) [8].

II. DIFFERENTIAL CROSS SECTIONS

The small-angle differential cross sections of proton-
nucleus elastic scattering are from the peripheral collisions.
They are sensitive to the matter radii related to the surface

FIG. 1. The best fit of the small-angle differential cross sec-
tions as a function of scattering angle θ in the center-of-mass frame
for 30Si, which was obtained by the relative cross section analysis
method. The experimental cross sections were normalized to the
cross sections of the best fit by multiplying L0.

density distributions. For instance, experiments based on the
active gas target [14,47–49] and the internal gas-jet target
[31,34–36] were developed to determine the matter radii
through measuring the small-angle differential cross sections.
In this work, we used the relative and the absolute small-
angle differential cross sections to extract the surface matter
density distributions and radii of 12,13C, 14N, 20,22Ne, 24,26Mg,
30Si, 40,42,44,48Ca, 46,48Ti, 54Fe, 58,64Ni, 90,92Zr, 116,124Sn, and
208Pb, respectively. The scattering angle smaller than the angle
θmin at the first diffraction minimum of the differential cross
sections was considered as the small angle in this work, see
Fig. 1. In the small-angle region, the effects of the spin-orbit
can not only be neglected, but the two parameters of the Fermi
density distribution can also be constrained simultaneously.

The adopted experimental differential cross sections of
12,13C [50–52], 14N [53], 20,22Ne [54], 24,26Mg [55], 30Si
[56], 40,42,44,48Ca [57,58], 46,48Ti [59], 54Fe [60], 58,64Ni [60],
90,92Zr [61,62], 116,124Sn [63], and 208Pb [64] were measured
by the high-resolution spectrometer (HRS) at the Clinton
P. Anderson Meson Physics Facility (LAMPF) of the Los
Alamos Scientific Laboratory. They were used to investigate
matter density distributions and optical model parameters, for
instance. These data are available in the EXFOR database
[65]. A relative statistical error of better than 1% was achieved
for the small-angle differential cross sections. However, the
uncertainties of the absolute cross sections were around 10%
[50,63]. More details on experiments and the HRS can be
found in Refs. [66,67].

III. EXTRACTIONS OF MATTER DENSITY
DISTRIBUTIONS AND RADII

As known, the matter density distributions can be probed
through the differential cross sections of proton-nucleus elas-
tic scattering based on appropriate reaction models. The
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Glauber model is one of the well established tools to de-
scribe the scattering processes for the intermediate-high
energy nucleus-nucleus collisions [68,69]. It was widely
applied to extract the matter density distributions and
radii of nuclei from the small-angle differential cross sec-
tions [2,14,31,33,44,47,48].

In the present work, we also employed a procedure based
on the Glauber model [68] to extract the matter density dis-
tributions, in which the spin-orbit term was not considered
[47]. The differential cross sections of proton-nucleus elastic
scattering as a function of scattering angle θ in the center-of-
mass frame were calculated in the Glauber model via [47,69]

dσ

d�
(θ ) =

∣∣∣∣ f0(q) + ik
∫ ∞

0
[eiχ0c − eiχc (1 − �pp)Z

× (1 − �pn)N ]J0(qb)bdb

∣∣∣∣
2

,

where f0(q) is the standard Coulomb amplitude. The eiχ0c and
eiχc are the Coulomb phases corresponding to the point charge
and the folded charge density, respectively.

The matter density distribution ρ(r) and the proton-
nucleon scattering amplitude fp j (q) are essential input
quantities in the profile function �p j (b) calculations as

�p j (b) = − i

k

∫ ∞

0
fp j (q)S j (q)J0(qb)qdq, ( j = n, p),

where the form factor Sj (q) was obtained by the Fourier
transform of the density ρ(r) via

S j (q) = 4π

∫
ρ(r)

sin(qr)

q
rdr.

The method with the matter density instead of proton and
neutron densities in the profile function calculations is not
only independent of the electron scattering data, but also does
not introduce any significant inaccuracy [70].

Different phenomenological density profiles would result
in a slight radius difference [47,48]. In order to compare with
the results in Ref. [45], we also assumed that the surface
matter density distributions can be described by the two-
parameter Fermi (2pF) model as

ρ(r) = ρ(0)
1

1 + exp
(

r−R
a

) ,

where ρ(0), R, and a are the density normalization factor, half-
density radius, and diffuseness parameter, respectively.

The spin-orbit effects were known to be negligible in the
small-angle region [47,69], thereby, the fp j (q) was calculated
with less input parameters via

fp j (q) = ik

4π
σp j (1 − iαp j )exp

(−q2βp j

2

)
,

where σp j , αp j , and βp j are the total cross sections, ratios
of the real to imaginary parts of the forward-scattering am-
plitudes, and slope parameters for proton-proton (pp) and
proton-neutron (pn) channels, respectively. The used val-
ues were taken from Ref. [2], where σpp = 4.70(2) fm2,
σpn = 3.80(2) fm2, αpp = −0.02(6), αpn = −0.34(6), and

FIG. 2. The distributions of the obtained R and a for 30Si, which
were caused by the uncertainties of differential cross sections.

βpp = βpn = 0.20(5) fm2. Otherwise, the center of mass mo-
tion was also corrected as Ref. [69] in the cross section
calculations.

To reduce the effects of the absolute cross section normal-
ization uncertainties, we introduced a free cross section nor-
malization parameter L0, such that the density distributions
were determined by fitting the relative differential cross sec-
tions. Therefore, in the χ2 procedure of the least square
fit, the half-density radius R, diffuseness parameter a, and
normalization parameter L0 were freely adjusted to fit the
small-angle differential cross sections. The χ2 function is
defined as

χ2 =
N0∑
i

[
L0

dσ
d�

(θi )exp − dσ
d�

(θi)cal
]2

[
L0�

dσ
d�

(θi )exp
]2 ,

where N0, dσ
d�

(θ )exp, and � dσ
d�

(θ )exp are the number of data
points, reported absolute differential cross sections, and cross
section errors, respectively. The dσ

d�
(θ )cal are the calculated

differential cross sections by the Glauber model. Subse-
quently, the rms point-matter radii Rm were calculated by the
obtained R and a via

Rm =
(∫

ρ(r)r4dr∫
ρ(r)r2dr

) 1
2

.

The best fit of the small-angle differential cross sections for
30Si obtained by the relative analysis method, as an example,
is shown in Fig. 1.

The tabulated uncertainties of differential cross sec-
tions would result in different fit values for R, a, and L0.
Figure 2 shows the distributions of the obtained R and a for
30Si. They were obtained by fitting hundreds of randomly
sampling differential cross sections based on the Gaussian
distribution within dσ

d�
(θi)exp ± 2� dσ

d�
(θi )exp. The standard

deviations of these distributions were considered as the sta-
tistical errors of the corresponding data. Note that the used
experimental errors � dσ

d�
(θi )exp were proportionally scaled

to make the normalized χn of the best fit equal 1. Table I
summarizes the L0, R, a, and Rrel

m obtained by the relative cross
section analysis method.

To demonstrate an advantage of the relative analysis
method, the matter radii Rabs

m were also determined by fitting
the absolute differential cross sections, that is to say, the L0

was fixed to be 1 in the χ2 function, and the R and a were free
parameters. Furthermore, some observables cannot constrain
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TABLE I. The obtained cross section normalization factor L0, half-density radius R, diffuseness parameter a, and rms point-matter radii Rm

in the present work. Rrel
m are the matter radii obtained by fitting the relative differential cross sections, where L0, R, and a were free parameters.

The L0, R, a, and Rrel
m for 20,22Ne, 24,26Mg, and 90,92Zr were taken from Refs. [2,75], respectively, which were obtained with the same method.

Ra55
m and Ra50

m are the matter radii obtained by fitting the relative differential cross sections, where L0 and R were free parameters, but a was
fixed to be 0.55 fm and 0.50 fm, respectively. Rabs

m are the matter radii obtained by fitting the absolute differential cross sections, namely, L0

was fixed to be 1, and R and a were adjusted to fit. The matter radii Rlit
m were deduced by the linear relationship in Ref. [45]. aexp

ch are the
experimental diffuseness parameters for the 2pF charge distributions, which were taken from Ref. [76]. The R, a, and Rm are shown in units of
fm. The errors in parentheses are only statistical uncertainties. The systematical error is about 0.030 fm.

Nuclei L0 R a aexp
ch [76] Rrel

m (free L0, R, a) Ra55
m (a = 0.55) Ra50

m (a = 0.50) Rabs
m (L0 = 1) Rlit

m [45]

12C 1.147(6) 2.090(26) 0.430(9) 2.275(10) 2.428 2.356 2.461 2.307
12C 1.110(8) 1.995(26) 0.480(8) 2.360(11) 2.458 2.387 2.503 2.307
13C 1.172(8) 1.995(30) 0.485(9) 2.374(12) 2.464 2.394 2.614 2.342
14N 1.235(27) 1.990(51) 0.505(17) 2.428(25) 2.497 2.421 2.674 2.400
20Ne 1.250(78) 2.422(67) 0.592(30) 0.571 2.891(52) [2] 2.821 2.749 3.081 2.869
22Ne 1.455(152) 2.396(170) 0.598(66) 0.549 2.895(104) [2] 2.824 2.760 3.291 2.866
24Mg 1.045(17) 2.860(55) 0.518(21) 0.551 2.935(20) [2] 2.966 2.918 2.990 2.922
26Mg 0.998(18) 2.904(57) 0.512(22) 0.523 2.946(21) [2] 2.983 2.936 2.945 2.941
30Sia 0.935(22) 3.055(58) 0.520(25) 3.055(24) 3.086 3.036 3.000 3.039
40Ca 0.986(10) 3.765(41) 0.435(21) 3.335(10) 3.402 3.371 3.322 3.357
40Ca 1.017(10) 3.765(40) 0.450(19) 3.362(11) 3.420 3.387 3.379 3.357
42Ca 1.014(6) 3.655(30) 0.500(13) 3.387(7) 3.417 3.387 3.398 3.414
44Ca 1.028(16) 3.625(101) 0.525(39) 3.419(21) 3.433 3.406 3.452 3.450
48Ca 0.922(52) 3.735(79) 0.520(40) 3.479(40) 3.505 3.462 3.426 3.459
46Ti 1.020(21) 3.615(56) 0.570(24) 3.511(21) 3.495 3.458 3.532 3.514
48Ti 0.990(28) 3.745(73) 0.530(35) 0.588 3.507(27) 3.520 3.484 3.499 3.522
54Fe 0.975(6) 4.145(22) 0.415(12) 0.536 3.562(6) 3.619 3.593 3.543 3.599
58Ni 1.017(7) 4.015(49) 0.530(19) 3.681(9) 3.689 3.670 3.697 3.682
64Ni 1.280(33) 4.350(82) 0.415(45) 0.578 3.706(20) 3.764 3.737 3.958 3.820
90Zr 1.114(7) 4.610(47) 0.580(19) 4.171(10) 4.165 4.153 4.323 4.232
90Zr 0.900(5) 4.745(44) 0.565(17) 4.233(6) [75] 4.230 4.223 4.181 4.232
92Zr 0.934(9) 4.835(93) 0.580(37) 4.321(11) [75] 4.315 4.310 4.284 4.281
116Sn 0.998(8) 5.365(85) 0.560(37) 0.550 4.648(10) 4.649 4.644 4.649 4.611
124Sn 1.229(19) 5.715(140) 0.505(70) 0.534 4.808(19) 4.813 4.808 5.195 4.699
208Pb 1.007(10) 6.635(61) 0.530(33) 5.504(21) 5.506 5.502 5.514 5.550

aSystematic trend indicates that the tabulated cross sections of 30Si in the EXFOR [65] would be also in the center-of-mass system as other
nuclei.

the R and a simultaneously. For instance, either R or a needs
to be fixed for extracting matter radii through the interaction
cross section [12,71]. Similar situations may also exist for the
in-ring elastic scattering experiments, if the measured angular
ranges are too small [36]. Therefore, we also extracted the
matter radii Ra50

m and Ra55
m , where the a was respectively fixed

to be 0.50 fm [71] and 0.55 fm [12], and only the R and L0 as
free parameters were adjusted to fit. The obtained Rabs

m , Ra50
m ,

and Ra55
m are also tabulated in Table I.

IV. DISCUSSION

A. Validity and precision of the relative analysis method

Due to poor knowledge of the strong interactions, most
of the matter radius measurements are model-dependent. The
model-independent matter radius data are scarce, although
remarkable progresses were made by the parity violation
electron scattering experiments [26,27]. The neutron skin
thicknesses �Rnp of stable nuclei in the δ = (N − Z )/A range
from 0 to about 0.23 were determined by the antiprotonic
atom x-ray experiments [45], where N , Z , and A are the

neutron, proton, and mass numbers, respectively. According
to these �Rnp data, a linear relationship between �Rnp and δ,
namely, �Rnp = (−0.04 ± 0.03) + (1.01 ± 0.15)δ, was ob-
tained [45]. Especially, the evaluated �Rnp based on various
experiments [72] can be reproduced within about 0.03 fm by
the linear relationship [45]. Thus, for the sake of simplicity, to
estimate the validity and the precision of the relative analysis
method, our results were compared to the radii obtained by
the linear relationship [45], see Table I.

Charge radii related to the well-known electromagnetic
interactions have been precisely measured [73]. By taking
into account the main corrections, the point-proton distribu-
tion radii of nuclei were deduced from the charge radii via
R2

p = R2
ch − r2

p − N
Z r2

n − 3h̄2

4m2
pc2 [74], where Rch, rp, and r2

n are

the charge radius, proton charge radius, and neutron squared
charge radius, respectively. They are available in Ref. [73].
The Darwin-Foldy correction factor 3h̄2

4m2
pc2 was 0.033 fm2 [74].

Combined with the �Rnp determined by the antiprotonic atom
x-ray experiments [45], the point-neutron distribution radii of
nuclei were obtained through Rn = Rp + �Rnp. Subsequently,
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FIG. 3. Comparison of our results (Rrel
m , Rabs

m ) and the Rlit
m , the latter was deduced from the antiprotonic atom x-ray experiments [45]. A

radius systematic deviation from the absolute differential cross sections fit can be effectively reduced by using the relative cross section fit
method.

see Table I, the reference matter radii Rlit
m were calculated via

Rlit
m = ( N

A R2
n + Z

A R2
p)1/2.

As shown in Table I, although most of the obtained nor-
malization factors L0 in this work are close to the expected
value of 1, there are still about 10–40 % differences for 12,13C,
14N, 20,22Ne, 64Ni, 90Zr, and 124Sn. Figure 3 demonstrates the
comparisons of our radii and Rlit

m . We can see that there is
an obvious systematic deviation in the L0 range from about
1.1 to 1.5 for the Rabs

m obtained by fitting the absolute cross
sections. This suggests that the cross section normalization
deviations would introduce large systematic errors for the
radius determinations. If the deduced radii Rlit

m [45] are re-
liable, as shown in Fig. 3, the relative cross section method
effectively reduces the systematic errors of radii, compared to
the absolute cross section fit method. The mean value for the
difference, Rdiff = Rlit

m − Rrel
m , is about −0.001 fm. It is very

close to the expected value of 0 fm. The spread of the Rdiff for
the 25 nuclei is about 0.040 fm. Especially, for the 12C, 14N,
20Ne, 24Mg, and 40Ca nuclei, which have the same proton and
neutron numbers, where the matter radii are expected to be
approximately equal to the corresponding proton radii. This
is almost model-independent. Compared to these proton radii
Rp, an average difference of 0.010 fm was obtained for Rrel

m .
The standard deviation for the difference between Rp and Rrel

m
is about 0.030 fm, which can be considered as a system-
atical error. These results suggest that the relative analysis
method gives reliable radii, and effectively reduces systematic
errors.

Moreover, as shown in the insert of Fig. 4, both Ra55
m and

Ra50
m are very consistent with the Rrel

m for the medium-heavy
nuclei with A � 40. Their spreads are less than about 0.02
fm for the medium-heavy nuclei with A � 40, see Fig. 4.
Especially, most of the obtained a in this work are close
to the diffuseness parameter aexp

ch of the 2pF charge distri-
butions [76]. Thus, it is reasonable to extract matter radii
through fixing the a to be the values from the charge density
distributions [71].

B. Matter density distribution of 30Si

Theoretically, the self-consistent mean field approaches
have been proved as powerful tools for describing ground-
state properties of nuclei [77]. In order to further describe
energy spectra and transition probabilities, some correlations
beyond the mean field need to be considered [25,77]. Re-
cently, the density bubble structures were investigated by
considering the correlations beyond the mean field [6–9].

The matter density distributions in this work were extracted
from the small-angle differential cross sections related to the
peripheral collisions. As a result, only surface density distribu-
tions were precisely determined. 30Si is a nucleus with a soft
potential-energy surface [78]. Due to a large fluctuation in the
quadrupole shape degree of freedom, the deformation mixing

FIG. 4. The standard deviations of the matter radii Ra50
m and Ra55

m ,
which were obtained by fixing the a to be 0.50 fm and 0.55 fm,
respectively. The insert shows the matter radius differences for Ra50

m

and Ra55
m , which were compared to the Rrel

m , respectively.
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FIG. 5. Comparison of the experimental and calculated matter
density distributions for the soft nucleus 30Si. Theoretical densities
were calculated by the spherical RMF + BCS (black solid line), the
deformed RMF + BCS (green dashed line), and the PNAMP + GCM
based on the deformed RMF + BCS models (red dash-dotted line),
respectively. The dynamical correlations beyond the mean field were
considered by the PNAMP + GCM method. The densities in the
insert are shifted to clearly show the tail details.

configurations are expected in 30Si. The beyond mean field
calculations have already been used to study the deformation
difference between the hypernucleus 30


 Si and the original
nucleus 30Si [78]. In this work, it provides an opportunity
to test the effects of the dynamical correlations beyond the
mean field on the surface matter density distribution of the
soft nucleus 30Si.

First, we employed the spherical relativistic mean field
plus the Bardeen-Cooper-Schrieffer (RMF + BCS) model to
calculate the matter density distribution of 30Si. The PC-
PK1 density functional [79] was utilized in all calculations.
In Fig. 5, it can be observed that the experimental surface
density distribution is more diffuse, and is systematically
larger than the theoretical one calculated by the spherical
RMF + BCS within a range of r = 4.5–8 fm. Furthermore,
we used the deformed RMF + BCS to analyze the data, and
it gives a global minimum with quadrupole deformation pa-
rameter β2 ∼ 0.1. This positive β2 is consistent with the
conclusion of prolate shape for 30Si [80,81]. However, the
obtained space-angle-averaged density (dashed line) still un-
derestimates the diffuse experimental density distribution, see
Fig. 5.

Theoretical calculations have already shown that the dy-
namical correlations have important impacts on inner density
distributions, especially for the soft nuclei [8]. These dynam-
ical correlations mainly include the restoration of rotational
symmetry for the intrinsic quadrupole deformed states and
the fluctuation in the quadrupole shape degree of freedom.
To study the effects of the dynamical correlations in this
work, the density distribution of 30Si was calculated within
the framework of the particle-number and angular-momentum
projected generator coordinate method (PNAMP + GCM)
based on the deformed RMF + BCS [7,8]. Figure 6 shows

FIG. 6. The square of collective wave functions |gJK
α (β2)|2 as a

function of deformation parameter β2 for the 30Si ground state, which
was obtained by using the PNAMP + GCM method based on the
deformed RMF + BCS. Lines connecting data points are only guides
for the eye.

the square of collective wave functions |gJK
α (β2)|2 as a func-

tion of the deformation parameters β2 for the ground state
of 30Si. We can see that the deformation parameter |β2| of
about 0.3 at maximum probability is consistent with the ex-
perimental value of 0.31 [82]. Especially, the spread of β2

is very large, and there are significant deformation mixing
configurations for the soft nucleus 30Si. The density distribu-
tion extracted from these deformation mixing configurations
reproduces the diffuse tail density distribution for the soft
nucleus 30Si, as shown in Fig. 5. We note that the calculated
matter radius of 3.14 fm is larger than the experimental value
of 3.055(24)sta(30)sys fm. This could be because the PC-PK1
functional was obtained by fitting to the experimental charge
radii in the mean field level [79]. These results suggest that
the dynamical correlations beyond the mean field play an
important role in describing the diffuse surface matter distri-
butions of soft nuclei caused by the large deformation mixing
configurations.

V. SUMMARY

Matter density distributions and radii of 12,13C, 14N,
20,22Ne, 24,26Mg, 30Si, 40,42,44,48Ca, 46,48Ti, 54Fe, 58,64Ni,
90,92Zr, 116,124Sn, and 208Pb were extracted from the reported
small-angle differential cross sections by using the relative
and the absolute cross section analysis methods based on the
Glauber model, respectively. The matter radii obtained by the
relative cross section method are consistent with the results
of the antiprotonic atom x-ray experiments within a standard
deviation of about 0.04 fm. The systematic errors of radii
depending on the cross section normalization factors were
obviously reduced by the relative analysis method.

Furthermore, the impact of the dynamical correlations be-
yond the mean field was tested by the obtained surface matter
density distribution of the soft nucleus 30Si. Compared to

054610-6
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the spherical and the deformed RMF + BCS model calcu-
lations, the diffuse tail density distribution of 30Si resulted
by the deformation mixing configurations was described by
considering the dynamical correlations within the framework
of the PNAMP + GCM based on the deformed RMF + BCS
model.
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