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Direct photoeffect in heavy deformed nuclei at Eγ � 40 MeV
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The mechanism of direct knockout of a nucleon from heavy deformed nuclei with A � 100 by photons in the
Eγ � 40 MeV energy range is considered, and the interaction of the ejected nucleon with the rotational degrees of
freedom of the final nucleus is taken into account. It is assumed that the rotation frequency of the nucleus is much
less than the frequency of its surface vibrations and the Siegert’s theorem is in effect. This model was applied
to calculation of the total and differential cross sections of direct proton knockout reactions on 108Pd, 160Gd,
and 184,186W and the bremsstrahlung-induced yield of photoprotons on 180Hf. Comparison with the experimental
data and with the results of a statistical model calculation indicates importance of the direct photoeffect for
such nuclei in the considered energy range. Calculations show that for deformed nuclei the interaction of the
ejected nucleon with the rotational excitations of the final nucleus results in a significant enhancement of the
direct photoeffect cross section. Angular distribution of ejected protons reveals a large asymmetry in the forward
direction at Eγ > 20 MeV.
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I. INTRODUCTION

The direct nucleon knockout mechanism (DKO) of nuclear
photoeffect is an ejection of one of the bound nucleons into
a continuum state by the absorbed photon while the final
nucleus stays in a certain nucleon hole state. It is assumed that
the initial and final nuclear states can be described in terms of
the independent-particle shell model, and the motion of the
ejected nucleon takes place in the potential that is a result of
averaging of its interaction with the remaining nucleons.

The mechanism of the direct knockout of a single proton
by a real photon (proton DKO) has been extensively discussed
during the last decades [1–17]. In a number of nonrelativistic
calculations [2,6,8–10,13,16] it was shown that the proton
DKO contribution at intermediate photon energies of about
Eγ ≈ 60 MeV may be much smaller than the experimental
photoproton yield and, in order to explain the observed cross
sections, one has to take into account the fact that meson
exchange currents can lead to photoabsorption by pairs of
strongly correlated nucleons of which only one is emitted
and the other is reabsorbed in the residual nucleus. These
conclusions are significantly different from what follows from
the results of the relativistic calculations of Johannson et al.
[11], who showed that for a 60 MeV incident photon the con-
tribution of DKO comprises the greater part of the observed
data. Subsequent studies [12] in this direction performed for
a larger number of nuclei and incident energies have con-
firmed that in relativistic calculations the direct contribution
is, on the whole, close to the experimental data when the
transferred momentum is less than 500 MeV/c. This suggests
that within the relativistic approach the contribution of the
meson exchange currents is not as large. This conclusion is
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further confirmed by the relativistic DKO calculations of the
cross section for the 16O(γ , p) 15N reaction, performed in
Ref. [17] at Eγ ≈ 60–200 MeV where, however, it is noted
that consideration of the meson exchange currents noticeably
improves agreement with the experiment.

It should be mentioned that the DKO model has been
mainly applied to relatively light closed-shell nuclei (most
often to 12C, 16O, and 40Ca), and for this the spectroscopic
factors obtained from the analysis of the quasifree electron
scattering process (e, e′ p) were used. At the same time, for
heavy deformed nuclei one has to take into account the
possibility that knockout of a surface nucleon—a process
playing an important role at a relatively moderate transferred
momentum—results in excitation of low-lying collective ro-
tational states of the final nucleus belonging to the rotational
band built upon the produced nucleon hole. Each of such
states forms a separate exit channel of the reaction, but there
exists a strong connection among them in the internal region
of the reaction, because deformation of a nonspherical nucleus
leads to interaction between the rotational degrees of freedom
of the final nucleus and the orbital motion of the outgoing par-
ticle. Application of the DKO model in this case will require
solution of the system of equations of the coupled reaction
channels method.

In the present work a model of direct nucleon knockout
from heavy deformed nuclei at comparatively small energies
of the absorbed photon Eγ � 40 MeV is developed. The
interest to such calculations is inspired by the fact that statis-
tical reaction models based on the Bohr’s compound nucleus
hypothesis frequently give an apparently underestimated, in
comparison with the experimental data, value of the (γ , p)
reaction cross section on heavy deformed nuclei at Eγ 25–30
MeV, which, at least in some cases, is a result of the neglect of
the contribution of the direct photoeffect to this cross section.

In the considered case, the knockout of the nucleon takes
place mostly at the nuclear surface, where the nucleon density
is lower, and, as a result, the nucleon with a large probability
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is knocked out into the continuum. This allows us to limit
ourselves to consideration of the knockout of bound nucleons
only from the single-particle levels of the target nucleus A near
the Fermi surface. At Eγ � 40 MeV the direct photoeffect
proceeds mostly due to E1 and E2 electric transitions, and
while the E2 transitions do not contribute much to the total
cross section of the direct photonucleon knockout, but their in-
terference with the E1 transitions results in a large asymmetry
of the ejected nucleons in the forward direction. The computa-
tional complexity of the DKO model is significantly simplified
if one uses the Siegert’s theorem for calculation of the matrix
elements of E1 and E2 transitions since it allows to use the
nonrelativistic form of DKO without explicit consideration
of the meson exchange currents. According to the Siegert’s
theorem the current density operator in the matrix elements
of electric transitions can be substituted with the charge den-
sity operator, for which, in the case of a multipole transition
L, in the first approximation, it is sufficient (see, e.g., [18])
that δL(kR) ≡ [ jL+1(kR)/ jL−1(kR)]

√
L/(L + 1) � 1, where

jL(x) is the spherical Bessel function, k = Eγ /ch̄ fm−1 is the
wave vector transferred to the nucleus, and R ≈ 1.2A1/3 fm
is the nuclear radius. This condition is, clearly, satisfied for
heavy nuclei with A � 200 in the considered energy range: for
a nucleus with A = 160, the parameter δ1(kR) corresponding
to E1 transitions at Eγ = 30 MeV is equal to 0.05, and the
parameter δ2(kR) is about twice as small.

This work presents a continuation of the formalism devel-
oped in Ref. [19], where a straightforward version of the DKO
model of the direct nuclear photoeffect was implemented, but
the interaction of the knocked out nucleon with the rotational
degrees of freedom of the final nucleus was not taken into
consideration. As it will be shown its contribution has a sig-
nificant effect on the resulting reaction cross section.

The developed model is described in Secs. II–V. In Sec. VI
the constructed model is applied to proton DKO in 108Pd,
160Gd, 184,186W, and 180Hf. Section VII contains a discussion
of the obtained results.

II. MAIN STATEMENTS OF THE MODEL

(1) It is assumed in the standard formulation of the
DKO mechanism (see, e.g., Ref. [4]) that the ab-
sorbed photon knocks out a single bound nucleon,
transferring it to a continuum state, while the final
nucleus remains in a certain nucleon hole state. It is
expected that both the initial and final nuclear states
can be described in terms of the independent-particle
shell model. Thus, the knocked out nucleon per-
forms an electromagnetic transition between a bound
and a continuous single-particle state of the average
potential, which is produced by the rest of the nu-
cleons and is fixed with respect to the laboratory
frame.

Such description seems appropriate for spherical
nuclei with closed shells. However, as the number of
particles above the closed shells increases the situation
becomes more complicated, and one can not rely on
simple single-particle shell-model calculations for de-
scription of the direct nuclear photoeffect.

The other limiting case, opposite to the case
of closed-shell nuclei, is considered in this work,
when usage of the DKO mechanism once again be-
comes practical for description of the direct nuclear
photoeffect. Namely, this is the case of heavy de-
formed nuclei. Such nuclei as a rule have a nonspher-
ical shape, stable with respect to surface oscillations,
which allows one to consider a specific orientation of
the nucleus in the surrounding space and to approxi-
mately separate motion of individual nucleons in the
intrinsic coordinate frame of the nucleus from its col-
lective rotational motion as a whole in the laboratory
frame (strong coupling scheme). Such separation is
possible if the system satisfies the adiabatic condition,
that is, the frequency of the rotational motion of the
nucleus has to be much less than the frequency of
oscillations of its surface, which implies smallness of
the amplitude of the surface oscillations compared to
the size of the nucleus. In this case the wave function
of the nucleus, representing a solution of the sta-
tionary Schrödinger equation in the laboratory frame,
has the form of a product of two parts: one describ-
ing the rotation of the nucleus and another describing
the intrinsic motion of nucleons in the fixed average
field [20].

In the considered case the nucleon knocked out
by a photon performs an electromagnetic transition
from a bound internal single-particle state in the fixed
average field produced by the rest of the nucleons
to a continuous single-particle state in this field in
the laboratory frame, and because in the laboratory
frame the average field created by the nucleons of the
final nucleus depends on its orientation in space, a
connection between the orbital motion of the emitted
nucleon and the rotational degrees of freedom of the
final nucleus arises.

(2) Only axially symmetric deformed nuclei are consid-
ered. We will also assume that it is not necessary to
take into account antisymmetrization of the knocked
out (and, therefore, labeled) nucleon with the rest of
the nucleons of the target nucleus, which allows us to
express the ground state of the target nucleus |J0M0〉 in
the laboratory frame with the z axis directed along the
incident photon direction as a product

|J0M0〉 =
(

2J0 + 1

8π2

)1/2

DJ0
M0�+K (ω)ϕ′

β�χ ′
βK , (1)

where β is the index of the orbit from which the nu-
cleon will be knocked out, ϕ′

β� is the wave function of
the knocked out nucleon in the intrinsic frame, χ ′

βK is
the wave function describing the state of the remaining
nucleons of the target nucleus in the intrinsic frame,
� is the projection of the total angular momentum of
the knocked out nucleon onto the nucleus’s symmetry
axis, K is the projection of the total angular momentum
of the remaining nucleons onto the symmetry axis,
J0 = |� + K| is the magnitude of the total angular
momentum J0 of the target nucleus in the laboratory
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frame, M0 is its z-axis projection in the laboratory
frame, � + K is the projection of J0 on the symmetry
axis, ω are the Euler rotation angles, describing the
orientation of the intrinsic coordinate frame relative
to the laboratory frame, DJ0

M0�+K (ω) is the matrix of
finite rotation from the laboratory frame to the intrinsic
frame.

(3) It is assumed that at Eγ � 40 MeV the direct photoef-
fect in heavy deformed nuclei with A � 100 proceeds
mainly via direct knockout of nucleons from the filled
single-particle states of the target nucleus A, positioned
near the Fermi surface.

(4) It is assumed that when the nucleon is knocked out
from a certain near-surface orbit β the intrinsic state of
the rest of the nucleons χ ′

βK stays unchanged (together
with the average nuclear field produced by them), and,
therefore, only the states |n〉 of the rotational band
of the final nucleus, corresponding to the produced
nucleon hole excitation of the target nucleus, can be
excited:

|n〉 =
(

2In + 1

8π2

)1/2

DIn
MnK (ω)χ ′

βK , (2)

where n = 1, 2, . . . , nmax, In is the magnitude of the
angular momentum of the final nucleus, Mn and K are
its projections onto the z axis of the laboratory frame
and the nucleus’s symmetry axis, respectively.

(5) The transition rate from the ground state of the tar-
get nucleus to the state describing the scattering of
the knocked out photonucleon by the nucleons of the
final nucleus is calculated within the time-dependent
perturbation theory. The Siegert’s theorem is used for
calculation of the matrix elements of electric transi-
tions.

III. EQUATIONS OF SCATTERING OF THE KNOCKED
OUT NUCLEON

The Hamiltonian operator, describing scattering of the
knocked out nucleon in the potential of the final nucleus in
the laboratory frame can be written as

H = T + Hf in + V, (3)

where

T = −h̄2
r

2M , (4)

is the kinetic energy operator of the knocked out nucleon (M
is the nucleon mass),

Hfin = Hint + Hrot, (5)

is the Hamiltonian of the final nucleus, which is comprised
of two terms: Hint describing the internal state χ ′

βK of the
final nucleus [see (2)] and Hrot, its rotation. V is the complex
potential describing the interaction of the outgoing nucleon
with the final nucleus.

The potential V is comprised of the nuclear interaction
term, the spin-orbit term, and, in the case of proton knock-
out, the Coulomb interaction term. During construction of the

potential we neglect the effect of the nucleus’s deformation on
the spin-orbit interaction, similarly to Ref. [21], and define V
as

V = Vso + Vcoupl, (6)

where the spherical potential Vso describes the spin-orbit in-
teraction, while the Vcoupl term is comprised of the remaining
(nonspherical) components of the potential V .

The Vso potential is taken in the form of the spin-orbit
part of the spherical global optical potential [22]. The non-
spherical potential Vcoupl(r, ϑ ′) is obtained (in the intrinsic
reference frame) from the nuclear and Coulomb interaction
terms of this optical potential using the deformation proce-
dure described in Refs. [19,23], corresponding to an axially
symmetric ellipsoidally deformed nucleus with the axial de-
formation parameter δ.

In order to find the potential V in the laboratory frame one
has to expand the potential Vcoupl(r, ϑ ′) in the intrinsic frame
into spherical harmonics and transform the harmonics to the
laboratory frame via rotation by the Euler angles ω. As a result
one obtains:

V = Vso +
∑
λν

vλ(r)Dλ∗
ν0 (ω)Yλν (ϑ, ϕ), (7)

where λ takes only even values (since only spheroidal shapes
are considered) and the coefficients of the expansion are de-
termined by the expressions

vλ(r) =
∫

Vcoupl(r, ϑ
′)Y ∗

λ0(ϑ ′)d�′. (8)

Since the introduced spin-orbit interaction does not change
under rotation of the coordinate axes, the coupling between
different channels (l, j, n) arises only due to the deformed part
of the potential Vcoupl.

We will consider the knocked out nucleon state within
the time-independent scattering theory. Solutions � of the
stationary Schrödinger equation corresponding to the Hamil-
tonian (3) can be divided into two groups: (i) bound states with
a discrete spectrum, (ii) continuum states satisfying particu-
lar boundary conditions. We are interested in the continuum
states satisfying the boundary condition

� → |ks〉|n〉 ≡ |ks, n〉 when r → ∞, (9)

where 〈rσ |ks〉 = 1
(2π )3/2 eikrχ 1

2 s(σ ) is the state of free motion
of a nucleon with the wave vector k and z projection of
the spin s = ±1/2, and |n〉 is the state of the final nucleus
[see (2)], corresponding to the nth level of the considered
rotational band.

It is known from the time-independent scattering theory
(see Refs. [24–26]) that the eigenstates |(ks, n)(−)〉 of the
H operator meeting the boundary condition (9) satisfy the
integral Lippmann-Schwinger equation for converging-wave
states:

|(ks, n)(−)〉 = |ks, n〉 + 1

ε + En − H − iρ
V |(ks, n)(−)〉,

(10)

where ρ → 0+, ε = h̄2k2

2M = Eγ − B − En is the outgoing nu-
cleon energy, B is the separation energy of the nucleon from
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the target nucleus, En = εF − εβ + h̄2[In(In+1)−K (K+1)]
2T is the

excitation energy of the final nucleus, εF and εβ are, respec-
tively, the Fermi energy and the energy of the single-particle
state |β〉 of the target nucleus, T is the moment of inertia of
the final nucleus.

The |(ks, n)(−)〉 state is an eigenstate of H with the energy
ε + En. The required boundary condition is provided by the
“−” sign of ρ in (10). It can also be shown from Eq. (10) that
these states satisfy the normalization conditions

〈(k′s′, n′)(−)|(ks, n)(−)〉 = δn′nδs′sδ(k′ − k). (11)

It should be noted that inside the interaction region the
quantities (k, s, En, In, Mn), specifying the emitted nucleon
and the final nucleus, are not conserved. They take definite
values after the nucleon leaves the interaction region, i.e., at
r → ∞.

Using the expansion of the wave function (2π )−3/2eikr of a
free particle with a definite momentum h̄k into wave functions
ψεlm of free motion with a definite energy ε and orbital quan-
tum numbers l, m [27] one can express the scattering state
|(ks, n)(−)〉 in the form

|(ks, n)(−)〉 = h̄√
Mk

∞∑
l=0

l+ 1
2∑

j=|l− 1
2 |

j∑
m=− j

(
lm − s

1

2
s| jm

)

×Y ∗
lm−s(θ, φ)|(α, n)(−)〉, (12)

where (θ, φ) are the polar and azimuthal angles of the di-
rection of the outgoing nucleon in the laboratory frame,
|(α, n)(−)〉 ≡ |(ε, l, j, m; n)(−)〉 is the eigenstate of the Hamil-
tonian H with the energy ε + En, which at r → ∞ is
asymptotically equal to the state |α, n〉 describing the free mo-
tion of a nucleon with the energy ε, orbital momentum l , total
angular momentum j, and its z projection m in the laboratory
frame and the state of the final nucleus |n〉 belonging to the
considered rotational band.

In the interaction region the state |(α, n)(−)〉 has a definite
value of the energy ε + En, parity π = (−1)lπn, and z pro-
jection m + Mn of the total angular momentum J = j + In in
the laboratory frame. At the same time the quantum numbers
ε, l, j, m, En, In, Mn are not conserved inside this region due
to the interaction of the knocked out nucleon with the nu-
cleons of the final nucleus via the deformed average field.
Note, however, that the parity of the final nucleus πn is fixed,
since knockout of the nucleon takes place from a particular
orbit β of the target nucleus. Thus, at a given multipolarity of
the photon, the parity of the outgoing nucleons has a definite
value (−1)l .

Later in the discussion we use the scattering state

|(α, n)(−)
JM 〉 =

∑
mMn

( jmInMn|JM )|(α, n)(−)〉 (13)

having definite values of the total angular momentum J and
its z-axis projection M.

The inverse transformation for (13) has the form

|(α, n)(−)〉 =
∑
JM

( jmInMn|JM )|(α, n)(−)
JM 〉. (14)

It allows us to express the expansion (12) as

|(ks, n)(−)〉 = h̄√
Mk

∑
l jmJM

(
lm − s

1

2
s| jm

)
Y ∗

lm−s(θ, φ)

×( jmInMn|JM )|(α, n)(−)
JM 〉. (15)

The states |(α, n)(−)
JM 〉 satisfy the equation

|(α, n)(−)
JM 〉 = |(α, n)JM〉 + 1

ε + En − H0 − iρ
V |(α, n)(−)

JM 〉,
(16)

where |(α, n)JM〉 ≡ |(ε, l, j; n)JM〉 is the state of the nuclear
system with definite quantum numbers J and M, describing
motion of a free nucleon with quantum numbers ε, l, j and
the final nucleus in the given state |n〉 of the rotational band.

The normalization condition for the states |(α, n)(−)
JM 〉 has

the form

〈(α, n)(−)
JM |(α′, n′)(−)

J ′M ′ 〉 = δJ ′JδM ′Mδ(ε′ − ε)δl ′lδ j′ jδn′n. (17)

IV. DIFFERENTIAL CROSS SECTION
OF DIRECT PHOTOEFFECT

The probability of electromagnetic transition of a system
from the initial state |i〉 to the final state | f 〉 per unit time can
be calculated within the time-dependent perturbation theory:

w = 2π

h̄
|〈 f |H |i〉|2ρ f , (18)

where the interaction operator H is expressed in terms of the
nuclear current operator j(r) and the electromagnetic potential
operator A(r), and ρ f is the density of final states of the
system.

If one limits oneself to consideration of only electric E1
and E2 transitions then by the use of this expression and
the Siegert’s theorem it can be shown (see the corresponding
derivation in Ref. [18]) that the differential cross section of
direct knockout of a nucleon from the orbit β of the target
nucleus by a photon, corresponding to emission of a nucleon
with the energy ε = Eγ − B − En in the direction (θ, φ) with
excitation of a given rotational state |n〉 of the final nucleus,
can be expressed as

dσn(Eγ , θ, φ)

d�
= 16π3

3

MkEγ

ch̄3

e2

2(2J0 + 1)

×
∑

μ=±1

∑
s=±1/2

∑
MnM0

|〈(ks, n)(−)|Fμ|J0M0〉|2,

(19)

where the operator Fμ is defined as

Fμ = qeffrY1μ(ϑ, ϕ) + (
δtz−1/2 + O(A−1)

)
× iEγ√

20ch̄
r2Y2μ(ϑ, ϕ), (20)

(r, ϑ, ϕ) are the spherical coordinates of the knocked out
nucleon in the laboratory frame, qeff is its effective electric
charge for dipole excitation (equal to N/A for a proton and
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−Z/A for a neutron), tz is the projection of the nucleon’s
isospin.

The cross section in Eq. (19) is averaged over possible
values μ = ±1 of the circular polarization of the photon beam
and values of the quantum number M0 of the target nucleus in
the ground state and represents a sum over possible values of
the z projection of spin (s = ±1/2) of the outgoing nucleon.
It is seen from Eq. (20) that the quadrupole component of the
electromagnetic field plays a significant role only in the case
of direct knockout of protons with tz = −1/2.

By substituting expansion (15) into Eq. (19) and perform-
ing summation over all magnetic quantum numbers we obtain
the following expression for differential cross section:

dσn(Eγ , θ, φ)

d�
= D1 + 2Re(D12)δtz−1/2 + D2δtz−1/2, (21)

where

D1 = 2

3

π2Eγ

ch̄

e2q2
eff

2J0 + 1
[A0 + A2P2(cos θ )], (22)

D12 = −i
2

3

π2

√
20

E2
γ

c2h̄2

e2qeff

2J0 + 1
[A1P1(cos θ ) + A3P3(cos θ )],

(23)

D2 = π2

30

E3
γ

c3h̄3

e2

2J0 + 1
[B0 + B2P2(cos θ ) + B4P4(cos θ )].

(24)

The coefficients A0 and B0 determine the angle-integrated
differential cross section of the direct photoelectric effect.
The remaining coefficients A1, A2, A3, B2, and B4 describe
the angular distribution of outgoing knocked out nucleons.
Expressions for their calculation are given in the Appendix.
The first term on the right-hand side of the expression (21)
takes into account the contribution of the E1 transitions to
the cross section, the second one the effect of interference of
E1 and E2 transitions, the third one the contribution of E2
transitions. From Eqs. (21)–(24) it follows that the angular

distribution of the nucleons produced by the direct knockout
does not depend on the azimuthal angle φ in the laboratory
frame, the z axis of which is directed along the direction of
the incident photon.

V. SYSTEM OF COUPLED-CHANNEL EQUATIONS

From Eqs. (21)–(24), (A1)–(A11) it follows that in order
to calculate the cross section dσn(Eγ , θ, φ)/d�, correspond-
ing to knockout of a nucleon from the orbit (β�) with
the energy ε = Eγ − B − En in the direction (θ, φ) and to
production of the final nucleus in the state |n〉 of a given
rotational band, it is necessary to calculate the compo-
nents 〈(α, n)(−)

J |(N ′l ′ j′, n′)J〉 = 〈(α, n)(−)
JM |(N ′l ′ j′, n′)JM〉 of

the scattering state |(α, n)(−)
JM 〉, where |N ′l ′ j′m′〉 are the single-

nucleon states in the spherical harmonic oscillator potential in
the laboratory frame and |n′〉 are the final nucleus states from
the same rotational band as the |n〉 state. Multiplying on the
right the conjugate equation of Eq. (16) by |(N ′l ′ j′, n′)JM〉 we
obtain

〈(α, n)(−)
JM |(N ′l ′ j′, n′)JM〉 = 〈(α, n)JM |(N ′l ′ j′, n′)JM〉

+ 〈(α, n)(−)
JM |V 1

ε + En − H0 + iρ

× |(N ′l ′ j′, n′)JM〉. (25)

Further,

〈(α, n)JM |(N ′l ′ j′, n′)JM〉 = δn′nδl ′lδ j′ j〈εl|N ′l〉, (26)

where 〈εl|N ′l〉 is the scalar product of the wave function

〈r|εl〉 =
√

2kM
h̄2π

jl (kr) describing free motion of nucleon with

the energy ε and orbital angular momentum l and the radial
spherical harmonic oscillator function.

With the help of the basis states {|(Nl j, n)JM〉} and
{|(α, n)JM〉 ≡ {|(εl j, n)JM〉}, which correspond to a given ro-
tational band of the final nucleus, excited in the process of the
nucleon knockout, the second term of the right-hand side of
Eq. (25) can be expressed as

〈(α, n)(−)
JM |V 1

ε + En − H0 + iρ
|(N ′l ′ j′, n′)JM〉

=
∑

N ′′l ′′ j′′n′′
〈(α, n)(−)

JM |(N ′′l ′′ j′′, n′′)JM〉
∫ ∞

0
〈(N ′′l ′′ j′′, n′′)JM |V |(ε̃l ′ j′, n′)JM〉〈ε̃l ′|N ′l ′〉 d ε̃

ε + En − ε̃ − En′ + iρ
. (27)

Substituting expressions (26)–(27) into Eq. (25) and using relations (7), (8) we obtain, after simple transformations, a system
of algebraic coupled-channel equations that allows one to find the components of the scattering state |(α, n)(−)

J 〉 with the energy
E = ε + En and total angular momentum J , corresponding to emission of a nucleon with the energy ε, orbital momentum l , and
total angular momentum j and to formation of the final nucleus in the nth state of the rotational band associated with it in the
process of direct knockout of a nucleon from a given orbit of the target nucleus by a photon with the energy Eγ :

∑
N ′′l ′′ j′′n′′

WN ′l ′ j′n′,N ′′l ′′ j′′n′′ (Eγ , n, J, β, K ) 〈(αn)(−)
J |(N ′′l ′′ j′′, n′′)J〉 = −δll ′δ j j′δnn′ 〈εl|N ′l〉. (28)
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The matrix of the system of coupled-channel equations is explicitly given by the expression

WN ′l ′ j′n′,N ′′l ′′ j′′n′′ (Eγ , n, J, β, K )

=
∑

λ

[
A(l ′′ j′′n′′l ′ j′n′λ; KJ )P

∫ ∞

0

〈N ′′l ′′|vλ(r)|ε̃l ′〉〈ε̃l ′|N ′l ′〉d ε̃

ε + En − ε̃ − En′
− iπ (〈N ′′l ′′|vλ(r)|ε̃l ′〉〈ε̃l ′|N ′l ′〉)ε̃=ε+En−En′

]

+ B(l ′′ j′′n′′l ′ j′n′)

[
P

∫ ∞

0

〈N ′′l ′′| 1
r

dfs (r)
dr |ε̃l ′〉〈ε̃l ′|N ′l ′〉d ε̃

ε + En − ε̃ − En′
− iπ (〈N ′′l ′′|1

r

dfs(r)

dr
|ε̃l ′〉〈ε̃l ′|N ′l ′〉)ε̃=ε+En−En′

]

− δN ′′N ′δl ′′l ′δ j′′ j′δn′′n′ ., (29)

where the symbol P
∫

. . . d ε̃ denotes the Cauchy principal value of the integral,

A(l ′′ j′′n′′l ′ j′n′λ; KJ ) ≡ 1√
4π

(−1)J−In′+In′′−K−1/2 În′ l̂ ′ ĵ′În′′ l̂ ′′ ĵ′′λ̂
(

In′′ λ In′

K 0 −K

)(
l ′′ λ l ′
0 0 0

){
j′′ λ j′

l ′ 1
2 l ′′

}{
J In′ j′
λ j′′ In′′

}
(30)

[where for brevity we use the notation â = (2a + 1)1/2],

B(l ′′ j′′n′′l ′ j′n′) ≡ δn′′n′δl ′′l ′δ j′′ j′ (Us + iWs)

(
h̄

mπc

)2

×[ j′( j′ + 1) − l ′(l ′ + 1) − 3/4], (31)

Us and Ws are the values of the real and imaginary parts
of the depth of the spin-orbit potential, mπ is the π meson
mass, fs(r) = {1 + exp[(r − Rs)/as]}−1 is the form factor of
the spin-orbit interaction.

It should be noted that the conservation of parity and total
angular momentum conditions significantly reduce the num-
ber of dimensions of the system of equations (28). In fact,
for heavy even-even nuclei and with Nmax = 30, it does not
exceed 300.

The cross section (19) describes a single reaction channel
with a definite total angular momentum J corresponding to
knockout of a nucleon from a given single-particle state |β�〉
of the target nucleus resulting in excitation of a given state
(n) of the rotational band of the final nucleus built on the
produced nucleon hole excitation. In order to obtain the total
cross section of nucleon knockout from the selected orbit
one has to perform summation of the cross section (19) over
all possible values of J and n and multiply by a factor of
2, if the orbit is occupied by two nucleons. For calculation
of the total cross section of nucleon knockout all near-
surface orbits giving a significant contribution to it have to be
considered.

VI. APPLICATION OF THE MODEL
TO 108Pd, 160Gd, 184,186W, 180Hf

In the considered energy range (Eγ � 40 MeV) the yield
of direct photoneutrons in (γ , n) reactions comprises only a
small fraction of the photoneutron yield resulting from the
statistical decay of the giant dipole resonance (GDR) and is
hard to detect in the experimental data. For this reason the
model described in the previous sections is applied in this
work only to description of the reaction of direct knockout of
protons from heavy deformed nuclei, for which experimental
data on the photoproton yield at these energies are available
in literature.

Unfortunately, there is not much data on photoproton re-
actions in the specified region of nuclei and energies that can
be used to test the model. The most useful measurements for
this purpose are presented in the works [28–30] where the
cross sections of the (γ , p) reaction were obtained on 108Pd,
160Gd, and 184,186W at Eγ � 32 MeV using the activation
technique.

The calculations for these nuclei were performed in the
energy range from the (γ , p) reaction threshold to Eγ =
40 MeV with the step size h = 1 MeV. Parameters of the
components of the complex potential V —the values of the
radius, diffuseness parameter, and depth of the potential well
(fixed at the energy of the scattered particle corresponding
to the maximum of the experimental cross section)—were
taken from the global optical model [22]. The quadrupole
deformation parameters of 108Pd, 160Gd, 184,186W were esti-
mated from the compilation of experimental static quadrupole
moments [31].

As the calculations show, in order to compensate the deficit
of the theoretical cross section of σ (γ , p) at Eγ ≈ 23 MeV
for the considered nuclei it is enough to take into account the
direct knockout of photoprotons from several orbits closest
to the Fermi surface. Thus, for the 160Gd and 184W isotopes,
whose quadrupole deformation parameters δ are, respectively,
0.335 and 0.241, the calculations considered direct knockout
from six near-surface proton orbits, and for 108Pd and 186W
(δ = 0.15 and δ = 0.201, respectively) five orbits were con-
sidered.

The Coriolis and centrifugal forces affect significantly the
internal structure of a rotating nucleus, which may lead to
breaking of the adiabatic condition at high I . For this reason
the maximum number of the considered rotational band levels
was limited by the parameter nmax. The value of this parameter
as well as the moment of inertia of the final nucleus (T ) were
estimated from the available spectra of the rotational bands of
the final nucleus in the ENSDF database [32–36]. For 160Gd
the values of these parameters were taken as h̄−2T = 50
MeV−1 and nmax = 5 for the 184,186W isotopes h̄−2T = 31
MeV−1 and nmax = 4, and for the 108Pd nucleus h̄−2T = 16
MeV−1 and nmax = 5.

In the expansion (7) of the potential V into spherical
harmonics the values λ = 0, 2, 4, 6 of the orbital quantum
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FIG. 1. Cross section of direct γ -induced knockout of a proton
from 160Gd for transition into the ground state of the final nucleus.
Green, blue, and red curves correspond to the values of εmax = 100
MeV and Nmax = 20, 25, and 30, respectively, and black dashed
curve to εmax = 150 MeV and Nmax = 30.

number were used. The bound single-particle states of the tar-
get nucleus |β〉, from which the protons are knocked out, were
calculated, as noted previously, using the model described in
Ref. [23]. The single-particle basis states |Nl jm〉 are calcu-
lated in the oscillatory spherical potential with h̄ω = 41A−1/3

MeV.
Important parameters of the model are the constants Nmax

and εmax that limit the configuration space of the basis
states {|(Nl j, n)JM〉} and {|(α, n)JM〉 ≡ {|(εl j, n)JM〉} used in
Eq. (27) for transformation of the integral equations (25) into
the algebraic system (28). The values of these parameters
have to be sufficiently large for reliability and stability of the
calculations.

Figure 1 shows the results of computation of the direct
component of the cross section of the 160Gd(γ , p0) reaction
(corresponding to proton knockout from the Fermi level) for
different values of εmax and Nmax: green, blue, and red curves
correspond to the values of εmax = 100 MeV and Nmax = 20,
25, and 30, respectively, and black dashed curve to εmax = 150
MeV and Nmax = 30. Taking into consideration the rapid in-
crease of the computation time as a function of Nmax and the
relatively small difference between the blue and red curves,
one can conclude that the value Nmax = 30 is close to optimal.
Therefore, the subsequent calculations were performed with
this value of the parameter Nmax. As also seen from the figure,
the black dashed curve is almost indistinguishable from the
red one, indicating that setting εmax = 100 MeV is reliable
enough for further calculations.

Comparison of the calculated cross sections of direct
proton knockout with the experimental data also requires
calculation of the statistical component of the photoproton
reaction, since only the total reaction cross sections were ob-
tained in the mentioned experiments. For this purpose results
of calculations of two implementations of the statistical model
were used: the TALYS nuclear reaction simulation package [37]
(using the data published in the TENDL-2021 database [38])
and the combined model of photonuclear reactions (CMPR)
[39]. Both models contain description of the preequilibrium

(using the exciton model) and evaporation (using the Bohr
compound nucleus picture) phases of photonuclear reactions,
but the CMPR model additionally takes into account impor-
tant aspects of photonuclear reactions, namely, the effects
of the nuclear deformation, structure of the doorway excita-
tion state of the GDR and isospin dependence of its decay
channels.

Figure 2 shows the comparison of the obtained results
with the experimental data for the cross section of the (γ , p)
reaction on the 160Pd, 160Gd, and 184,186W isotopes. The exper-
imental cross section of (γ , p) is shown with black dots with
statistical error bars for 160Gd [28] and 108Pd [30] and with
black dashed curve with points for the 184W and 186W nuclei
[29]. Continuous curves show the results of the theoretical cal-
culation of different components of this cross section: the red
curve shows the proton DKO cross section calculated using
the described model; the blue and purple curves correspond to
the statistical component of the (γ , p) reaction cross section,
calculated, respectively, using the CMPR and TALYS models,
both with default parameters; the black curve shows the sum
of the statistical (CMPR) and direct components of the (γ , p)
cross section (i.e., the sum of the red and blue curves); and,
for comparison, the green curve denotes the proton DKO
cross section without the described effect of interaction with
the rotational states of the final nucleus, ignoring the excited
states of rotational bands by setting nmax = 1.

It should be noted that the experimental cross sec-
tions σ (γ , p) shown in Fig. 2 represent practically all known
(at least to us) data on measured photoproton cross sec-
tions for heavy deformed nuclei at Eγ � 40 MeV. In addition
to this, in a number of works yields of photoproton reactions
induced by bremsstrahlung photon beams on suitable targets
were measured. However, due to the continuous spectrum
of bremsstrahlung radiation usage of such data is generally
limited only to those cases where detailed information about
the conditions of irradiation can be obtained to reproduce the
energy distribution of the incident photons. This information
was available for the measurement of the (γ , p) reaction yield
on 180Hf in the bremsstrahlung photon beam with the max-
imum energy Eγ max = 55 MeV with the photon activation
technique [40]. The measured value of the total photoproton
reaction yield was equal to Yexp = (2.09 ± 0.21) × 10−7 1/e,
where the 1/e units denote the number of (γ , p) reactions per
one incident electron.

We calculated the direct component of the
180Hf(γ , p) 179Lu reaction cross section from the reaction
threshold up to 55 MeV, assuming the possibility of the proton
knock out from six near-surface single-particle orbits and
excitation of nmax = 4 lowest rotational states of the resulting
final nucleus, and using the parameter values δ = 0.265
and h̄−2T = 37 MeV−1. The statistical component of the
reaction cross section was calculated using the CMPR and
the TALYS models. The theoretical yield Y corresponding
to these reaction channels was obtained by folding the
cross sections with the bremsstrahlung photon spectrum
calculated using a GEANT4 [41] simulation. As a result,
the value YDKO = 0.70 × 10−7 1/e was obtained for the
direct proton knockout yield, and YCMPR = 2.00 × 10−7

1/e for the statistical yield using the combined model, and
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FIG. 2. Cross sections of the (γ , p) reaction on 108Pd, 160Gd, and 184,186W. Experiment: black points [28–30]. Theory: red curve,
contribution of the proton DKO with coupling with rotational band states (n = 1, 2, . . . , nmax); green curve, contribution of the DKO without
this coupling (n = 1); contribution of the processes involving formation of the compound nucleus is shown as blue (CMPR model [39])
and purple curves (TALYS calculation from the TENDL database [38]); black curve, total contribution of the direct and statistical reaction
mechanisms.

YTALYS = 7.94 × 10−9 1/e when using the TALYS program. In
addition, Fig. 3 shows the differential cross sections of the
direct proton knockout from 108Pd, 160Gd, 184W, and 186W
calculated at the energies Eγ = 13–38 MeV.

VII. DISCUSSION OF THE RESULTS

It is seen from Fig. 2 that the DKO cross section of the
(γ , p) reaction calculated using the described model provides
about 30% of the total experimental reaction cross section on
all of the considered nuclei, which represents an improvement
in comparison with the previous version of the model (see
Ref. [19] and the corresponding erratum), which assumed that
the proton knockout in the course of the surface direct nu-
clear photoeffect takes place solely from the Fermi level with
no interaction with the rotational band of the final nucleus.
Specifically, the peak values of the proton DKO cross sec-
tions in the previous version of the model were equal to 0.48,
0.20, and 0.25 mb on, respectively, 160Gd, 184W, and 186W.
Hence, in the updated calculation the improvement amounts

to a factor of 3 for 160Gd and to a factor of about 10 for the
isotopes of tungsten. Comparison of red and green curves in
Fig. 2, corresponding to DKO cross section with and without
excitation of the rotational band, shows that the interaction of
the knocked out proton with the rotational degree of freedom
of the final deformed nucleus approximately doubles the cross
section of direct photoeffect.

It is immediately noticeable from the figure and also from
the reaction yields on 180Hf that the statistical component of
the total reaction cross section calculated by TALYS is under-
estimated by over an order of magnitude. Such behavior is
not surprising as it is known that a baseline statistical model
will often underestimate the yield of photoprotons in photonu-
clear reactions on medium and heavy nuclei in the energy
range of the giant dipole resonance (see, e.g., Refs. [42–45]).
Indeed, in addition to the Coulomb barrier, two principal
factors also affect the competition between the photoproton
and photoneutron decay channels of the GDR. Namely, on
the one hand, the isospin selection rules result in predomi-
nant emission of protons from the T> branch of the GDR.
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FIG. 3. Differential cross sections of the direct proton knockout reaction from 108Pd, 160Gd, and 184,186W, calculated at Eγ = 13 MeV
(black), Eγ = 18 MeV (purple), Eγ = 23 MeV (red), Eγ = 28 MeV (blue), Eγ = 33 MeV (green), Eγ = 38 MeV (cyan).

On the other hand, the energy of the collective shift of the
resonance is carried away by outgoing semidirect nucleons
already in the early stages of the decay, resulting in enhance-
ment of the yield of high-energy particles, which, in turn,
reduces inhibition of the photoproton yield by the Coulomb
barrier. Both of these factors are approximately taken into
account by the CMPR model [39], and, as can be seen from
the figure, the obtained statistical cross sections are in line
with the data. For this reason, the CMPR cross sections were
used for calculation of the total (γ , p) reaction cross
sections.

The direct photoeffect results in a noticeable contribution
to the total cross section of the (γ , p) reaction. Specifically,
enabling of the direct proton knockout mechanism allowed
us to compensate the lack of the statistical photoproton yield
and reproduce the amplitude of the total cross section in
the considered energy range. However, the maximum of
the total theoretical cross section σ (γ , p) = σ CMPR(γ , p) +
σ DKO(γ , p) is shifted towards larger energies for 160Gd,
184,186W with respect to the experimental cross section by
approximately 2 MeV, and its decrease at large energies Eγ

is significantly less steep.
The calculated DKO cross section on 160Gd is noticeably

less than on 184W, while the number of close-to-surface or-
bits taken into account in the DKO calculation was equal.
Two factors can provide an explanation. On the one hand the
kinetic energy of nucleons knocked out from 160Gd is less
than in the case of 184,186W due to the larger proton separa-
tion threshold in this nucleus (Bp = 9.19 MeV in 160Gd and

7.70 MeV in 184W). This, evidently, assists in increase of the
yield of direct photoprotons from 184W compared to 160Gd,
as more energetic outgoing particles leave the interaction re-
gion more rapidly, preventing their capture into the compound
nucleus. On the other hand, the heavier nuclei with a larger
surface area have a larger probability to find near it a proton
in one of the concerned orbits. Since the nucleons knocked out
from the surface are less subject to the effect of the absorption
terms of the average field responsible for formation of the
compound nucleus, they give a larger contribution to the direct
photoeffect, other things being equal. This aspect, in fact,
is the basis of the assumption of the surface nature of the
direct photoeffect on heavy deformed nuclei in the considered
energy range.

The energy dependence of the direct photoeffect cross sec-
tion for the considered nuclei is of a significant interest. As
seen from Fig. 2 they change very slowly with the energy Eγ ,
slower than the cross sections of partial photonucleon reac-
tions in the energy range Eγ � 20 MeV, producing a broad
pseudoresonance with a maximum at about Eγ ≈ 25–30 MeV.
In order to clarify the nature of this situation we refer to the
result of calculation of angular distributions of outgoing direct
photoprotons at different energies Eγ , shown in Fig. 3. As
seen from these figures, at small energies of the incident pho-
ton (Eγ < 20 MeV) the angular distribution of the outgoing
direct protons is close to isotropic. However, as the Eγ energy
increases it becomes asymmetric, with a large predominance
of the number outgoing protons in the forward direction. Such
behavior of the angular distribution results in a situation when
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the number of the knocked out protons that could leave the
reaction region without formation of a compound nucleus first
increases with increase of the photon energy Eγ , and then
begins to decrease due to the prevailing forward direction of
protons knocked out from the frontal side of the surface hav-
ing to travel through the bulk of the nuclear matter, where their
energy is distributed among other nucleons with increasingly
larger probability.

It also follows from Fig. 2 that for 160Gd, 184,186W the
theoretical integrated cross section of the (γ , p) reaction
evaluated in the interval from the reaction threshold Bp to
Eγmax � 28 MeV is larger than the corresponding experimental
cross section, which is a result of a slower decrease of the
statistical and direct components of the theoretical cross sec-
tion at large energies Eγ compared to the experimental cross
section.

This disagreement of the theory and experiment at the
high-energy tail of the reaction cross sections can, of course,
be a result of systematic uncertainties of both the direct pro-
ton knockout model and the predictions of the CMPR based
on formation and decay of the GDR, whose behavior far
away from the maximum of photoabsorption is still poorly
known. However, it should be noted that the accuracy of
photonuclear cross sections is sometimes not very high [46].
Bremsstrahlung radiation was used as a photon source in the
experiments on all considered nuclei, and, therefore, artifacts
could be introduced during reconstruction of the reaction
cross sections as a function of Eγ . In Ref. [28] above 25 MeV
the β activity from 159Eu could not be separated from 158Eu
and the 160Gd (γ , p) 159Eu reaction cross section is a result of
estimation. The uncertainty of the integrated cross sections on
184,186W was estimated by the authors in Ref. [29] to be of the
order of 20%.

On the other hand the theoretical value Y CMPR + Y DKO

of the photoproton yield from 180Hf in the Eγmax = 55 MeV
bremsstrahlung photon beam also displays an excess of ap-
proximately 30% over the experimental yield measured in
Ref. [40], which again can indicate overestimation of the
calculated (γ , p) cross section in the high-energy tail of the
GDR.

In conclusion we note certain directions of further de-
velopment of the model. First, introduction of the effect of
pairing interaction can lead to a better agreement with the
data. Indeed, within the BCS model of the nucleon pairing
effect the incident photon should find paired nucleons in the
single-particle levels of the deformed average field at the

energies greater than the Fermi energy, which will shift the
direct photoeffect curve to the left.

Second, for photoabsorption on heavy nuclei one can, in
principle, to a certain degree increase the energy limit Emax ≈
40 MeV at which the described nonrelativistic version of the
DKO on deformed nuclei can still be applied. This increase
cannot be large—at most up to 60–80 MeV—due to the lim-
itations arising from the usage of the Siegert’s theorem (see
estimates made in Sec. I). A natural question then is whether
the described model can be further developed so as to success-
fully describe the nuclear photoeffect on deformed nuclei, or
at least a significant part of it, at larger energies, and whether
it can be done while staying within the framework of DKO,
since the presented formalism assumes that the outgoing nu-
cleon interacts with the rotational states of the final nucleus
built on the hole excitations produced after the absorption of
the photon by a single nucleon.

Evidently, the desired result cannot be achieved within the
nonrelativistic approach, since, as mentioned in Sec. I, the
contribution of the nonrelativistic mechanism of the DKO to
the total cross section of the (γ , p) reaction is usually very
small even at moderate energies and in the case of the (γ , n)
reaction it is negligible even at low energies [7].

On the other hand, relativistic calculations reveal a signif-
icant contribution of the DKO mechanism in the (γ , p) cross
section up to the energies of E ≈ 500 MeV. One can hope,
therefore, that consideration of the relativistic effects (e.g.,
using the formalism developed in Ref. [4]) will allow us to
extend the energy range of the presented model. At the same
time, for this problem to be tackled in practice it is desirable
that experimental data on photonucleon reactions on heavy
deformed nuclei at large energies become available.

ACKNOWLEDGMENTS

We acknowledge our sincere thankfulness to Prof. V. V.
Varlamov (SINP MSU) for his help and useful remarks during
discussion of this work.

APPENDIX: COEFFICIENTS OF LEGENDRE
POLYNOMIALS EXPANSION OF D1, D12, AND D2

The coefficients describing the expansion of the differential
cross section (21) into Legendre polynomials [see Eqs. (22)–
(24)] are determined by the following expressions (hereafter
the notation â = √

2a + 1 is used for brevity):

A0 = 2

3

∑
l jJ

|〈(α, n)(−)
J ‖ rY1(ϑ, ϕ) ‖ J0〉|2, (A1)

A1 = 6√
10

(−1)In+1/2+J0
∑

l jJl ′ j′J ′
(−1) j+ j′+J+J ′

Ĵ Ĵ ′ ĵ ĵ′ l̂ l̂ ′
(

l l ′ 1
0 0 0

){
j 1 j′

l ′ 1
2 l

}{
1 J J ′
In j′ j

}{
1 1 2
J ′ J0 J

}

×〈(α, n)(−)
J ‖ rY1(ϑ, ϕ) ‖ J0〉〈(α′, n)(−)

J ′ ‖ r2Y2(ϑ, ϕ) ‖ J0〉∗|ε′=ε, (A2)

A2 = −
√

10

3
(−1)In+1/2+J0

∑
l jJl ′ j′J ′

(−1) j+ j′+J+J ′
Ĵ Ĵ ′ ĵ ĵ′ l̂ l̂ ′

(
l l ′ 2
0 0 0

){
j 2 j′

l ′ 1
2 l

}{
2 J J ′
In j′ j

}{
1 2 1
J ′ J0 J

}

×〈(α, n)(−)
J ‖ rY1(ϑ, ϕ) ‖ J0〉〈(α′, n)(−)

J ′ ‖ rY1(ϑ, ϕ) ‖ J0〉∗|ε′=ε. (A3)
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A3 = 2

√
7

5
(−1)In+1/2+J0

∑
l jJl ′ j′J ′

(−1) j+ j′+J+J ′
Ĵ Ĵ ′ ĵ ĵ′ l̂ l̂ ′

(
l l ′ 3
0 0 0

){
j 3 j′

l ′ 1
2 l

}{
3 J J ′
In j′ j

}{
1 3 2
J ′ J0 J

}

×〈(α, n)(−)
J ‖ rY1(ϑ, ϕ) ‖ J0〉〈(α′, n)(−)

J ′ ‖ r2Y2(ϑ, ϕ) ‖ J0〉∗|ε′=ε. (A4)

B0 = 2

5

∑
l jJ

|〈(α, n)(−)
J ‖ r2Y2(ϑ, ϕ) ‖ J0〉|2, (A5)

B2 = −2

√
5

14
(−1)In+1/2+J0

∑
l jJl ′ j′J ′

(−1) j+ j′+J+J ′
Ĵ Ĵ ′ ĵ ĵ′ l̂ l̂ ′

(
l l ′ 2
0 0 0

){
j 2 j′

l ′ 1
2 l

}{
2 J J ′
In j′ j

}{
2 2 2
J ′ J0 J

}

×〈(α, n)(−)
J ‖ r2Y2(ϑ, ϕ) ‖ J0〉〈(α′, n)(−)

J ′ ‖ r2Y2(ϑ, ϕ) ‖ J0〉∗|ε′=ε, (A6)

B4 = −12

√
2

35
(−1)In+1/2+J0

∑
l jJl ′ j′J ′

(−1) j+ j′+J+J ′
Ĵ Ĵ ′ ĵ ĵ′ l̂ l̂ ′

(
l l ′ 4
0 0 0

){
j 4 j′

l ′ 1
2 l

}{
4 J J ′
In j′ j

}{
2 4 2
J ′ J0 J

}

×〈(α, n)(−)
J ‖ r2Y2(ϑ, ϕ) ‖ J0〉〈(α′, n)(−)

J ′ ‖ r2Y2(ϑ, ϕ) ‖ J0〉∗|ε′=ε. (A7)

As seen from Eqs. (21)–(24), (A1)–(A7) calculation of the cross section dσn(Eγ , θ, φ)/d� requires evaluation of the reduced
matrix elements 〈(α, n)(−)

J ‖ rLYL(ϑ, ϕ) ‖ J0〉, where L = 1, 2. By expanding the scattering state |(α, n)(−)
JM0

〉 into |(N ′l ′ j′, n′)JM0〉
states, where |N ′l ′ j′m′〉 are the spherical harmonic oscillator eigenstates in the laboratory frame with h̄ω = 41A−1/3 MeV and
|n′〉 are the final nucleus’s states from the same rotational band as the |n〉 state, we obtain

〈(α, n)(−)
JM0

|rLYL0(ϑ, ϕ)|J0M0〉 =
∑

N ′l ′ j′m′n′
〈(α, n)(−)

JM0
|(N ′l ′ j′, n′)JM0〉( j′m′In′Mn′ |JM0)〈N ′l ′ j′m′, n′|rLYL0(ϑ, ϕ)|J0M0〉. (A8)

The quantity of interest is the amplitude of transition of a nucleon from a bound single-particle state |β�〉 of the target nucleus
to the continuum scattering state. In the intrinsic frame the bound single-particle states were calculated by diagonalization of the
single-particle Hamiltonian using a deformed Woods-Saxon potential described in Ref. [23] in the spherical harmonic oscillator
basis {|N0l0 j0�〉}. In this way the wave function ϕ′

β� entering the ground state of the target nucleus in Eq. (1) is expressed in the
form

ϕ′
β� =

∑
N0l0 j0

CN0l0 j0 (β�)|N0l0 j0�〉, (A9)

where CN0l0 j0 (β�) are the coefficients of expansion of the function ϕ′
β� into the spherical oscillator eigenfunctions in the intrinsic

frame.
Using (1), (A8), and (A9) and the Wigner-Eckart theorem after a transformation we obtain

〈(α, n)(−)
J ‖ rLYL(ϑ, ϕ) ‖ J0〉 =

∑
N ′l ′ j′m′n′

〈(α, n)(−)
J |(N ′l ′ j′, n′)J〉A(N ′l ′ j′n′; J0JLβ�K ), (A10)

where

A(N ′l ′ j′n′; J0JLβ�K ) = 1

4π
(−1)�+K+ j′−In′ Ĵ Ĵ0 În′ L̂l̂ ′ ĵ′

∑
N0l0 j0

(−1) j0+1/2CN0l0 j0 (β�)l̂0 ĵ0

(
l ′ L l0
0 0 0

)

×
(

In′ j0 J0

K � −� − K

){
j′ L j0
l0

1
2 l ′

}{
J J0 L
j0 j′ In′

}
〈N ′l ′|rL|N0l0〉. (A11)

The radial matrix element 〈N ′l ′|rL|N0l0〉 for oscillator functions can be calculated analytically [47].
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