Modifying the electron capture decay rate of ⁷Be by using small fullerenes

Zhaoyang Li¹ and Tao Yang^{1,2,*}

¹MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China

²Xi'an Jiaotong University Suzhou Academy, Suzhou 215123, Jiangsu, China

(Received 19 June 2023; revised 30 August 2023; accepted 12 September 2023; published 17 November 2023)

Electron capture (EC) decay of a ⁷Be atom, the rate of which is affected by the electron density at the ⁷Be nucleus, forms a ⁷Li atom and emits a neutrino. Herein, we studied the EC decay rate of ⁷Be@C_{2n} (2n = 24, 28, 32, 36, 50), in which those fullerenes have enhanced stability relative to their near neighbors, by using *ab initio* calculations. The stable and metastable ⁷Be atom sites and electron density at the ⁷Be nucleus in ⁷Be@C_{2n} (2n = 24, 28, 32, 36, 50), were calculated. Unlike ⁷Be@C₆₀, the ⁷Be nucleus sites in ⁷Be@C_{2n} (2n = 24, 28, 32, 36, 50) are always off center and close to the fullerene cage. Due to the bonding interaction between ⁷Be atom and of ⁷Be in ⁷Be@C₆₀, leading to the result that the half-life of ⁷Be in ⁷Be@C_{2n} increases. Based on equilibrium statistical thermodynamic calculations, the temperature effect on the half-life of ⁷Be in ⁷Be@C_{2n} suggesting that the EC decay rate of ⁷Be could be precisely modified by using small fullerene cages.

DOI: 10.1103/PhysRevC.108.054604

I. INTRODUCTION

Electron capture (EC) decay is a radioactive process by which a proton in the nucleus acquires an electron from atomic or molecular shell, thereby forming a neutron and emitting a neutrino [1],

$$p + e^- = n + \nu_e, \tag{1}$$

where p, e^- , n, and ν represent proton, electron, neutron, and electron neutrino. ⁷Be has a simple electron structure $(1s^22s^2)$, a short half-life (53.22 days) [2], a low measurement error, and 100% of the decay process is EC decay, thus it is a very suitable nuclide to study EC decay. Segrè [3] and Daudel [4] independently proposed in 1947 that the EC decay rate of radioactive matter is proportional to electron density near the nucleus, indicating that the EC decay rate of a light element like Be could be moderately altered by putting it in different chemical compounds. Since then, many experimental measurements of ⁷Be EC decay in different chemical forms and media have been reported.

The strategies to control the EC decay rate of ⁷Be could be simply divided into physical and chemical ways. For the chemical ways, the half-lives of ⁷Be in those compounds were altered via chemical bonding between ⁷Be and neighbor atoms. ⁷Be was inserted into different metals or compounds such as Cu, Al [5], Pd, W [6], and BeO [7]. In the case of physical ways, electric field, air pressure, as well as temperature have been utilized on those ⁷Be-containing compounds to modify the electron density near the nucleus and resulting EC decay rate [8,9]. For instance, Gholamian *et al.* revealed that the half-life of ⁷Be in Be metal was altered approximately 0.02% by using an electric field strength of 5.14 V/Å [10]. The half-life of ⁷Be in crystalline Be(OH)₂ could be reduced by 1% at 400 kbar compared to that at one standard atmosphere pressure [11].

By employing a recoil process of the nuclear reactions, one ⁷Be atom was penetrated into the C_{60} cage and endohedral fullerene ⁷Be@C₆₀ was generated ($M@C_{2n}$ indicates that *M* atom is embedded in the C_{2n} cage) [12]. The ⁷Be EC decay rate in $^{7}Be@C_{60}$ was enhanced by 1.1% compared to ⁷Be metal, resulting in 52.65 and 53.25 days half-life for $^{7}Be@C_{60}$ and ^{7}Be metal, respectively. The modification of ⁷Be half-life in C_{60} comes from the increasing electron density at the ⁷Be nucleus sites in ⁷Be@C₆₀ due to the attractive effective potential well generated by C₆₀ [13]. Meanwhile, the ⁷Be decay rates in exohedral and endohedral C_{60} fullerene have been measured, and have different half-lives [14]. The half-life of cooled $^{7}Be@C_{60}$ at 5 K is found to be 52.47 days, 0.34% faster than that at T = 293 K [12,15]. The reason why temperature could affect the EC decay rate comes from the fact that there are five stable Be nucleus sites in C_{60} with different electron densities, and temperature could influence the Boltzmann distribution of those five Be nucleus sites [16]. Other investigations found that the half-life decay time of the ⁷Be nucleus in ⁷Be@C₃₆ is longer than that of ⁷Be@C₆₀ at 0 K [17,18]; however, the EC decay rate of the ⁷Be nucleus in ⁷Be@C₇₀ is similar to that in ⁷Be@C₆₀ at 0 K [19]. A series of ⁷Be compounds including several ⁷Be-encapsulated fullerenes have been studied at 0 K by Yoshida and co-workers [20]. Very recently, Ohtsuki, Kuwahara, and Ohno experimentally measured the half-lives of ⁷Be in endohedral fullerene ⁷Be@C₇₀ at room temperature (T = 293 K) and at liquid helium temperature (T = 5 K), which are 52.49 \pm 0.04 and 52.42 ± 0.04 d, respectively [21].

^{*}taoyang1@xjtu.edu.cn

In the present study, we studied the possible Be nucleus sites, energies, stabilities, and electron structures of small endohedral fullerenes ⁷Be@C_{2n} (2n = 24, 28, 32, 36, 50) as well as ⁷Be@C₆₀ by employing *ab initio* calculations, because, according to the empirical rules proposed by Kroto, those fullerenes C_{2n} (2n = 24, 28, 32, 36, 50) exhibit enhanced stability relative to their near neighbors [22]. The ⁷Be EC decay rate is estimated by using electron densities at the ⁷Be nucleus from wave-function calculations. Compared to that of ⁷Be@C₆₀, the half-lives of ⁷Be in those ⁷Be@C_{2n} are higher, above 53.6 days. More importantly, the temperature effect on the EC decay rates of ⁷Be in those ⁷Be@C_{2n} has been studied via calculating the possible distribution of different Be nucleus sites in a given fullerene cage.

II. CALCULATION METHOD

Geometric optimizations of ⁷Be@C_{2n} (2n = 24, 28, 32, 36, 50) were performed in the GAUSSIAN09 package [23] by using density functional calculations. Several functionals with the Grimme's D3 [24,25] dispersion corrections, including BP86-D3 [26,27], B3LYP-D3 [28,29], PBE-D3 [30], PBE0-D3 [31], M06-2X-D3 [32], and ω B97XD [33], were employed with the basis set def2-TZVP. The PBE0-D3 function was found to be able to reproduce the experimental adiabatic ionization energy and electron affinity of C₆₀ well. Thus, all the calculations of geometric optimizations were performed by using PBE0-D3(BJ)/def2-TZVP [34], and subsequent calculations are based on these structures.

The program package ADF2019 [35] describes the electron wave functions by Slater-type orbitals (STOs), which is better for describing the wave functions at the nucleus than Gaussian-type orbitals (GTOs), so ADF is used for single-point energy calculation of the electron density at the ⁷Be nuclear point. The calculations were performed with PBE0-D3(BJ)/QZ4P, which is the largest and most accurate basis set. The electron density value is the average result of a spherical space with a distance of 2.98 fm from the ⁷Be nucleus.

Given the small size of the nucleus, the nuclear wave functions are not affected by the chemical environment, so the variation of EC decay rate, $d\lambda_{\text{EC}}$, can be represented as [36]

$$d\lambda_{EC} = \left(\frac{\rho_e}{\rho_{ref}} - 1\right)\lambda_{ref},\tag{2}$$

where λ is decay rate and ρ is electron density. Equation (2) shows that the variation in the EC decay rate is proportional to the change in the electron density at the nucleus [$\rho(0)$]. The electron density as a function of the distance from the atomic radius of ⁷Be is calculated by MULTIWFN [37].

The radial distribution function is obtained as

$$RDF(r) = \int f(r, \Omega) r^2 d\Omega,$$
 (3)

where *r* is the distance from selected center, and Ω represents the angular coordinate in the sphere layer.

As shown by Ohtsuki *et al.* [15,16], the half-life of ⁷Be in C_{60} is affected by the temperature, because temperature could influence the Boltzmann distribution of those possible Be

TABLE I. Possible structures of ⁷Be@C_{2n} (2n = 24, 28, 32, 36, 50) with the spin states of singlet (S) and triplet (T). ΔE is the energy difference between the most stable structure and metastable structures. E_b is the binding energy with respect to the pristine fullerenes and ⁷Be. The energy unit is eV. The Sym. represents new symmetry of the whole ⁷Be@C_{2n}.

	ΔE	E_b	Sym.
⁷ Be@C ₂₄ S-Iso1	0.00	1.67	S_2
$^{7}Be@C_{28}$ S-Iso1	0.29	2.67	C_{3v}
⁷ Be@C ₂₈ T-Iso2	0.00	2.96	C_{3v}
7 Be@D ₃ (6)-C ₃₂ S-Iso1	0.00	1.10	C_2
$^{7}\text{Be}@D_{3}(6) - \text{C}_{32} \text{ S-Iso2}$	0.05	1.05	C_3
7 Be@ $D_{2d}(14)$ -C ₃₆ S-Iso1	0.00	1.51	C_s
7 Be@ $D_{2d}(14)$ -C ₃₆ S-Iso2	0.24	1.27	C_2
7 Be@ $D_{2d}(14)$ -C ₃₆ T-Iso3	0.12	1.39	C_1
7 Be@D ₃ (270)-C ₅₀ S-Iso1	0.00	0.94	C_1
7 Be@ $D_{3}(270)$ -C ₅₀ T-Iso2	0.19	0.75	C_2
7 Be@ $D_{3}(270)$ -C ₅₀ T-Iso3	0.29	0.65	C_1
7 Be@ $D_{5h}(271)$ -C ₅₀ S-Iso1	0.00	2.22	C_{2v}

nucleus sites. Since there are several possible Be nucleus sites in ⁷Be@C_{2n} (2n = 24, 28, 32, 36, 50) for a given fullerene, the temperature could also affect the possible Boltzmann distribution of those isomers and consequently the ⁷Be half-life. To study the relative concentrations of those isomers, the relative populations of *m* isomers in their equilibrium mixture can be expressed as their mole fractions, w_i , using the isomeric partition functions q_i . In the terms of q_i and the ground-state energy changes $\Delta H_{0,i}^o$, the mole fractions are given by a compact formula [38]:

$$w_{i} = \frac{q_{i} \exp\left[-\Delta H_{0,i}^{o}/(RT)\right]}{\sum_{j=1}^{m} q_{j} \exp\left[-\Delta H_{0,j}^{o}/(RT)\right]},$$
(4)

where *R* stands for the gas constant and *T* for the absolute temperature. The partition functions are to be practically constructed within the rigid-rotor and harmonic-oscillator approximation. By using this partition functions, all the entropy contributions are evaluated and the standard temperature-dependent Gibbs energies of the isomers are derived further by involving the enthalpy terms that come from the above potential energy calculations, on the basis of the principle of equilibrium statistical thermodynamics. This method has been developed and successfully employed to predict the relative concentrations of pristine fullerene [39] and endohedral fullerene isomers [40–42].

III. RESULTS AND DISCUSSION

A. Geometries and relative energies of Be@C_{2n} at 0 K

Six fullerene cages including C_{24} , C_{28} , $D_3(6) - C_{32}$, $D_{2d}(14) - C_{36}$, $D_{5h}(271) - C_{50}$ and $D_3(270) - C_{50}$ were chosen, because $D_{5h}(271) - C_{50}$ and $D_3(270) - C_{50}$ have almost similar stability [39,43]. To confirm the spin state of ⁷Be@C_{2n}, both the singlet and triplet states were examined. Table I presents the possible stable structures with relative energy lower than 0.3 eV. The binding energies E_b are higher than 0.65 eV, suggesting that ⁷Be prefers to stay inside the

FIG. 1. Optimized structures of ⁷Be@C_{2n} (2n = 24, 28, 32, 36, 50).

fullerenes. Except for ${}^7\text{Be}@\text{C}_{28}$, all the ground states are singlet.

The most stable structures of ⁷Be@C_{2n} are shown in Fig. 1, with the metastable structures of ⁷Be@C_{2n} exhibited in the Supplemental Material [44]. Unlike the results of ⁷Be@C₆₀, ⁷Be in the most stable structures of ⁷Be@C_{2n} is not located at the center of the fullerene cage, so the original symmetry of the fullerene cage is broken. For ⁷Be @D₃(270) – C₅₀ and ⁷Be @D_{5h}(271) – C₅₀, there are local minima with ⁷Be is at the center of the fullerene cage; however, these structures are significantly at least 0.81 eV higher in energy than the most stable structure. The bond lengths between ⁷Be and carbon atoms fall in a narrow range from 1.699 Å for ⁷Be@C₂₈ to 1.753 Å for ⁷Be@C₂₄.

B. Electron density and half-life of the ⁷Be atom in ⁷Be@ C_{2n}

According to the above Eq. (2), the half-life of the ⁷Be atom depends on the electron density at the ⁷Be nucleus $[\rho(0)]$ in ⁷Be@C_{2n}. Thus, the electron densities $\rho(0)$ of the ⁷Be atom in all the most stable ${}^{7}\text{Be}@C_{2n}$ (2n = 24, 28, 32, 36, 50, 60) were calculated, as shown in Table II. The result for a ⁷Be atom is also calculated for comparison. The electron density $\rho(0)$ in ⁷Be@C₆₀ is higher than that of a single ⁷Be atom, and the difference between the electron density $\rho(0)$ of the 7Be atom and 7Be@C60 is 0.17%, consistent with the previously calculated value [15]. The half-life of the ⁷Be atom in ⁷Be@C₆₀ is as short as 52.470 days, suggesting that C_{60} speeds up the EC decay rate. However, other ⁷Be@C_{2n} (2n = 24, 28, 32, 36, 50) have lower electron density $\rho(0)$ than one single ⁷Be atom. Based on the electron density $\rho(0)$ and the half-life of ⁷Be in ⁷Be@C₆₀ at 5K, the half-lives of ⁷Be in ⁷Be@C_{2n} (2n = 24, 28, 32, 36, 50) were calculated and the results are shown in Table II and Fig. 2. All those half-lives are higher than 53.6 days, 2.11% to 2.16% longer than that of a ⁷Be atom, revealing that the EC decay rates of the ⁷Be atom in ⁷Be@C_{2n} (2n = 24, 28, 32, 36, 50) have been slowed down by those small fullerenes. The above results show that EC decay rate could be modified by using different fullerene cages.

To reveal why the electron density at the Be nucleus, $\rho(0)$, changes in ⁷Be@C_{2n} (2n = 24, 28, 32, 36, 50), the contributions of molecular orbitals (MOs) to the electron density at the ⁷Be nucleus point were analyzed, as shown in Table III. For all the ⁷Be@C_{2n} and for the single ⁷Be atom, the contribution of the ⁷Be -1s orbital to electron density $\rho(0)$ is important. However, the contribution from the Be-2s orbital is different. For the ⁷Be atom and ⁷Be@C₆₀, it is the second most important contributing orbital at about 3.7%, whereas it is the third most important contributing orbital for other ⁷Be@C_{2n} with

TABLE II. The electron density at Be nucleus $\rho(0) (e^{-}/\alpha_{\rm B}^3)$ and half-life (days) of single ⁷Be atom and ⁷Be in ⁷Be@C_{2n} (2n = 24, 28, 32, 36, 50, 60).

	Electron density at Be nucleus (e^-/α_B^3)	Half-life (days)
⁷ Be@C ₂₄ S-Iso1	35.104	53.628
⁷ Be@C ₂₈ T-Iso2	35.089	53.652
$^{7}Be@D_{3}(6)-C_{32}$ S-Iso1	35.084	53.658
$^{7}Be@D_{2d}(14)-C_{36}$ S-Iso1	35.067	53.654
$^{7}Be@D_{3}(270)-C_{50}$ S-Iso1	35.104	53.628
⁷ Be@D _{5h} (271)-C ₅₀ S-Iso1	35.095	53.643
⁷ Be atom	35.844	52.522
⁷ Be@C ₆₀	35.879	52.470 ^a

^aExperimentally measured half-life of ⁷Be in ⁷Be@C₆₀ at 5 K [15], which is taken as the reference to calculate other half-lives.

FIG. 2. The half-life of ⁷Be in all the most stable ⁷Be@C_{2n} (2n = 24, 28, 32, 36, 50). The black dotted line is the experimental value for ⁷Be in Be metal crystal. The experimentally observed half-life (52.470 days) of ⁷Be@C₆₀ is taken as the reference to calculate half-life of ⁷Be in ⁷Be@C_{2n} (2n = 24, 28, 32, 36, 50).

only about 0.3 - 0.4%, thereby further affecting the electron density $\rho(0)$.

TABLE III. The contributions of the molecular orbitals which is mainly from Be -1s and Be -2s atomic orbitals to the electron density at the ⁷Be nucleus point in the most stable structures of ⁷Be@C_{2n}.

⁷ Be@C ₂₄ ⁷ Be		$@C_{28}$		
МО	Contribution	МО	Contribution	
HOMO-49	98.25%	HOMO-58	98.27%	
HOMO-48	0.43%	HOMO-57	0.40%	
7 Be @D ₃ (6) - C ₃₂ 7		⁷ Be @D _{2d}	7 Be @D _{2d} (14) – C ₃₆	
МО	Contribution	МО	Contribution	
HOMO-65	98.45%	HOMO-73	98.63%	
HOMO-64	0.32%	HOMO-72	0.36%	
7 Be @ $D_{3}(270) - C_{50}$		7 Be @ $D_{5h}(271) - C_{50}$		
МО	Contribution	МО	Contribution	
HOMO-101	98.46%	HOMO-101	98.41%	
HOMO-100	0.37%	HOMO-100	0.40%	
7 Be@C ₆₀ 7 Be atom		atom		
МО	Contribution	MO	Contribution	
HOMO-121	96.17%	HOMO-1	96.31%	
HOMO	3.76%	HOMO	3.69%	

36, 50) contribute less to the electron density at the nuclear point than in ${}^{7}\text{Be}@C_{60}$.

Furthermore, the electron density as a function of the distance from the atomic radius of ⁷Be was also be investigated. The radial electron density is calculated by integrating the radial wave function to obtain the value of electrons, and dividing the value by the corresponding volume. Therefore, the integration accuracy will affect the results, especially the results near the nuclear point. For this reason, the electron density of ⁷Be atoms with 0.0028 Å $\leq r \leq 0.3000$ Å is shown in Fig. 4. As in most cases, the electron density decays rapidly as the distance increases. The maximum electron density for ⁷Be@C_{2n} is different, but the change trend is very similar. Taking ⁷Be@C₂₄ as an example, electron density rapidly decays to half of the maximum value at 0.0683 Å, while for a single ⁷Be atom half of the maximum value of the electron density appears at the distance of 0.0688 Å.

C. The temperature effect on the half-life of ⁷Be in ⁷Be@ C_{2n}

Morisato *et al.* found that because the temperature would affect the Boltzmann distribution of the five stable Be nucleus sites in C₆₀, which possesses different electron density at the ⁷Be nucleus, the half-life of ⁷Be in C_{60} will be influenced by the temperature [16]. The calculated results for ⁷Be@C₆₀ revealed that, compared with the half-life at the 0 K, the half-life at room temperature increases by 0.33%, in good agreement with the experimentally measured result (0.34%). Here, we also study the temperature effect on the half-life for ⁷Be@C_{2n} (2n = 28, 32, 36, 50) by calculating the Boltzmann distribution of a given $^7Be@C_{2n}$ with different ⁷Be nucleus sites based on the equilibrium statistical thermodynamic method. Except for ⁷Be@C₂₄ which has only one ⁷Be nucleus site, we calculated all the other ⁷Be@C_{2n} from 0 to 1000 K. The ⁷Be $@D_3(6) - C_{32}$ result is shown in Fig. 5 with the other results shown in the Supplemental Material (see [44] for Figs. S2-S4). As the temperature increases, the concentration of ⁷Be $@D_3(6) - C_{32}/S - 1$ decreases while 7 Be @ $D_{3}(6) - C_{32}/S - 2$ increases. For example, at 1000 K the relative concentration of ⁷Be $@D_3(6) - C_{32}/S - 1$ is 75.99% while that of ⁷Be @ $D_3(6) - C_{32}/S - 2$ is 24.01%, leading to the result that the half-life of ⁷Be $@D_3(6) - C_{32}$ decreases by 0.005%. Although the relative concentration of different isomers changes evidently for a given $^{7}Be@C_{2n}$, the half-life of the ⁷Be atom changes slightly, as the temperature increases. This result is different from that of $^{7}Be@C_{60}$, for which the half-life of the ⁷Be atom changes about 0.34%. For ⁷Be@C₆₀, when the ⁷Be is at the center of the C₆₀ cage, it is the most stable structure and has higher $\rho(0)$ than the other four structures where the ⁷Be atom is attached to the fullerene cage. As the temperature increases, the relative concentration of those off-center isomers increases and half-life increases moderately. For ⁷Be@C_{2n} (2n = 28, 32, 36, 50), the ⁷Be is always off center and attached to the fullerene cage. The electron densities at the ⁷Be nucleus of those sites are quite similar, thus the half-lives of ⁷Be atoms in ⁷Be@C_{2n} are quite stable.

Notably, Ohtsuki *et al.* proposed recently that the electronphonon couplings may play a role in affecting the EC decay

FIG. 3. The Be -2s-atomic-orbital-involved molecular orbitals contributed to the electron density at the ⁷Be nuclear point (isovalue = 0.05).

rate of ⁷Be in ⁷Be@C₆₀ and ⁷Be@C₇₀ and further influence the correlation between temperature and half-life [21]. Those small endohedral fullerenes ⁷Be@C_{2n} (2n = 24, 28, 32, 36, 50) probably exhibit larger electron-phonon couplings than ⁷Be@C₆₀ and ⁷Be@C₇₀, [45,46]; however, the electron-phonon couplings effect on EC decay rate still needs further experimental and theoretical investigations.

IV. CONCLUSIONS

The most stable and metastable ⁷Be nucleus sites in C_{2n} (2n = 24, 28, 32, 36, 50) have been investigated by using

ab initio calculations. The electron density at the ⁷Be nucleus of ⁷Be@C_{2n} have been analyzed, with results suggesting that the ⁷Be -2*s* orbital is affected by the fullerene cage, resulting in charge transfer from ⁷Be to C_{2n}. The electron density at the ⁷Be nuclear point for ⁷Be@C_{2n} (2n = 24, 28, 32, 36, 50) is lower than that for ⁷Be@C₆₀, leading to the result that the half-life of the ⁷Be atom in ⁷Be@C_{2n} is higher than 53.6 days, longer than that of a single ⁷Be atom and of ⁷Be in ⁷Be@C₆₀. The temperature affects the relative concentrations of ⁷Be@C_{2n} with different ⁷Be nucleus sites but does not change the statistical average of ⁷Be half-life obviously,

FIG. 4. The electron density as a function of the distance from the atomic radius of 7 Be.

FIG. 5. Relative concentrations X_i (%) of two ⁷Be @ $D_3(6) - C_{32}$ isomers and the total half-life of ⁷Be in ⁷Be @ $D_3(6) - C_{32}$ as the temperature increases.

because the half-lives of ${}^{7}\text{Be}$ atoms at different sites are similar. Those results reveal that the EC decay rate of ${}^{7}\text{Be}$ could be precisely modified by using those small fullerenes while not being affected by the temperature.

PHYSICAL REVIEW C 108, 054604 (2023)

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (Grants No. 12274337 and No. 22003048) and the Natural Science Foundation of Jiangsu Province for Youth (BK20200247).

- [1] L. W. Alvarez, Phys. Rev. 52, 134 (1937).
- [2] F. G. Kondev, M. Wang, W. J. Huang, S. Naimi, and G. Audi, Chin. Phys. C 45, 030001 (2021).
- [3] E. Segre, Phys. Rev. 71, 274 (1947).
- [4] R. Bouchez, R. Daudel, P. Daudel, and R. Muxart, J. Phys. Radium. 8, 336 (1947).
- [5] Y. Nir-El, G. Haquin, Z. Yungreiss, M. Hass, G. Goldring, S. K. Chamoli, B. S. N. Singh, S. Lakshmi, U. Köster, N. Champault, A. Dorsival, G. Georgiev, V. N. Fedoseyev, B. A. Marsh, D. Schumann, G. Heidenreich, and S. Teichmann, Phys. Rev. C 75, 012801(R) (2007).
- [6] B. N. Limata, Z. Fülöp, D. Schürmann, N. De Cesare, A. D'Onofrio, A. Esposito, L. Gialanella, G. Gyürky, G. Imbriani, F. Raiola, V. Roca, D. Rogalla, C. Rolfs, M. Romano, E. Somorjai, F. Strieder, and F. Terrasi, Eur. Phys. J. A. 27, 193 (2006).
- [7] C.-A. Huh, Earth Planet. Sci. Lett. 171, 325 (1999).
- [8] A. V. Bibikov, A. V. Avdeenkov, I. V. Bodrenko, A. V. Nikolaev, and E. V. Tkalya, Phys. Rev. C 88, 034608 (2013).
- [9] A. Ray, A. K. Sikdar, P. Das, S. Pathak, and J. Datta, Phys. Rev. C 101, 035801 (2020).
- [10] F. Gholamian, M. M. Firoozabadi, and R. Sarhaddi, Chin. Phys. C 45, 074103 (2021).
- [11] L.-G. Liu and C.-A. Huh, Earth Planet. Sci. Lett. 180, 163 (2000).
- [12] T. Ohtsuki, H. Yuki, M. Muto, J. Kasagi, and K. Ohno, Phys. Rev. Lett. 93, 112501 (2004).
- [13] E. V. Tkalya, A. V. Bibikov, and I. V. Bodrenko, Phys. Rev. C 81, 024610 (2010).
- [14] A. Ray et al., Phys. Rev. C 73, 034323 (2006).
- [15] T. Ohtsuki, K. Ohno, T. Morisato, T. Mitsugashira, K. Hirose, H. Yuki, and J. Kasagi, Phys. Rev. Lett. 98, 252501 (2007).
- [16] T. Morisato, K. Ohno, T. Ohtsuki, K. Hirose, M. Sluiter, and Y. Kawazoe, Phys. Rev. B 78, 125416 (2008).
- [17] E. V. Tkalya, A. V. Avdeenkov, A. V. Bibikov, I. V. Bodrenko, and A. V. Nikolaev, Phys. Rev. C 86, 014608 (2012).
- [18] F. Gholamian, M. M. Firoozabadi, and H. Raissi, Phys. Rev. C 102, 014606 (2020).
- [19] A. V. Bibikov, A. V. Nikolaev, and E. V. Tkalya, Phys. Rev. C 100, 064603 (2019).
- [20] A. Yoshida, M. Abe, and M. Hada, J. Phys. Chem. A 125, 6356 (2021).
- [21] T. Ohtsuki, R. Kuwahara, and K. Ohno, Phys. Rev. C 108, L011301 (2023).

- [22] H. W. Kroto, Nature (London) 329, 529 (1987).
- [23] M. J. Frisch et al., Gaussian 09, Revision E.01 (Gaussian, Wallingford, CT (2013).
- [24] S. Grimme, S. Ehrlich, and L. Goerigk, J. Comput. Chem. 32, 1456 (2011).
- [25] S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010).
- [26] J. P. Perdew, Phys. Rev. B: Condens. Matter. 33, 8822 (1986).
- [27] A. D. Becke, Phys. Rev. A 38, 3098 (1988).
- [28] A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
- [29] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994).
- [30] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
- [31] C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999).
- [32] Y. Zhao and D. G. Truhlar, Theor. Chem. Acc. 120, 215 (2007).
- [33] J. D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys. 10, 6615 (2008).
- [34] R. Gulde, P. Pollak, and F. Weigend, J. Chem. Theory. Comput. 8, 4062 (2012).
- [35] E. J. Baerends *et al.*, *ADF 2019, SCM, Theoretical Chemistry* (Vrije Universiteit, Amsterdam, 2019).
- [36] M. S. T. Bukowinski, Geophys. Res. Lett. 6, 697 (1979).
- [37] F. Tian Lu, J. Comput. Chem. **33**, 580 (2012).
- [38] Z. Slanina, X. Zhao, P. Deota, and E. Osawa, in *Fullerenes: Chemistry, Physics, and Technology*, edited by K. M. Kadish and R. S. Ruoff (John Wiley & Sons, New York, 2000), Chap. 6, p. 283.
- [39] X. Zhao, J. Phys. Chem. B 109, 5267 (2005).
- [40] T. Yang, X. Zhao, and S. Nagase, Phys. Chem. Chem. Phys. 13, 5034 (2011).
- [41] T. Yang, X. Zhao, S.-T. Li, and S. Nagase, Inorg. Chem. 51, 11223 (2012).
- [42] T. Yang, X. Zhao, and S. Nagase, Chem.-Eur. J. 19, 2649 (2013).
- [43] S.-Y. Xie, F. Gao, X. Lu, R.-B. Huang, C.-R. Wang, X. Zhang, M.-L. Liu, S.-L. Deng, and L.-S. Zheng, Science 304, 699 (2004).
- [44] See Supplemental Material at http://link.aps.org/supplemental/ 10.1103/PhysRevC.108.054604 for Fig. S1.
- [45] M. Côté, J. C. Grossman, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 81, 697 (1998).
- [46] D. Provasi, N. Breda, R. A. Broglia, G. Colò, H. E. Roman, and G. Onida, Phys. Rev. B 61, 7775 (2000).