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Multinucleon transfer mechanism in 160Gd + 186W collisions in stochastic mean-field theory
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The multinucleon transfer mechanism in 160Gd + 186W collisions is investigated in the framework of quantal
transport description, based on the stochastic mean-field (SMF) theory. The SMF theory provides a microscopic
approach for nuclear dynamics beyond the time-dependent Hartree-Fock approach by including mean-field fluc-
tuations. Cross sections for the primary fragment production are determined in the quantal transport description
and compared with the available data.
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I. INTRODUCTION

The production of heavy elements near the superheavy
island with proton numbers Z > 100 embodies one of the
greatest experimental and theoretical challenges [1–16]. The
most common approach for the production of these elements
and their isotopes is through fusion reactions. Historically,
two distinct experimental approaches have been employed
to synthesize these nuclei, named, based on their excita-
tion properties, as cold fusion reactions [17] and hot fusion
reactions [14,18]. The primary composite systems formed in
these reactions are at a relatively high excitation energy, which
subsequently deexcites by emitting neutrons, α particles, and
secondary fission. This results in exceedingly small evapo-
ration residue cross sections, which makes reaching heavier
elements as well as the neutron rich isotopes of these elements
very difficult. To circumvent this obstacle, multinucleon trans-
fer reactions have been proposed as an alternative. Such
experiments have recently focused on using actinide targets
at near the Coulomb barrier energies. Using this approach, it
is possible to produce heavy primary fragments at reasonably
lower excitation energies. Consequently, such reactions may
provide a more efficient mechanism for the production of
heavy neutron-rich isotopes than fusion, fission, and frag-
mentation reactions. In collisions involving deformed target
nuclei, multinucleon transfer depends on the collision geome-
try. In a typical collision, the system drifts toward symmetry.
However, for certain geometries the system may drift toward
asymmetry, which is referred to as inverse quasifission. The
multinucleon transfer mechanism has been studied by em-
ploying a number of phenomenological approaches, such as
the multidimensional Langevin model [19–25], the dinuclear
system model [26–28], and the quantum molecular dynamics
approach [29–31].

*ayik@tntech.edu

To formulate a reliable description of the multiparticle
transfer mechanism and its dependence on the collision
geometry it is essential to utilize microscopic approaches.
Time-dependent Hartree-Fock (TDHF) theory is a good can-
didate as the basis for such a microscopic description to
describe the evolution of collective dynamics at low bom-
barding energies [32–41]. Despite its success, TDHF theory,
based on the mean-field approach, only describes the most
probable path of the collision dynamics with small fluctu-
ations around it. By virtue of this limitation TDHF theory
generally describes the mean values of observables, such as
the kinetic energy loss involving one-body dissipation, but is
unable to account for larger fluctuations and dispersions of the
fragment mass and charge distributions. In order to account
for these observables it is necessary to find a prescription
that goes beyond the mean-field approximation [42–48]. One
such approach is through the time-dependent random-phase
approximation (TDRPA) developed by Balian and Vénéroni,
which provides a consistent theory to compute larger fluc-
tuations of the observables going beyond mean field. This
method has been used to study multinucleon transfer reactions
in symmetric systems [49–52], and it is inherently constrained
to compute the dispersion of charge and mass distributions in
symmetric collisions.

The stochastic mean-field (SMF) theory, closely related
to the TDRPA, circumvents this problem and facilitates fur-
ther improvements to the beyond-mean-field approximation
[47,48]. The paper is organized as follows. In Sec. II, we
provide results of TDHF calculations for the collisions of
the 160Gd + 186W system at Ec.m. = 502.6 MeV and Ec.m. =
461.9 MeV. Section III briefly describes multinucleon transfer
as constituted in the quantal transport description of the SMF
approach. In this reaction both projectile and target nuclei are
two deformed isotopes between doubly closed 132Sn and 208Pb
shells (Z = 50, N = 82 and Z = 82, N = 126). For most col-
lision geometries, the initial mass asymmetry increases, which
causes the reaction to be characterized as inverse quasifis-
sion. In Sec. IV, we provide the analysis of the multinucleon
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FIG. 1. Mean values of neutron and proton numbers of W-like fragments in the head-on collision of the 160Gd + 186W system at Ec.m. =
502.6 MeV in tip-tip (a), tip-side (b), side-tip (c), and side-side (d) geometries.

transfer mechanism for the same reaction. The quantal trans-
port approach describes the production of primary isotopes
and we compare results with the available data [53]. The
cross-section distributions, mean values, and dispersions are
determined without any adjustable parameter employing a
Skyrme energy density functional. In Sec. V, we summarize
our results and provide conclusions.

II. MEAN-FIELD PROPERTIES

The TDHF theory has been the primary microscopic tool
for studying low-energy heavy-ion reactions, including fu-
sion, deep-inelastic collisions, and quasifission [32–36,39–
41]. Since the theory is derived by the minimization of
the time-dependent many-body action it is deterministic in
nature and provides the most probably reaction path for the
system. Namely, given a set of initial conditions for the
reaction there is only one outcome for the reaction. At some
level distribution can be obtained by varying the initial con-
ditions (e.g., orbital angular momentum or the orientation
angle for deformed nuclei). However, these distributions are
typically much narrower when compared with the experiment
[32]. TDHF theory also provides a good description of one-
body dissipation [54,55]. In the 160Gd + 186W system, initial
ground states for the target and the projectile have large pro-
late deformations. Consequently, the reaction dynamics and
the transfer of nucleons depend on the relative alignment of

the target and the projectile. We refer to this as the dependence
on collision geometry. For the reaction 160Gd + 186W, at ini-
tial energies Ec.m. = 461.9 MeV and Ec.m. = 502.6 MeV, we
explore four distinct alignments of the target and the projec-
tile. Using the convention adopted in the work of Kedziora
and Simenel [56], we denote the initial orientation of either
the projectile or the target principle deformation axis to be in
the beam direction as X, and we denote the case when their
principle axis is perpendicular to the beam direction as Y. As
a result we are faced with four distinct orientation possibilities
for the target and the projectile, labeled as YY , XX , XY , and
Y X , corresponding to side-side, tip-tip, tip-side, and side-tip
collision geometries, respectively (please see Figs. 2 and 3
in Ref. [56]). Here, the first letter stands for the orientation
of the lighter collision partner. In Ref. [56], these collision
geometries are defined for head-on collisions. In the present
work these geometries are adopted for off-central collisions
according to the reaction plane. The symmetry axis of the
deformed target is placed parallel and perpendicular to the
beam direction. Similarly, the symmetry axis of the projectile
is placed parallel and perpendicular to the beam direction.
In this manner four different collision geometries are labeled
in terms of the same notation as for the head-on collisions.
Collisions in the Y Z geometry are not included in the yield
calculations of this work. In a follow-up study we plan to
include collisions with this geometry and also the nonlin-
ear effect of the potential energy in yield calculations. The
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FIG. 2. Blue curves show the drift path of W-like fragments in the head-on collision of the 160Gd + 186W system at Ec.m. = 502.6 MeV in
tip-tip (a), tip-side (b), side-tip (c), and side-side (d) geometries.

FIG. 3. Neutron and proton diffusion coefficients in the head-on collision of the 160Gd + 186W system at Ec.m. = 502.6 MeV in tip-tip (a),
tip-side (b), side-tip (c), and side-side (d) collision geometries.
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TABLE I. Results of the TDHF and SMF calculations for the 160Gd + 186W system at Ec.m. = 502.6 MeV in tip-tip (XX ), tip-side (XY ),
side-tip (Y X ), and side-side (YY ) geometries.

Geometry �i (h̄) Z f
1 Af

1 Z f
2 Af

2 � f (h̄) TKEL (MeV) σNN σZZ σNZ σAA θc.m. θ lab
1 θ lab

2

120 61.1 152.7 76.9 193.3 117.1 245.7 5.8 4.3 3.9 9.1 120.8 55.0 24.1
140 64.2 160.5 73.8 185.5 125.2 237.0 5.7 4.3 3.9 9.0 114.3 51.1 27.6
160 65.8 164.5 72.2 181.5 134.0 208.2 5.6 4.2 3.7 8.8 111.8 51.1 30.0

XX 180 65.5 164.0 72.5 182.0 120.8 173.5 5.4 4.1 3.5 8.4 111.7 53.4 31.0
200 65.6 164.3 72.4 181.7 138.0 140.5 5.1 3.9 3.2 7.9 107.5 53.2 33.9
220 65.2 163.5 72.8 182.5 165.9 114.7 4.8 3.5 2.7 7.1 102.8 52.2 36.6
240 64.5 161.8 73.5 184.2 202.3 85.3 4.1 2.9 1.9 5.7 98.7 51.7 39.1

120 61.2 152.6 76.8 193.4 116.9 212.3 7.1 4.9 5.2 11.3 120.8 57.9 24.9
140 64.7 161.6 73.3 184.4 132.8 212.6 6.9 4.8 5.0 11.0 113.6 52.3 28.8
160 65.4 163.3 72.6 182.7 136.9 186.0 6.6 4.5 4.7 10.4 110.6 52.3 31.1
180 65.3 163.3 72.7 182.7 141.2 169.3 6.2 4.3 4.3 9.7 106.8 51.6 33.2

XY 200 65.3 163.3 72.7 182.7 154.1 155.3 5.9 4.1 4.0 9.1 102.6 50.3 35.5
220 65.1 163.0 72.9 183.0 170.6 136.3 5.4 3.8 3.5 8.3 99.0 49.5 37.6
240 64.9 162.3 73.1 183.7 191.2 113.8 4.8 3.4 2.9 7.1 96.1 49.0 39.6
260 64.4 161.5 73.6 184.5 218.8 81.9 3.9 2.7 1.9 5.4 94.1 49.3 41.4

120 66.3 166.3 71.7 179.6 98.1 177.3 6.5 4.6 4.6 10.3 123.2 57.5 26.0
140 66.1 165.5 71.9 180.5 117.4 162.3 6.2 4.3 4.2 9.6 117.2 56.2 29.0
160 65.8 164.7 72.2 181.3 130.8 146.4 5.8 4.1 3.9 9.0 112.6 55.3 31.4

Y X 180 65.9 165.0 72.1 181.0 148.2 134.2 5.5 3.8 3.5 8.4 107.9 53.5 33.9
200 65.3 163.8 72.7 182.2 168.5 122.0 5.0 3.5 3.0 7.4 103.6 52.2 36.1
220 64.5 162.1 73.5 183.9 186.0 101.8 4.4 3.0 2.3 6.3 100.4 51.8 37.9
240 64.1 161.0 73.9 185.0 217.5 73.5 3.7 2.5 1.6 4.9 97.9 51.8 39.7

120 64.1 159.8 73.9 186.2 106.7 123.1 5.4 3.7 3.5 8.3 125.7 64.7 25.4
140 64.4 160.8 73.6 185.2 123.4 113.8 5.1 3.5 3.3 7.7 120.1 62.0 28.3
160 64.6 161.5 73.4 184.5 141.2 105.6 4.8 3.3 2.9 7.2 115.0 59.6 30.9

YY 180 64.6 161.6 73.4 184.4 159.4 95.6 4.5 3.1 2.6 6.5 110.6 57.7 33.2
200 64.4 161.4 73.6 184.6 175.4 81.4 4.0 2.8 2.1 5.7 106.9 56.3 35.3
220 64.3 161.2 73.7 184.8 193.2 66.3 3.6 2.4 1.6 4.8 103.7 55.3 37.1

calculations presented in the rest of the article employed the
TDHF code [57,58] using the SLy4d Skyrme energy density
functional [59], with a box size of 60 × 60 × 36 fm in the x,
y, and z directions, respectively. The results of our TDHF cal-
culations for all of these collision geometries are tabulated in
Tables I and II at two bombarding energies and for a range of
initial orbital angular momenta �i. We denote the final values
of mass and charge numbers for the Gd-like fragments with A f

1

and Z f
1 , W-like fragments with A f

2 and Z f
2 , final total kinetic

energy lost (TKEL), scattering angles in the center-of-mass
(c.m.) (θc.m.) and laboratory frame (θ lab

1 and θ lab
2 ). These tables

also include asymptotic values of neutron σNN , proton σZZ ,
mixed dispersions σNZ , and mass dispersions σAA, which are

discussed in Sec. III. To economize on the computation time,
all quantities are evaluated in steps of 20 units of orbital angu-
lar momentum. The range of initial orbital angular momenta
is specified according to the angular position of detectors in
the laboratory system. The values of initial orbital angular
momenta, which fall into the detector acceptance range of
25◦–65◦ in the laboratory frame, are shown in Tables I and
II. At the lower collision energy, Ec.m. = 461.9 MeV, only in
the tip-tip and tip-side geometries do produced fragments fall
in the acceptance range of detectors. As a result, in Table II
only the tip-tip and tip-side results are shown. Different col-
lision geometries have qualitatively distinct nucleon transfer
mechanisms. These can be seen more clearly by plotting the

TABLE II. Results of the TDHF and SMF calculations for the 160Gd + 186W system at Ec.m. = 461.9 MeV in tip-tip (XX ) and tip-side
(XY ) geometries.

Geometry �i (h̄) Z f
1 Af

1 Z f
2 Af

2 � f (h̄) TKEL (MeV) σNN σZZ σNZ σAA θc.m. θ lab
1 θ lab

2

140 65.0 162.6 73.0 183.4 88.9 97.7 5.1 3.8 3.1 7.7 129.7 65.8 23.8
XX 160 64.9 162.7 73.1 183.3 116.1 81.4 4.7 3.5 2.7 7.0 123.3 63.7 27.1

180 64.4 161.5 73.6 184.5 149.7 56.7 4.1 3.0 2.0 5.8 117.9 62.6 30.1

140 64.6 161.8 73.4 184.2 117.2 75.2 4.8 3.3 2.8 7.1 126.3 66.0 25.7
XY 160 64.5 161.7 73.5 184.3 138.2 59.2 4.3 3.0 2.3 6.1 121.3 64.3 28.4
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time evolution of neutron N (t ) and proton Z (t ) numbers for
Gd-like fragments or W-like fragments. In Fig. 1, time evo-
lutions of proton and neutron numbers of W-like fragments in
the central collision of 160Gd + 186W are presented at different
collision geometries.

We can extract more useful information about nucleon
transfer mechanisms by examining drift paths. Drift paths
are obtained by eliminating time from neutron numbers N (t )
and proton numbers Z (t ) and plotting the result in the (N, Z )
plane. Drift paths in different collision geometries exhibit
a different behavior as a result of the shell effects on the
dynamics, and they contain specific information about the
time evolution of the mean values of macroscopic variables.
In Fig. 2 we plot drift paths for head-on collisions in different
geometries for W-like fragments (blue curves). In these fig-
ures, thick black lines denote sets of fragments with a charge
asymmetry value of N−Z

N+Z = 0.20. These lines are called the
isoscalar path, which travels near the bottom of the stability
valley. The isoscalar path extends all the way from the lead
valley on the upper end to the barium valley on the lower
end, and it makes about φ = 33◦ with the horizontal neutron
axis. We observe that, in all geometries, W-like fragments
drift along the isoscalar direction with a charge asymmetry
of approximately 0.20. Figure 2(a) shows the drift path in
tip-tip (XX) collisions. Initially, as seen usually in quasifis-
sion reactions, W-like heavy fragments lose nucleons and the
system drifts toward symmetry. After this initial behavior, W-
like heavy fragments turn back and by gaining nucleons drift
toward asymmetry. This kind of drift path is not very usual and
it is referred to as an inverse quasifission reaction. Figure 2(b)
shows the drift path in the tip-side (XY) collision. In this case,
the drift path also indicates an inverse quasifission reaction. In
the side-tip (YX) collision, shown in Fig. 2(c), the nucleon drift
mechanism is similar to the tip-tip (XX) geometry. Initially,
heavy fragments lose neutrons and protons and the system
drifts along the isoscalar path toward symmetry, subsequently
changing direction and drifting toward asymmetry. As seen in
Fig. 2(d), in the side-side (YY) collision, the drift mechanism
is analogous to the one for the side-tip collision.

III. QUANTAL DIFFUSION OF NUCLEON TRANSFER

A. Langevin equations for multinucleon transfer

In TDHF theory, with a prescribed set of initial condi-
tions, the many-body state is a single Slater determinant
and a unique single-particle density matrix, which is time-
dependent, describing the deterministic reaction path for the
dynamical system. In beyond-TDHF approaches, the intro-
duction of additional correlations is typically represented by
a superposition of Slater determinants. In the SMF theory,
correlations are introduced as fluctuations of the initial state,
which constitute an ensemble of single-particle density matri-
ces [47,48]. For each of these single-particle density matrices
in the ensemble, the time evolution reduces to the TDHF
equations initialized by the self-consistent Hamiltonian of
the particular event. In constructing the fluctuations of these
initial density matrices, SMF employs a Gaussian distribution
of the random elements with variances that are specified with

the requirement that the ensemble averages of the one-body
operator dispersions of the initial state are the same as the
ones obtained in the quantal expressions in the mean-field
approach.

For low-energy heavy-ion collisions at energies near the
Coulomb barrier the dynamical system generally maintains
a dinuclear configuration. In these cases instead of generat-
ing an ensemble of mean-field events one can formulate a
more straightforward transport approach. Using the window
dynamics of the dinuclear system one can do a geometric
projection of the SMF approach to obtain Langevin equa-
tions for the relevant macroscopic variables. Fragments at
each time step are defined in terms of the window dynamics.
The symmetry axis of the dinuclear complex is determined
by calculating the mass quadrupole moment of the system
at different time steps. The principle axis of the quadrupole
tensor indicates the symmetry axis of the dinuclear complex.
The window plane is perpendicular to the symmetry axis and
passes through the lowest density point in the neck area.
Density integrals of the right and left sides of the window
plane define the projectilelike and targetlike fragments. The
window plane and its orientation continuously change during
the rotation of the dinuclear complex. For the derivations of
the quantal diffusion formalism and the utilization of window
dynamics we refer the reader to earlier references [60–66].
Neutron and proton numbers of the projectilelike or targetlike
fragment are chosen as the relevant macroscopic variables to
formulate the diffusion formalism. For the system at hand, we
take neutron Nλ

2 (t ) and proton Zλ
2 (t ) numbers of the W-like

fragments as relevant macroscopic variables. For each event
λ, the fragment neutron and proton numbers are obtained by
integrating the density on the left and the right of the window.
During the contact phase, fragment proton and neutron num-
bers fluctuate between events as a result of random nucleon
flux through the window. These numbers can be decomposed
as fluctuations about the mean values as Nλ

2 (t ) = N2(t ) +
δNλ

2 (t ) and Zλ
2 (t ) = Z2(t ) + δZλ

2 (t ). Here, N2(t ) and Z2(t ) are
the mean values obtained over the ensemble of SMF events.

These mean values can be deduced from the mean-
field TDHF calculations for small-amplitude fluctuations. In
the quantal diffusion approach, for small-amplitude fluctua-
tions, neutron δNλ

2 (t ) numbers and proton δZλ
2 (t ) numbers

evolve according to a coupled linear set of quantal Langevin
equations,

d

dt

(
δZλ

2 (t )
δNλ

2 (t )

)
=

(
∂vp

∂Z2

(
Zλ

2 − Z2
) + ∂vp

∂N2

(
Nλ

2 − N2
)

∂vn
∂Z2

(
Zλ

2 − Z2
) + ∂vn

∂N2

(
Nλ

2 − N2
)
)

+
(

δvλ
p(t )

δvλ
n (t )

)
. (1)

The quantities vλ
α (t ) = vα (t ) + δvλ

α (t ) denote the drift coeffi-
cients for protons and neutrons, with the mean values and the
fluctuating parts given by vα (t ) and δvλ

α (t ), respectively. Here,
the index α labels protons and neutrons. Drift coefficients
vλ

α (t ) denote the rate of flux for protons and neutrons through
the window in event λ. The linear limit of the Langevin de-
scription employed here proved to be a good approximation
when the driving potential energy was more or less harmonic
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around equilibrium values of the mass and charge asymme-
tries. In the first term of the Langevin equations, Eq. (1),
deviations of drift coefficients from the local equilibrium state
should appear. These deviations are related to the potential
energy surface of the dinuclear complex in the (N-Z) plane.
In this paper, and previous studies, we have approximated the
potential energy in the vicinity of the local equilibrium to be a
parabolic form. This leads to the linear form of the Langevin
equations as seen in Eq. (1). The most useful fact of using
Einstein relations is that it is possible to extract curvature
parameters in terms of drift and diffusion information, which
are determined from microscopic TDHF solutions, without
using adjustable parameters. So far, this linear approximation
has appeared to provide a good approximation in comparison
with data. However, it is possible to improve the harmonic
form of the potential energy by adding access and skewness
terms, which provide a better description of large-amplitude
fluctuations. This is one of the projects we are working on
to improve the quantal transport description for the nucleon
transfer mechanism. The rate of change of neutron and proton
numbers determines the mean values of drift coefficients. For
W-like fragments, these are shown in Fig. 1. Quantal expres-
sions for the stochastic parts of the drift coefficients δvλ

α (t ) can
be found in Refs. [67,68].

B. Quantal diffusion coefficients

Stochastic parts of the drift coefficients δvλ
p(t ) and δvλ

n (t )
are the primary generator of fluctuations in charge and mass
asymmetry degrees of freedom. In the SMF theory, these
stochastic parts of drift coefficients are Gaussian random dis-
tributions centered about a zero mean value, δvλ

p,n(t ) = 0. The
autocorrelation functions of the stochastic drift coefficient,
written as an integration over the evolution history, give the
diffusion coefficients Dαα (t ) for proton and neutron transfer:∫ t

0
dt ′δvλ

α (t ′)δvλ
α (t ) = Dαα (t ). (2)

In the most general formulation, the diffusion coefficients
are over a complete set of particle-hole states. In the diabatic
limit we can get rid of the particle states by utilizing closure
relations. As a consequence, the diffusion coefficients are
then obtained solely in terms of the occupied single-particle
states of the TDHF calculations, which provides a signifi-
cant simplification. Our previous publications provide all the
explicit expressions for the diffusion coefficients [60–68]. The
analysis of these coefficients are also provided in Appendix B
of Ref. [61]. The determination of the diffusion coefficients
by virtue of the mean-field properties is consistent with the
fluctuation-dissipation theorem of nonequilibrium statistical
mechanics and it significantly uncomplicates the calculation
of quantal diffusion coefficients. Quantal properties, such
as shell effects, the Pauli principle, and the effect of the
unrestricted collision geometry, are included in these diffusion
coefficients without any adjustable parameters. We point out
that there is a close analogy between the quantal expression
and the classical diffusion coefficient for a random walk
problem [69–71]. The direct part is given as the sum of the
nucleon currents across the window from the projectilelike

fragment to the targetlike fragment and from the targetlike
fragment to the projectilelike fragment, integrated over the
memory. This is analogous to the random walk problem, in
which the diffusion coefficient is given by the sum of the
rate of the forward and backward steps. The Pauli blocking
effect in the transfer mechanism does not have a classical
counterpart and is represented in the second part of the quantal
diffusion equations. This is illustrated in Fig. 3, where we
plot the neutron and proton diffusion coefficients in head-on
collisions of the 160Gd + 186W system at Ec.m. = 502.6 MeV
for different collision geometries.

C. Potential energy of the dinuclear system

The nucleon drift mechanism and dispersions of
fragment distributions are determined in terms of two
competing effects: (i) nucleon diffusion tends to increase
the dispersion of distribution functions, and (ii) the potential
energy of the dinuclear system U (N2, Z2) on the neutron
and proton plane that controls the mean nucleon drift and
determines the saturation values of dispersions. The potential
energy of the dinuclear system consists mainly of electrostatic
energy, symmetry energy, surface energy, and centrifugal
energy. The TDHF theory encompasses different energy
contributions at the microscopic level. Furthermore, TDHF
calculations illustrate that the potential energy depends on
the geometry of the dinuclear system. It is possible to extract
useful information about the potential energy with the help of
the Einstein relation in the overdamped limit [60–64]. In the
overdamped limit, drift coefficients are related to the potential
energy surface in the (N, Z ) plane as

vn(t ) = −DNN (t )

T ∗
∂

∂N2
U (N2, Z2), (3a)

vz(t ) = −DZZ (t )

T ∗
∂

∂Z2
U (N2, Z2), (3b)

where T ∗ stands for the effective temperature of the system,
and N2 and Z2 indicate the neutron and proton numbers of
W-like fragments in the dinuclear system. The drift infor-
mation of the 160Gd + 186W system gives information about
the potential energy only in the isoscalar direction. To obtain
information about the potential energy in the direction per-
pendicular to the stability valley, we consider the collision of
a neighboring 172Gd + 174W system at Ec.m. = 502.6 MeV.

Figure 4 shows the drift paths of W-like fragments in
head-on collisions in different geometries. In all geometries,
the system rapidly follows a path nearly perpendicular to the
stability valley to reach charge asymmetry equilibrium. We
refer to the direction perpendicular to the stability valley as
the isovector direction. Evolution in the isovector direction
is accompanied by drift along the isoscalar path toward
symmetry or asymmetry. At the end of the relatively short
contact time, the system separates before reaching the local
equilibrium state.

In collisions of the 160Gd + 186W system, a heavier local
equilibrium state is in the vicinity of the lead valley with
neutron and proton numbers around N0 = 124 and Z0 = 82,
while the lighter local equilibrium state is in the neighborhood
of the barium valley, having neutron and proton numbers

054605-6



MULTINUCLEON TRANSFER MECHANISM IN … PHYSICAL REVIEW C 108, 054605 (2023)

FIG. 4. Blue curves show the drift paths of W-like fragments in the head-on collision of the 172Gd + 174W system at Ec.m. = 502.6 MeV in
tip-tip (a), tip-side (b), side-tip (c), and side-side (d) geometries.

near N0 = 84 and Z0 = 56. These nuclei are located on the
isoscalar path with a charge asymmetry of 0.20. The drift
information of these two similar systems, when combined, can
provide an approximate description of the potential energy
surface of the dinuclear system relative to the equilibrium
value of the potential energy in terms of two parabolic
forms,

U (N2, Z2) = 1
2 aR2

S (N2, Z2) + 1
2 bR2

V (N2, Z2). (4)

Here, RS (N2, Z2) and RV (N2, Z2) represent perpendicular dis-
tances of a fragment with neutron and proton numbers
(N2, Z2) from the isoscalar path and from the local equilibrium
state along the isoscalar path, respectively. For 160Gd + 186W
collisions, in particular, tip-tip and tip-side collisions W-like
fragments appear to drift towards the 206Pb local equilibrium
state due to the Z = 82 shell effect in the lead valley. There
are also octupole shell effects in the Z = 56 barium isotopes
as discussed in Ref. [72]. Most probably both shell effects act
as a driving force toward asymmetry.

As a consequence of the sharp increase in the asymme-
try energy, we anticipate the isovector curvature parameter
to be considerably greater than the corresponding isoscalar
curvature parameter. From the geometry of Figs. 2 and
4, we express isovector and isoscalar distances in terms
of neutron and proton numbers of the fragment and neu-
tron and proton numbers of the equilibrium states. When

drift is in the asymmetry direction, the isoscalar distance
is given by RV (t ) = [N0 − N2(t )]cosφ + [Z0 − Z2(t )]sinφ,
and for drift in the symmetry direction, it is given by
RV (t ) = [N2(t ) − N0]cosφ + [Z2(t ) − Z0]sinφ. In both cases,
the isovector distance is given by RS (t ) = [N0 − N2(t )]sinφ −
[Z0 − Z2(t )]cosφ. The angle φ is the angle between the
isoscalar path and the N axis, which is about φ = 33◦.

Mean drift coefficients and diffusion coefficients are deter-
mined from the TDHF and SMF calculations; using Einstein
relations in Eq. (3), we can determine the reduced curva-
ture coefficients α = a/T ∗ and β = b/T ∗. Only ratios of the
curvature parameters and the effective temperature appear.
As a result, the effective temperature is not a parameter in
the description. The reduced curvature parameters in each
collision geometry vary in time due to the shell structure of
the TDHF description. In calculations of dispersion values we
employ constant curvature parameters, which are determined
by averaging over suitable time intervals when the overlap
between the colliding nuclei is sufficiently large. When drift
occurs toward asymmetry, the averaged value of the isoscalar
reduced curvature parameter over time intervals tB and tC is
determined as

βasym = 1

Rasym
V

∫ tC

tB

(
vn(t ) cos φ

DNN (t )
+ vp(t ) sin φ

DZZ (t )

)
dt, (5)
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TABLE III. Calculation of the β curvature parameter using the 160Gd + 186W system at Ec.m. = 502.6 MeV in tip-tip (XX ), tip-side (XY ),
side-tip (Y X ), and side-side (YY ) geometries. The time intervals tA, tB, and tC required to calculate isoscalar curvature parameters are shown in
Fig. 1. All times are in units of fm/c. Calculation of the α curvature parameter are shown in Fig. 5.

160Gd + 186W tA tB tC β
sym
AB β

asym
BC β = (βsym

AB + β
asym
BC )/2

Tip-tip 260 350 800 0.010 0.034 0.022
Tip-side — 250 900 — 0.008 0.008
Side-tip 260 380 900 0.016 0.004 0.010
Side-side 300 450 750 0.007 0.010 0.009

where the integrated value of the isoscalar distance for the
drift towards asymmetry is given by

Rasym
V =

∫ tC

tB

{[ N0 − N2(t ) ]cosφ + [ Z0 − Z2(t ) ]sinφ}dt .

(6)

When the drift occurs toward symmetry, we can determine
the averaged value of the isoscalar reduced curvature parame-
ter over time intervals tA and tB as

βsym = − 1

Rsym
V

∫ tB

tA

(
vn(t ) cos φ

DNN (t )
+ vp(t ) sin φ

DZZ (t )

)
dt, (7)

where the integrated value of the isoscalar distance for the
drift towards symmetry is given by

Rsym
V =

∫ tB

tA

{[ N2(t ) − N0 ]cosφ + [ Z2(t ) − Z0 ]sinφ}dt . (8)

These expressions can be used to calculate the averaged val-
ues of the isoscalar reduced curvature parameters in different
geometries. In Table III, the calculated values of isoscalar
reduced curvature parameters for different geometries are
given. In tip-tip, side-tip, and side-side geometries, initially
a drift towards symmetry is observed, followed by a drift
towards asymmetry. For these geometries, we determine the
isoscalar curvature parameter by taking the average of the drift
towards symmetry part and the drift towards asymmetry part,
given as β = (βsym

AB + β
asym
BC )/2.

We estimate the isovector reduced curvature parameters in
different geometries from the drift paths of the 172Gd + 174W
system at Ec.m. = 502.6 MeV by averaging over time intervals
tA and tB as

α = 1

RS

∫ tB

tA

(
vn(t ) sin φ

DNN (t )
− vp(t ) cos φ

DZZ (t )

)
dt, (9)

where the integrated value of the isovector distance is given
by

RS =
∫ tB

tA

{[ N0 − N2(t ) ]sinφ − [ Z0 − Z2(t ) ]cosφ}dt . (10)

Using Eq. (9), diffusion coefficients for the 172Gd + 174W
system at Ec.m. = 502.6 MeV are plotted in Fig. 6.

We can use these expressions in calculating averaged val-
ues of isovector reduced curvature parameters in different
geometries. In Table IV, the calculated values of isovec-
tor reduced curvature parameters for different geometries

are given. The potential energy surface in the (N-Z) plane
should not depend on the centrifugal potential energy and the
excitation energy of the dinuclear system. Therefore, in
the 160Gd + 186W system at Ec.m. = 461.9 MeV, we employ
the same curvature parameters that are determined at Ec.m. =
502.6 MeV. Since the drift coefficients have an analytical
form, we can immediately determine their derivatives to find
the following:

∂νn

∂N2
= −DNN (α sin2 φ + β cos2 φ), (11)

∂νz

∂Z2
= −DZZ

(
α cos2 φ + β sin2 φ

)
, (12)

∂νn

∂Z2
= −DNN (β − α) sin φ cos φ, (13)

∂νz

∂N2
= −DZZ (β − α) sin φ cos φ. (14)

The curvature parameter α perpendicular to the β-stability
valley is much larger than the curvature parameter β along the
stability valley. Consequently, β does not have an appreciable
effect on the derivatives of the drift coefficients. These deriva-
tive expressions are needed to calculate neutron, proton, and
mixed dispersions, as discussed in the following section.

D. Fragment probability distributions

In general, the combined probability distribution function
P�(N, Z ) for producing a fragment with neutron N and pro-
ton Z is obtained by producing a large number of solutions
of the Langevin equation (1). The equivalence between the
Langevin equation and the Fokker-Planck equation for the
distribution function of the macroscopic variables [70] is of
common knowledge. When the drift coefficients are linear

TABLE IV. Calculation of the α curvature parameter using the
172Gd + 174W system at Ec.m. = 502.6 MeV in tip-tip (XX ), tip-side
(XY ), side-tip (Y X ), and side-side (YY ) geometries. The time inter-
vals tA and tB required to calculate isovector curvature parameters are
shown in Fig. 5. All times are in units of fm/c.

172Gd + 174W tA tB α

Tip-tip 180 260 0.113
Tip-side 250 400 0.133
Side-tip 200 350 0.127
Side-side 250 450 0.143
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FIG. 5. Mean values of neutron and proton numbers of W-like fragments in the head-on collision of the 172Gd + 174W system at Ec.m. =
502.6 MeV in tip-tip (a), tip-side (b), side-tip (c), and side-side (d) geometries.

functions of macroscopic variables, as in the case of Eq. (1),
the proton and neutron distribution functions for the initial
angular momentum � are given as a correlated Gaussian func-
tion described by the mean values, and the neutron, proton,

and mixed dispersions, as

P�(N, Z ) = 1

2πσNN (�)σZZ (�)
√

1 − ρ2
�

exp (−C�). (15)

FIG. 6. Diffusion coefficients in the head-on collision of the 172Gd + 174W system at Ec.m. = 502.6 MeV in tip-tip (a), tip-side (b), side-tip
(c), and side-side (d) geometries.
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FIG. 7. Neutron, proton, and mixed variances as a function of time in the head-on collision of the 160Gd + 186W system at Ec.m. = 502.6
MeV in tip-tip (a), tip-side (b), side-tip (c), and side-side (d) geometries.

Here, the exponent C� is given by

C� = 1

2
(
1 − ρ2

�

)
[(

Z − Z�

σZZ (�)

)2

− 2ρ�

(
Z − Z�

σZZ (�)

)(
N − N�

σNN (�)

)

+
(

N − N�

σNN (�)

)2
]
, (16)

with the correlation coefficient defined as ρ� = σ 2
NZ(�)/

[σZZ(�)σNN(�)]. The quantities N� = N
λ

� and Z� = Z
λ

� denote
the mean neutron and proton numbers of the targetlike or
projectlike fragments. These mean values are obtained by
performing TDHF calculations. It is possible to deduce cou-

pled differential equations for variances σ 2
NN(�) = δNλδNλ

and σ 2
ZZ(�) = δZλδZλ and covariances σ 2

NZ(�) = δNλδZλ by
multiplying the Langevin equation (1) with δNλ and δZλ and
carrying out the average over the ensemble generated from
the solution of the Langevin equation. These coupled equa-
tions were obtained in Refs. [60–65,73]. We provide these
differential equations here again for completeness [74],

∂

∂t
σ 2

NN = 2
∂νn

∂N2
σ 2

NN + 2
∂νn

∂Z2
σ 2

NZ + 2DNN , (17)

∂

∂t
σ 2

ZZ = 2
∂νp

∂Z2
σ 2

ZZ + 2
∂νp

∂N2
σ 2

NZ + 2DZZ , (18)

and

∂

∂t
σ 2

NZ = ∂νp

∂N2
σ 2

NN + ∂νn

∂Z2
σ 2

ZZ + σ 2
NZ

(
∂νp

∂Z2
+ ∂νn

∂N2

)
. (19)

The set of coupled equations are also familiar from
the phenomenological nucleon exchange model, and they
were derived from the Fokker-Planck equation for the frag-
ment neutron and proton distributions in the deep-inelastic

heavy-ion collisions [71,74]. Variances and covariances are
determined from the solutions of these coupled differential
equations with the initial conditions σ 2

NN (t = 0) = 0, σ 2
ZZ (t =

0) = 0, and σ 2
NZ (t = 0) = 0 for each angular momentum �.

As an example, Fig. 7 shows neutron, proton, and mixed
dispersions in 160Gd + 186W collisions with the initial angu-
lar momentum � = 0h̄ at Ec.m. = 502.6 MeV for different
geometries. The probability distribution of the mass number
of produced fragments is determined by summing over N or
Z and keeping the total mass number constant A = N + Z:

P�(A) = 1√
2πσAA

exp

[
−1

2

(
A − A�

σAA(�)

)2
]
, (20)

where the mass variance is given by σ 2
AA = σ 2

NN + σ 2
ZZ +

2σ 2
NZ .

IV. PRODUCTION CROSS SECTIONS
OF PRIMARY FRAGMENTS

It is possible to calculate double cross sections as a function
of neutron and proton numbers of primary fragments. In the
experimental analysis of Kozulin et al. [53], only the mass
distribution of primary fragments is published. Therefore, we
present the calculation of cross sections σ s(A) as a function
of the mass number A of primary fragments using the familiar
expression

σ s(A) = π h̄2

2μEc.m.

�max∑
�min

(2� + 1)Ps
� (A), (21)

with

Ps
� (A) = 1

2

[
Ps

�,pro(A) + Ps
�,tar (A)

]
. (22)
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FIG. 8. Total cross sections in collisions of the 160Gd + 186W
system at Ec.m. = 502.6 MeV as a function of the mass number A.
Different geometries are indicated by dashed (red), dotted (green),
dashed-dotted (purple), and dashed-dot-dotted (blue) lines. Average
cross-section and experimental data taken from Ref. [53] are indi-
cated by the solid black line and yellow triangles, respectively.

Here the label “s” indicates the different geometries of the
collisions. In this expression, Ps

�,pro(A) and Ps
�,tar (A) denote

the normalized probability of producing projectilelike and
targetlike fragments. These probabilities are given by Eq. (20)
with mean values of projectilelike and targetlike fragments,
respectively. To make the total primary fragment distribution
normalized to unity we multiply by a factor of 1/2. In sum-
mation over the initial angular momentum �, the range of the
initial orbital angular momentum depends on the geometry of
the detectors in the laboratory frame. In calculations, we carry
out summation over the range from �min to �max. The range
of � values are specified by the angular acceptance of the
detector. In the laboratory frame, the range of the acceptance
of the detector is 25◦–65◦. The range of � values for different
geometries are indicated in Table I at Ec.m. = 502.6 MeV
and Table II at Ec.m. = 461.9 MeV. For Ec.m. = 461.9 MeV,
there are no � values in the side-tip and side-side geometries
leading to the acceptance range of the detector. Figure 8 shows
cross sections at Ec.m. = 502.6 MeV as a function of the mass
number A for the production of primary fragments in tip-
tip, tip-side, side-tip, and side-side geometries with different
colors. To average these cross sections, one must take into
account the orientation effects of the deformed nuclei [75,76].
Of course, when only two extreme orientations are considered
(side and tip), one needs to define an angle that separates
tip and side orientations. In Hinde et al. [77], a method was
introduced to determine the relative weight between the two
orientations, and a critical angle separating the two was found.
For the Ec.m. = 502.6 MeV cross sections we chose the critical
angle to be 37◦ and averaged as in Refs. [75,76]. The cross
sections for the Ec.m. = 461.9 MeV case are complicated by
the fact that the energy is very close to the Bass barrier of
463.3 MeV, and orientations involving the side geometry are
suppressed due to approaching the subbarrier regime. This
suggests a further energy dependence of the choice of the
critical angle. In this case we chose the critical angle to be 60◦
to increase the weight of the tip orientation. Figure 9 shows
total cross sections at Ec.m. = 461.9 MeV energy as a function

FIG. 9. Total cross section in collisions of the 160Gd + 186W
system at Ec.m. = 461.9 MeV as a function of the mass number
A. Different geometries are indicated by dotted (green) and dashed
(red) lines. Average cross-section and experimental data taken from
Ref. [53] are indicated by the solid black line and yellow circles,
respectively.

of the mass number A for the production of primary fragments
in tip-tip and tip-side geometries with different colors. Cross
sections in side-tip and side-side geometries are nearly zero
and are not indicated in the figure. The total cross section is
essentially determined by tip-tip and tip-side contributions.
Calculations provide good descriptions of measurements that
are indicated by yellow triangles for high-energy data and by
yellow circles for low-energy data.

Finally, the predictions of primary production cross sec-
tions for N = 126 isotones in the 160Gd + 186W system at
Ec.m. = 502.6 MeV are given in Fig. 10. It is observed that
the primary product cross sections in the tip-side geometry
are roughly 1 order of magnitude higher than those in the
side-tip and side-side geometries, highlighting the effect of
inverse quasifission observed in the tip-side geometry. Results
clearly demonstrate that, depending on the deformation and
relative orientation of the reaction partners, the outcome of

FIG. 10. Primary product cross sections for N = 126 isotones
in collisions of the 160Gd + 186W system at Ec.m. = 502.6 MeV are
shown as a function of the proton number of the reaction prod-
ucts. Different geometries are indicated by dashed (red), dotted
(green), dashed-dotted (purple), and dashed-dot-dot-dashed (blue)
lines, whereas the solid black line represents the averaged values.
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the reaction differs. This effect supports the idea that MNT
reactions can serve as a useful tool to produce neutron-rich
heavy nuclei near the lead region, which may not be available
via fusion-fission and fragmentation.

V. CONCLUSIONS

We investigate the multinucleon transfer mechanism in
quasifission reactions of the 160Gd + 186W system at Ec.m. =
502.6 MeV and Ec.m. = 461.9 MeV employing the quantal
diffusion description based on the stochastic mean-field ap-
proach. We evaluate transport coefficients associated with
charge and mass asymmetry variables in terms of time-
dependent single-particle wave functions of TDHF theory.
The transport description includes the quantal effect due to the
shell structure, the full geometry of the collision dynamics,
and the Pauli exclusion principle and does not involve any
adjustable parameters aside from the standard description of
the effective Hamiltonian of TDHF theory. In the transport
description, in addition to the diffusion coefficient, we need
to determine first and second derivatives of the potential
energy surface with respect to neutron and proton numbers.
It is possible to determine isoscalar and isovector curvature

parameters in terms of neutron and proton drift coefficients
and diffusion coefficients with the help of Einstein relations.
The joint probability distribution of primary fragments is
determined by a correlated Gaussian function in terms of
mean values of neutron and proton numbers and neutron,
proton, and mixed dispersions for each initial angular mo-
mentum. We calculate cross sections of primary fragments
as a function of mass number and compare with the data of
Kozulin et al. [53]. Calculations provide good descriptions of
primary mass distributions at both bombarding energies.
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