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Accuracy of the mean-field theory in describing ground-state properties of light nuclei
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The relativistic mean-field model, augmented with three types of center-of-mass corrections and two types of
rotational corrections, is employed to investigate the ground-state properties of helium, beryllium, and carbon
isotopes. The efficacy of the mean-field approach in describing the binding energies, quadrupole deformations,
root-mean-square charge radii, root-mean-square matter radii, and neutron skins of these light nuclei is evaluated.
By averaging the binding energies obtained from six selected effective interactions, a mass-dependent behavior
of the mean-field approximation is elucidated. The findings from radii reveal that, unlike in heavy nuclei, the
exchange terms of the center-of-mass correction play an indispensable role in accurately describing the radii of
light nuclei. The mean-field approximation, when augmented with center-of-mass and rotational corrections,
effectively reproduces the energies and radii of light nuclei. However, due to the absence of many-body
correlations between valence neutrons, the mean-field approximation falls short in describing the deformations
and shell evolutions of the helium and beryllium isotopic chains.
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I. INTRODUCTION

Light nuclei have attracted considerable attention due to
their unique properties. One of these properties is the cluster
phenomenon [1–3], such as the presence of two-α cluster
structure in 8Be, the Hoyle state in 12C [4–6], and the tetra-
hedral shape in 16O [7–9]. Additionally, with the development
of rare-isotope beam facilities, the exploration of the drip line
[10,11] associated with the isospin limitation and the halo
phenomena in extremely neutron- or proton-rich nuclei [12]
has become a hot topic. Another important aspect is the shell
evolution, where both experimental and theoretical investi-
gations have suggested the possible existence of the magic
number 6 in some semimagic unstable light nuclei. Notably,
there have been proposals for subshell closures in 8He [13,14]
and 14C [15,16]. Conversely, the traditional magic number 8
is significantly compromised in 12Be [17–19].

Since a light nucleus consists of few nucleons, a real
Hamiltonian can be constructed with bare nucleon-nucleon
interactions obtained from scattering. Together with the im-
provements in computer performance, ab initio methods are
being utilized to study exotic nuclear properties in light nuclei
from first principle, and these methods are now being ex-
tended to heavier regions as well [1]. While density functional
theories (DFTs) [20] using universal effective interactions
have been successful in describing many nuclear phenomena
for nuclei with mass numbers A � 16, it is commonly thought
that DFTs are not suitable for light nuclei. This is due to
the mean-field approximation used in DFTs, which erases the
few-body correlations between nucleons and poses signifi-
cant difficulties for accurately describing properties such as
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binding energy, charge radius, neutron skin, and surface thick-
ness in the light mass region.

Covariant density functional theories (CDFTs), which take
Lorentz symmetry into account, provide microscopic frame-
works for a global description of atomic nuclei [21,22]. These
approaches have been extended to study light nuclei [23–27]
with 11Li serving as a typical example [23,24]. In Ref. [23],
pairing and continuum effects were considered, and both the
binding energies and radii of the isotopic chain from 6Li to
11Li, as well as the halo structure of 11Li, were successfully
reproduced. Additionally, the α-clustering and halo structures
in beryllium and boron nuclei, along with several prominent
cluster structures in both the ground and intrinsic excited
states of α nuclei from 12C to 32S, were well described by
relativistic mean-field (RMF) calculations [25]. Recently, halo
structures in 22C and 17B were also well described by the
deformed relativistic Hartree-Bogoliubov model in contin-
uum (DRHBc) model [28,29]. The triangular shape in 12C
was studied through parity and angular momentum projec-
tions based on the multidimensionally constrained relativistic
Hartree-Bogoliubov (p-MDCRHB) model [30]. These works
suggest that results for light nuclei calculated with CDFTs
and their corrections appear to be reliable, at least for bulk
properties such as binding energies, densities, and single-
particle levels. If this is indeed the case, comparing ab initio
calculations with CDFTs will help us understand the connec-
tions between the two methods and even build new-generation
DFTs with realistic nuclear forces, such as the relativistic
chiral nucleon-nucleon interactions [31,32].

Therefore, in this work, my aim is to systematically study
the bulk properties of nuclei with proton number Z < 8 us-
ing various CDFTs. The primary objective is to evaluate the
ability of these approaches to accurately describe the ground-
state properties of light nuclei. Specifically, I will investigate
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whether the effective interactions, which are constrained by
the properties of heavy nuclei, can provide reliable predictions
for the ground-state properties of light nuclei within the CDFT
frameworks. Moreover, I will examine the ability of CDFTs to
accurately describe the properties of 4He, which serves as the
starting nucleus for α cluster structures. I will also investigate
whether CDFTs can reproduce the observed shell evolutions
in these isotopes.

To do this, I will investigate even-even nuclei in the light
mass region, utilizing three distinct effective interactions:
nonlinear meson exchange (NL-ME), density-dependent
meson exchange (DD-ME), and density-dependent point
coupling (DD-PC). The calculations are based on the multidi-
mensional constrained relativistic Hartree-Bogoliubov (MD-
CRHB) model [33,34], accounting for both center-of-mass
and rotational corrections. I compute the root-mean-square
(rms) radii including full microscopic center-of-mass correc-
tion, with exchange terms previously deemed negligible in
the Z > 8 mass region [35]. In Sec. II, I provide a brief
overview of the MDCRHB model and the corrections applied
in this study. In Sec. III, I present the calculated binding
energies, radii, deformations, and potential energy curves for
helium, beryllium, and carbon isotopes, along with detailed
discussions of the results. Finally, in Sec. IV, I summarize my
findings.

II. THEORETICAL FRAMEWORK

A. Mean-field description

In the present work, the RHB theory is employed to provide
a unified description of the relativistic mean-field and the
pairing correlations via the Bogoliubov transformation [36].
The RHB equation reads

∫
d3r′

(
h − λ �

−�∗ −h + λ

)(
Uk

Vk

)
= Ek

(
Uk

Vk

)
, (1)

where h is the single-particle Hamiltonian, � is the pairing
field, λ is the Fermi energy, Ek is the quasiparticle en-
ergy, and (Uk,Vk )T is the wave function. The single-particle
Hamiltonian,

h = α · p + β[m + S(r)] + V (r) + �R(r), (2)

consists of the kinetic energy term, the scalar potential S(r),
the vector potential V (r), and the rearrangement potential
�R(r). m denotes the mass of the nucleon. For meson-
exchange interactions,

S(r) = gσ σ,

V (r) = gωω0 + gρρ0 · τ3 + e
1 − τ3

2
A0,
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∂ρV
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∂ρV
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∂ρV
ρV τ3ρ0, (3)

where gσ , gω, and gρ are coupling constants of σ, ω0 and ρ0

meson fields, A0 is the time-like component of the Coulomb
field, e is the charge unit for protons, ρS and ρV are isoscalar
and isovector densities, respectively. For point-coupling

interactions,
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2
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where αS, αV , αT S, αTV , βS, γS, γV , δS, δV , δT S , and δTV

are coupling constants for different channels, ρT S and ρTV

are time-like components of isoscalar current and time-like
components of isovector current, respectively.

The pairing field reads

�(r1σ1, r2σ2) =
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(5)

where V is the effective pairing interaction and κ is the pairing
tensor. In this work, I use a separable pairing force of finite
range with pairing strength G = 728 MeV fm3 and effective
range of the pairing force a = 0.644 fm [37].

The deformations with V4 symmetry are allowed in the
MDCRHB model. The deformation parameter βλμ is deter-
mined by

βλμ = 4π

3ARλ
Qλμ, (6)

where R is the radius of the nucleus, A is the number of
nucleons, and Qλμ is the intrinsic multipole moment. Qλμ is
calculated from the vector density by

Qλμ =
∫

d3rρV (r)rλYλμ(�), (7)

where Yλμ is the spherical harmonic.

B. Corrections

I consider both the center-of-mass and rotational cor-
rections for the calculated binding energies. The resulting
binding energy is

EB = −EMF − Ec.m. − Erot., (8)

where EMF, Ec.m., and Erot. denote the energies of mean
field, center-of-mass correction, and rotational correction,
respectively. The center-of-mass energy can be evaluated an-
alytically from the harmonic oscillator (HO) states. Using
the usual parametrization of the oscillator constant from the
Nilsson model one obtains an estimate as [38]

EHO
c.m. = − 3

4 · 41A−1/3 MeV, (9)

where the harmonic oscillator’s energy h̄ω = 41A−1/3 MeV is
adopted. The other way is the so call microscopic method,
in which the center-of-mass correction can be given by
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calculating the change in binding energy from projection-
after-variation in first-order approximation as

Emic
c.m. = −

〈
P2

c.m.

〉
2mA

(10)

with 〈
P2

c.m.

〉 =
∑

i

υ2
i p2

ii −
∑
i, j

υ2
i υ2

j pi j p∗
i j

+
∑
i, j

υiuiυ ju j pi j pī j̄, (11)

where i and j denote the actual quasiparticle states, υi is
the occupation probability, p2

ii is the expectation value of the
square of the quasiparticle momentum operator, and pi j is the
off-diagonal matrix element of the quasiparticle momentum
operator. They are called direct and exchange terms later. The
rotational energy correction is calculated by

Erot. = −1

2

3∑
k=1

〈
J2

k

〉
Ik

, (12)

where k denotes the axis of rotation, Jk denotes the compo-
nent of the angular momentum in the body-fixed frame of
a nucleus. The moment of inertia Ik is a linear combination
of the Inglis-Belyaev formula and the moment of inertia of
rigid rotor, i.e., Ik = 0.8I IB

k + 0.2I rigid
k , with the Inglis-Belyaev

formula [39,40]

I IB
k =

∑
i, j

(uiυ j − υiu j )2

Ei + Ej
|〈i|Jk| j〉|2. (13)

Similar to the energy, the radius calculated from the RHB
model needs corrections, too. With center-of-mass correction,
the square of the radius is estimated after RHB calculation by

R2 = R2
MF − R2

c.m., (14)

where RMF and R are the rms radius before and after center-
of-mass correction, and Rc.m. is the rms radius of the center of
mass. I compare the radius calculated from the HO approxi-
mation by

(
RHO

c.m.

)2 = 3h̄2

2mA · 41A−1/3
, (15)

and from mean-field expectation values by(
Rmic

c.m.

)2 =
∑

i

υ2
i (r2)ii −

∑
i, j

υ2
i υ2

j ri jr
∗
i j

+
∑
i, j

υiuiυ ju jri jrī j̄ . (16)

Note that the second and third terms in Eq. (16) are called the
exchange terms, and usually omitted because of their fairly
small effects in the mean-field models [35]. I take these terms
into account in this work to investigate the information given
by them in light nuclei. The above formulas are employed for
both proton radius (Rp) and neutron radius (Rn). The charge
radius (Rc) is obtained from the proton radius by [41]

R2
c = R2

p + (0.862 fm)2 − (0.336 fm)2N/Z, (17)

in which the proton and neutron spin-orbit contributions to the
charge radius [42,43] are neglected.

In the above calculations, the ground states are obtained
by applying the variational principle with a Bogoliubov
vacuum, and the effects of fundamental translational invari-
ance and rotational symmetry are estimated approximately.
However, wave functions and observables with certain sym-
metries cannot be achieved. The standard way to restore the
broken symmetries and calculate observables with good quan-
tum numbers is through the projection-after-variation (PAV)
technique [44–49]. Recently, a projected multidimensionally
constrained relativistic Hartree-Bogoliubov (p-MDCRHB)
model has been developed by incorporating the parity and
angular momentum projections into the MDCRHB model. In
this model, both the triaxial and octupole shapes are allowed.
The wave function with a certain angular momentum J and
parity π is obtained by∣∣�JMπ

α,q

〉 =
∑

K

f JKπ
α P̂J

MK P̂π |�(q)〉, (18)

where K represents angular momentum projection onto the z
axis in the intrinsic frame, f JKπ

α is the weight function, and
q represents a collection of the deformation parameters. The
operator P̂J

MK projects out the component with angular mo-
mentum J and its projection M from the deformed mean-field
wave function |�(q)〉, and P̂π is the parity projection opera-
tor. To approximately restore the average proton and neutron
numbers, two correction terms are added to the Hamiltonian
kernel H as in Ref. [50]. Finally, the weight function f JKπ

α and
the eigenvalue EJπ

α are obtained by solving the generalized
eigenvalue equation [36,51]∑

K ′

{H′Jπ

KK ′ (q; q) − EJπ
α N Jπ

KK ′ (q; q)
}

f JK ′π
α = 0, (19)

where N is the norm kernel, and H′ is the Hamiltonian kernel
with particle number correction.

This model has been used to study the low-lying states
related to exotic nuclear shapes, such as the triangular shape
associated with three-α configuration in 12C [30] and the
octupole correlations in 96Zr [52]. In this work, I restrict the
calculations to axial and reflection symmetry and perform
angular momentum projection after variation to discuss the
cluster structure and shell evolution in the light mass region.
For simplicity, the configuration mixing associated with shape
fluctuation is beyond the scope of this work.

III. RESULTS AND DISCUSSIONS

The DFTs are well established for studying the proper-
ties of heavy nuclei, while they are thought to be difficult
to describe light nuclei due to the deficiency of many-body
correlations. However, as mentioned above, previous studies
also found that proper treatments of the corrections based
on the DFTs can help reproduce the structures of light nu-
clei successfully. In this work, the ground-state properties
are systematically calculated in the CDFT framework, with
the center-of-mass and rotational corrections considered. The
accuracy of the mean-field theory in describing the ground-
state properties of light nuclei is investigated by comparing
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the calculated bulk properties with the corresponding exper-
imental data and results from other models. To estimate the
uncertainty from input parameter sets, I consider eight repre-
sentative of them, which are classified into three types: (1) the
nonlinear meson-exchange (NL-ME) interactions, including
NLSH [53], TM1 [41], NL5(A) [54], and PK1 [35]; (2) the
density-dependent meson-exchange (DD-ME) interactions,
including PKDD [35], DD-ME2 [55], and DD-LZ1 [56]; and
(3) the density-dependent point-coupling (DD-PC) interaction
DD-PC1 [57]. These interactions have been demonstrated
to accurately describe the ground-state properties of heavy
nuclei.

A. Binding energies

I first test the validity of those parameter sets by calculating
the binding energies of 4He, 8Be, and 12C using the eight
parameter sets mentioned above. For each one, the corre-
sponding center-of-mass energy correction Ec.m. is determined
by the one used to fit the parameter set, i.e., Eq. (9) is adopted
for NLSH and TM1, but Eq. (10) is adopted for others.
For deformed nuclei, the rotational energy correction Erot. is
nonzero and calculated by Eq. (12), in which the mean-field
wave functions are used to calculate the expectation values.
The calculated energies per nucleon EB/A values are shown in
Fig. 1. The numbers in the bars are the ratios of the mean-field
and center-of-mass energies to the total energy calculated by
the MDCRHB model with each parameter set, respectively.
The black dashed lines are experimental EB/A values taken
from AME2020 [58].

In Fig. 1(a), the mean-field (center-of-mass) energy con-
tributes about 53% (47%) to the total energy of 4He, and
the rotational energy correction is zero. The EB/A values
calculated by the NLSH and TM1 parameter sets overesti-
mate the experimental value for about 1 MeV, while those
calculated by the other parameter sets compare well with
the experimental value. This indicates that the phenomeno-
logical mass-dependent formula for center-of-mass correction
determined from the properties of heavy nuclei is not suit-
able for extending to light nuclei. However, with microscopic
center-of-mass correction, this overestimation problem can be
prevented, as suggested by Long et al. [35].

For 8Be in Fig. 1(b), the mean-field energies contribute
to 59.9%–71.1% of the EB/A values, which are larger than
those in 4He and become the dominant part of the binding
energy. The center-of-mass energy correction accounts for
more than 20% of the EB/A, and that for the rotational cor-
rection is about 10%. This result infers that for deformed
light nuclei, not only is the center-of-mass energy correction
essential for determining the calculated binding energy, but
the rotational correction is also indispensable. For the heavier
nucleus, 12C, the mean-field, center-of-mass, and rotational
motions take up about 82%, 13%, and 5% of the EB/A values,
respectively, except for the results calculated with DD-LZ1
and DD-PC1, where the nucleus is spherical and there is no
rotational correction. Comparing the results obtained from
different parameter sets, the EB/A values obtained by using
PK1 and PKDD are very close to the experimental values
for all these three nuclei, while NL5(A), DD-ME2, DD-LZ1,

FIG. 1. Energies per nucleon EB/A values for (a) 4He, (b) 8Be,
and (c) 12C calculated by the MDCRHB model with eight selected
parameter sets. The black dashed lines denote the experimental EB/A
values taken from AME2020 [58]. The values in the columns are
the ratios of the mean-field and center-of-mass energies to the total
calculated energies, i.e., −EMF/EB and −Ec.m./EB.

and DD-PC1 systematically underestimate the experimental
values by a few hundred keV. In conclusion, the binding
energies of these α nuclei are reproduced with CDFTs when
both microscopic center-of-mass and rotational corrections
are taken into consideration.

Next, I extend these calculations to even-even nuclei in
helium, beryllium, and carbon isotopes in order to evaluate the
effectiveness of mean-field models in accurately describing
the binding energies of light nuclei carefully. According to
the above discussions, only the parameter sets fitted with
microscopic center-of-mass correction are used in the fol-
lowing discussions. The obtained EB/A values of 4,6,8He,
6,8,10,12,14Be, and 10,12,14,16,18,20C are listed in Table I. In
Table I, all the calculated binding energies reproduce the
experimental values with high accuracy. The largest deviation
of the EB/A values is 0.416 MeV, calculated by DD-PC1 in
8Be.
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TABLE I. The calculated energy per nucleon EB/A, root-mean-square (rms) matter radius Rm, rms charge radius Rc, and quadrupole
deformation parameter β20 with relativistic Hartree-Bogoliubov model. For energies, the microscopic center-of-mass correction with full
exchange terms are used. For radii, results with and without exchange terms (Rf and Rd ) are listed for comparison. The rotational energy
correction calculated by Eq. (12) is included in EB/A when the nucleus is deformed. Experimental (Expt.) values of EB/A and β20 are taken
from Refs. [58,59], respectively, except where otherwise noted. The experimental radii and the corresponding references are also listed.

Nucleus Interaction EB/A (MeV) Rc, f (fm) Rc,d (fm) Rm, f (fm) Rm,d (fm) β20

4He Expt. 7.074 1.681(4) [60]
NL5(A) 7.008 1.846 1.846 1.663 1.663 0.000

PK1 7.076 1.838 1.838 1.654 1.654 0.000
PKDD 7.017 1.848 1.848 1.665 1.665 0.000

DD-ME2 6.951 1.894 1.894 1.716 1.716 0.000
DD-LZ1 6.842 1.982 1.982 1.812 1.812 0.000
DD-PC1 6.723 1.925 1.925 1.750 1.750 0.000

6He Expt. 4.879 2.068(11) [61] 2.30(7) [62] 1.024(66)

NL5(A) 4.941 1.935 1.947 2.129 2.118 0.000
PK1 4.973 1.929 1.940 2.130 2.120 0.000

PKDD 4.873 1.946 1.958 2.154 2.144 0.000
DD-ME2 4.835 2.005 2.014 2.211 2.202 0.000
DD-LZ1 4.858 2.100 2.109 2.295 2.286 0.000
DD-PC1 4.892 1.997 2.013 2.171 2.157 0.000

8He Expt. 3.925 1.929(26) [61] 2.45(7) [62] 0.40(3) [63]

NL5(A) 4.022 1.953 1.977 2.429 2.429 0.000
PK1 3.983 1.951 1.974 2.449 2.449 0.000

PKDD 3.833 1.968 1.992 2.475 2.475 0.000
DD-ME2 3.715 2.036 1.974 2.541 2.541 0.000
DD-LZ1 3.695 2.130 2.150 2.610 2.610 0.000
DD-PC1 3.950 2.010 2.039 2.448 2.448 0.000

6Be Expt. 4.487

NL5(A) 4.388 2.467 2.452 2.166 2.157 0.000
PK1 4.413 2.474 2.460 2.169 2.161 0.000

PKDD 4.319 2.500 2.486 2.194 2.186 0.000
DD-ME2 4.297 2.553 2.541 2.252 2.246 0.000
DD-LZ1 4.331 2.630 2.618 2.341 2.334 0.000
DD-PC1 4.345 2.494 2.471 2.204 2.191 0.000

8Be Expt. 7.062

NL5(A) 6.931 2.481 2.431 2.342 2.290 1.175
PK1 7.040 2.459 2.410 2.319 2.267 1.145

PKDD 6.981 2.475 2.426 2.335 2.284 1.158
DD-ME2 6.928 2.527 2.477 2.390 2.338 1.213
DD-LZ1 6.852 2.615 2.563 2.482 2.428 1.307
DD-PC1 6.646 2.581 2.531 2.448 2.396 1.263

10Be Expt. 6.498 2.361(17) [18] 2.30(2) [64] 1.071(+26
−20)

NL5(A) 6.472 2.292 2.279 2.297 2.268 0.353
PK1 6.574 2.273 2.259 2.282 2.252 0.356

PKDD 6.510 2.306 2.289 2.312 2.282 0.385
DD-ME2 6.431 2.325 2.313 2.331 2.303 0.316
DD-LZ1 6.374 2.268 2.261 2.270 2.246 0.001
DD-PC1 6.230 2.319 2.311 2.321 2.294 0.033

12Be Expt. 5.721 2.503(15) [18] 2.59(6) [64] 0.88(+24
−12)

NL5(A) 5.844 2.321 2.319 2.490 2.464 0.000
PK1 5.834 2.312 2.310 2.495 2.470 0.000

PKDD 5.724 2.331 2.327 2.508 2.484 0.000
DD-ME2 5.746 2.371 2.368 2.534 2.510 0.000
DD-LZ1 5.821 2.392 2.389 2.554 2.531 0.000
DD-PC1 5.932 2.368 2.365 2.511 2.485 0.000
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TABLE I. (Continued.)

Nucleus Interaction EB/A (MeV) Rc, f (fm) Rc,d (fm) Rm, f (fm) Rm,d (fm) β20

14Be Expt. 4.994 3.16(38) [64]

NL5(A) 5.284 2.488 2.475 2.853 2.280 0.789
PK1 5.255 2.472 2.460 2.867 2.835 0.785

PKDD 5.112 2.490 2.478 2.889 2.856 0.797
DD-ME2 5.039 2.509 2.503 2.917 2.886 0.758
DD-LZ1 4.911 2.413 2.419 2.896 2.871 0.123
DD-PC1 5.195 2.503 2.459 2.853 2.821 0.730

10C Expt. 6.032 0.701(+32
−34)

NL5(A) 5.958 2.567 2.532 2.333 2.304 0.397
PK1 6.056 2.557 2.521 2.318 2.288 0.398

PKDD 5.997 2.583 2.546 2.348 2.317 0.429
DD-ME2 5.914 2.608 2.573 2.374 2.346 0.361
DD-LZ1 5.814 2.558 2.525 2.319 2.294 0.019
DD-PC1 5.713 2.577 2.541 2.345 2.318 0.066

12C Expt. 7.680 2.4702(22) [65] 2.35(2) [66] −0.40(2) [67]

NL5(A) 7.608 2.469 2.440 2.327 2.297 −0.350
PK1 7.744 2.436 2.408 2.292 2.263 −0.320

PKDD 7.700 2.467 2.439 2.325 2.296 −0.346
DD-ME2 7.660 2.491 2.463 2.349 2.320 −0.347
DD-LZ1 7.633 2.376 2.354 2.228 2.204 0.002
DD-PC1 7.269 2.481 2.453 2.340 2.312 0.000

14C Expt. 7.520 2.5025(87) [65] 2.33(7) [66]

NL5(A) 7.438 2.466 2.443 2.431 2.405 0.000
PK1 7.517 2.446 2.423 2.417 2.391 0.000

PKDD 7.484 2.463 2.440 2.427 2.402 0.000
DD-ME2 7.495 2.493 2.470 2.449 2.424 0.000
DD-LZ1 7.623 2.474 2.452 2.436 2.414 0.000
DD-PC1 7.562 2.521 2.497 2.474 2.448 0.000

16C Expt. 6.922 2.74(3) [66] 0.323(18)
0.356+0.25

−0.23 [68]

NL5(A) 6.950 2.512 2.494 2.644 2.619 0.327
PK1 6.994 2.492 2.475 2.639 2.614 0.320

PKDD 6.938 2.512 2.494 2.653 2.628 0.326
DD-ME2 6.935 2.547 2.529 2.679 2.654 0.316
DD-LZ1 7.015 2.522 2.506 2.674 2.652 0.192
DD-PC1 7.049 2.566 2.548 2.671 2.645 0.324

18C Expt. 6.426 2.86(4) [66] 0.289(+20
−13)

NL5(A) 6.553 2.569 2.555 2.828 2.802 −0.381
PK1 6.567 2.550 2.536 2.832 2.807 −0.380

PKDD 6.479 2.566 2.552 2.842 2.816 −0.374
DD-ME2 6.456 2.602 2.587 2.864 2.839 −0.372
DD-LZ1 6.526 2.571 2.559 2.841 2.817 −0.318
DD-PC1 6.580 2.615 2.601 2.837 2.810 −0.362

20C Expt. 5.961 2.98(5) [69] 0.405(+89
−45)

NL5(A) 6.171 2.615 2.607 2.987 2.957 −0.468
PK1 6.146 2.596 2.588 2.999 2.970 −0.468

PKDD 6.045 2.612 2.604 3.001 2.972 −0.457
DD-ME2 6.006 2.649 2.640 3.011 2.983 −0.457
DD-LZ1 6.026 2.609 2.602 2.953 2.926 −0.413
DD-PC1 6.177 2.664 2.656 2.985 2.956 −0.453
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FIG. 2. Ground-state properties for helium (Z = 2), beryllium (Z = 4), and carbon (Z = 6) isotopes. The evolutions of (a) the quadrupole
deformation parameter β20, (b) the energy per nucleon EB/A, (c) the root-mean-square (rms) charge radius Rc, (d) the rms mass radius Rm, and
(e) the neutron skin ratio between pure mean-field and mean-field with corrections, Rnp/Rnp,MF, calculated with the PK1 effective interaction
are shown. For center-of-mass (c.m.) correction, “c.m.[A]” is corrected by Eq. (9) for energies and Eq. (15) for radii; “c.m.[B]” is corrected
by Eq. (10) for energies and Eq. (14) for radii with only direct term in Eq. (16); “c.m.[C]” is the same as “c.m.[B]” but with exchange terms.
The green dashed line in (b) represents the result with rotational energy correction. The measured β20, EB/A, Rc, and Rm listed in Table I are
denoted by open squares. The Rc values with open diamonds are derived from proton radii obtained from measurement of charge-changing
cross sections [16,70,71] with Eq. (17).

As an example, the energies in the mean-field approxima-
tion and with corrections calculated with the PK1 parameter
set are clearly visible in Figs. 2(b1)–2(b3), together with the
corresponding quadrupole deformations in Figs. 2(a1)–2(a3).
In these figures, the EB/A values are all well-reproduced with
center-of-mass and rotational energy corrections, especially
for the two-α cluster structure nucleus 8Be. Although 8Be
does not have the largest EB/A in this isotopic chain in the
mean field, it is repaired after corrections, indicating that the

correction terms bring cluster effect to the mean-field descrip-
tion to some extent.

The above results naturally bring a question: How does
the percentage of the mean-field energy to the total en-
ergy in a nucleus depends on the mass number? To do
this, I study the particle-number dependence by averaging
the EMF/EB ratios calculated from the six selected effective
interactions NL5(A), PK1, PKDD, DD-ME2, DD-LZ1, and
DD-PC1 for each nucleus. Meanwhile, the standard deviations
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FIG. 3. The ratios of the mean-field energy to the binding energy,
−EMF/EB, as a function of the mass number A. The ratios are aver-
age values of the results calculated by using NL5(A), PK1, PKDD,
DD-ME2, DD-LZ1, and DD-PC1. The corresponding error bars are
their root-mean-square deviations. The solid curve is fitted by all the
average values in this figure.

of the ratios are also given as model uncertainties. Fig-
ure 3 displays the average −EMF/EB values of the even-even
helium, beryllium, and carbon isotopes. Note that 16O, 20Ne,
and 40Ca are added to constrain the particle-number depen-
dence in the medium-mass region. It can be observed that
the expected behavior, i.e., a favorable relation between the
−EMF/EB and the mass number in the light mass region until
A = 40 is obtained. For heavier nuclei, this dependence can be
neglected. Given that the −EMF/EB ratios for nuclei with the
same mass number are slightly different, e.g., 0.795 ± 0.057
for 10Be and 0.778 ± 0.065 for 10C, one would find the isospin
effect exists but can be neglected in the mass-number depen-
dent behavior. To give a specific form of the mass-number
dependent behavior, I fit all the energy ratios shown in Fig. 3
and obtain the following relation:

−EMF/EB = 1.06e−2.90/A, (20)

where the mean-field energy ratios accumulate exponentially
as the number of particles increases. Predicting by Eq. (20),
when A = 42, the mean-field energy is 99% equals to the total
energy.

B. Radii

Next, I discuss the radii. The radius is a quantity of great
interest in describing a nucleus, providing information on
deformations [72], exotic structures such as halos [61,66]
and neutron/proton skins [73], short-range correlations of
nucleon-nucleon interactions [74], and shell evolutions [18],
etc. Previous studies have shown that the inclusion of rel-
ativistic and center-of-mass corrections impacts the quality
of energy density functionals optimized for charge radii
data [75]. In this work, I focus on the treatment of the
center-of-mass correction. The rms radius of the center of
mass is calculated with HO approximation [Eq. (15)] or
expectation values from RHB states with or without exchange
terms [Eq. (16)].

FIG. 4. The difference between the (a) rms matter radius Rm and
(b) rms charge radius Rc calculated with microscopic center-of-mass
correction with and without exchange terms (labeled by Rm, f and
Rm,d for matter radius, respectively) for helium, beryllium, and car-
bon isotopes. The results are calculated with PK1 (red), NL5(A)
(blue), and DD-LZ1 (green) parameter sets.

Table I lists the radii calculated by utilizing the mi-
croscopic center-of-mass correction with the six selected
parameter sets. The radii corrected by Eq. (15) are not listed
because they are too simple to calculate and independent
of RHB wave functions. As can be seen from Table I, the
exchange terms change both Rc values and Rm values from
those with only the direct term, except for 4He. To observe
this effect clearly, I calculate the differences between the rms
matter (charge) radii with and without exchange terms, i.e.,
Rm, f − Rm,d (Rc, f − Rc,d ), with PK1, NL5(A), and DD-LZ1
and show them in Fig. 4. It is evident that all the Rm, f − Rm,d

values are greater than or equal to zero, manifesting that the
inclusion of the exchange terms increases Rm value. How-
ever, Rc, f − Rc,d < 0 is obtained for 6He and 8He with these
three parameter sets and 14Be with DD-LZ1, meaning that
Rc may be reduced or increased depending on the choice of
effective interactions for an individual nucleus. Overall, the
differences range from 0.0 fm to 0.05 fm. Especially for 8Be,
this effect introduces a two percent deviation to the calcu-
lated radius. Considering the unprecedented level of precision
offered by new experimental techniques, which allows for
the exploration of new physics and the elucidation of unclear
observables [76,77], the exchange terms cannot be ignored for
these nuclei in the mean-field calculations.

According to the data in Table I, I plot the radii calcu-
lated with PK1 and different center-of-mass corrections, and
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compare them to the mean-field and measured values in
Figs. 2(c) and 2(d). In Fig. 2(c1), the mean-field Rc values
calculated with PK1 are around 2.0 fm and decrease as the
neutron number increases. The curve including the center-
of-mass correction with HO approximation shows a similar
tendency in the isotopic chain as the mean-field result, but
the corresponding Rc values are smaller. This can be easily
understood because this approximation only considers the
mass-number dependence. However, with microscopic center-
of-mass corrections, i.e., by using Eq. (16), the isospin effect
is considered, whether with or without exchange terms. For
4He, where the nucleons occupy only the s single-particle
level, the exchange terms are zero. For 8He, the reduction
of the Rc caused by the exchange terms cannot be neglected.
Comparing these results with the experimental charge radii,
the calculated value for 4He is larger, while the values for 6He
and 8He are reasonably reproduced. Overall, the calculations
with full microscopic correction perform better than the other
three methods in describing the experimental curve, particu-
larly for the Rc values of 4He and 8He. However, a remaining
issue is that the calculated relation Rc(6He)< Rc(8He) contra-
dicts the experimental observation [61]. This inconsistency is
associated with many-body correlations and will be discussed
later from the perspective of deformation.

Regarding Rm in Fig. 2(d1), it is clear that the treatment
of the correction significantly affects the calculated radii in
these nuclei. When compared with the data in Ref. [62],
which reveal 6He and 8He as halo nuclei, it is surprising
that the calculated Rm values for 8He are large enough,
and the one with full microscopic center-of-mass correction
is very close to the experimental value. One can further
highlight the effects of different corrections by calculating
the neutron skin ratio, i.e., Rnp/Rnp,MF, where Rnp = Rn −
Rp is the neutron skin thickness, and Rn (Rp) is the rms
neutron (proton) radius. In Fig. 2(e1), the ratios calculated
by Eq. (16) are lower than 1.0, while those calculated by
Eq. (15) are larger than 1.0. This indicates that the mi-
croscopic methods reduce the neutron skins, but the HO
approximation with energy fixed by the heavy nuclei increases
them.

Combining both binding energy and radius, in Fig. 5, the
EB/A values for 4He are shown as a function of its pro-
ton radii Rp values calculated with the six selected effective
interactions, and compared with other models and the exper-
imental point. It is noteworthy that all the calculated points
are on the right side of the measured point. Calculated with
effective interactions, the mean-field models, including the
MDCRHB model and DRHF model [78,79], provide proper
description for the EB/A but predict larger Rp compared to the
experimental value. In contrast, ab initio methods employing
realistic nuclear forces yield smaller deviations between the
calculated and experimental Rp values, but larger deviations
for EB/A values. The conjecture is that incorporating radii or
densities into the fitting procedure may result in mean-field
models that exhibit greater consistency with experimental
measurements.

For the beryllium isotopes, the Rc values calculated with
PK1 are shown in Fig. 2(c2). Obviously, those with center-
of-mass corrections are smaller than the corresponding Rc

FIG. 5. Energies per nucleon EB/A values for 4He as a function
of the proton radius Rp values calculated by the MDCRHB model
with full microscopic center-of-mass (c.m.) correction, in compari-
son with RBHF model with Bonn-A interaction [80], DRHF model
with PKO1 [78] and PKA1 [79] interactions, Faddeev-Yakubovsky
(FY) equations with N4LO [81], and no-core shell model (NCSM)
with N 3LO NN potentials [82].

values in the mean-field calculation, consistent with the in-
crease in binding energy due to this correction. Furthermore,
the microscopic type of center-of-mass correction with only
a direct term drastically shrinks the Rc values of 6Be and
8Be, while the inclusion of the exchange terms enlarges the
value for 8Be notably. For heavier nuclei, the results with
different center-of-mass corrections closely converge. When
compared to the experimental Rc values, the calculated results
show a systematic shrinkage for 10Be and 12Be. This situation
can be somewhat ameliorated by taking the beyond mean-
field effects into consideration. The symmetry restoration, in
particular, helps to achieve a larger β20 from near spherical
shape [83,84] and increase the Rc values of the studied nuclei.
Detailed insights into this will be provided in the subsequent
section. For 14Be, the Rc obtained from PK1 closely aligns
with the value derived from the charge-changing cross sec-
tion measurement [70]. This could be associated with the
large β20 calculated with PK1. In Fig. 2(d2), the correction
effect for the Rm is similar to that for Rc in Fig. 2(c2), and
the specifics are not revisited. The calculated Rm values for
10Be and 12Be accurately reproduce the experimental values,
and that for 14Be falls within the limits of the experimental
error. I examine the neutron skin ratios in Fig. 2(e2) and obtain
the same conclusion as with helium isotopes: The micro-
scopic center-of-mass correction diminishes the neutron skin
when compared to the mean-field result, while the simple HO
approximation yields an opposite tendency.

For carbon isotopes, the reduction of the charge and matter
radii by employing center-of-mass correction from the mean-
field values is still visible. As shown in Fig. 2(c3), the Rc

values calculated with full microscopic center-of-mass correc-
tion are very close to those calculated with HO approximation
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in this isotopic chain, and the same situation holds for Rm

values in Fig. 2(d3). This suggests that, from the perspective
of radii, it is a valid approximation for these nuclei that the
center-of-mass motion behaves as a harmonic oscillator vi-
bration. When compared with the experimental radii, the Rc

values in Fig. 2(c3) with corrections reproduce the experi-
mental data well for 12C and 18C. Notably, the Rc for 12C
with PK1 is comparable to the measured values, in contrast
to the value calculated with TMA in a previous study [16].
However, those with pure mean-field calculations are closer
to the results derived from measurements of charge-changing
reactions [71], rather than the corrected values. As for Rm, the
corrected values closely match the experimental data for 18C
and 20C, but they surpass the experimental data for 12C and
16C. Experimental findings [66] indicate that the smallest Rm

in this isotopic chain is observed in 14C. Nevertheless, when
calculated with PK1, the Rc value for 14C is overestimated
with all types of center-of-mass corrections, and the reduction
of the radius in this nucleus throughout the evolution of the
isotopic chain cannot be achieved. In comparison with the
results from DRHBc model [85], which adopts a spherical
Dirac Woods-Saxon (WS) basis and considers continuum ef-
fects, results in this work align with theirs, except for 16C.
The difference arises from the softness of the potential energy
surface (PES) in the γ = arctan(

√
2β22/β20) direction with

triaxial degree of freedom, as demonstrated in Ref. [26]. Addi-
tionally, Fig. 2(e3) underscores that the neutron skin can serve
as a probe to differentiate between types of center-of-mass
correction.

C. Deformation and shell evolution

The quadrupole deformations calculated with the six se-
lected parameter sets for the studied light nuclei are illustrated
in the last column of Table I. Apparently, for most of the
studied nuclei, the deformation parameters calculated with
different interactions are similar, except for some of those
calculated with the point coupling interactions DD-PC1 and
DD-LZ1, which tend to have spherical ground states rather
than deformed ground states.

I then focus on the results calculated with PK1 as an exam-
ple. 4,6,8He are spherical according to the MDCRHB model,
implying that the valence neutrons are uniformly distributed
around the surface of the α particle. This situation naturally
leads to an increase in the charge and matter radii as the
number of neutrons increases. However, charge radii extracted
from the measured isotope shifts reveal a significant reduction
in the charge radius from 6He to 8He [61]. In Ref. [61], the
authors interpreted it as a change in the correlations of the
excess neutrons: in 6He, the two neutrons are correlated so
that on average they spend more time together on one side
of the core rather than on opposite sides; while for 8He, the
four excess neutrons are distributed in a more spherically
symmetric fashion in the halo, resulting in less smearing of
the charge in the core. The quadrupole deformation obtained
from proton inelastic scattering also supports this picture [61].
In other words, both the charge radii and deformations from
experiments reveal that the mean-field approximation misses

the correction among the valence neutrons, which is essential
in helium isotopes.

Superficially, it is the zero quadrupole deformation that
causes the inconsistent results with the experiment. Suppose
the experimental deformations can be reproduced by some
corrections, then the calculated radius is modified by [86]

R2 =
(

1 + 5

4π
β2

2

)
R2

sph, (21)

where Rsph is the rms radius for a spherical nucleus. By in-
corporating the experimental β2 into Eq. (21), the rms Rc for
6He is calculated to be 2.296 fm, and that for 8He is 2.012
fm, based on the full microscopic center-of-mass correction.
These values are larger than the measured values of 2.068
fm and 1.929 fm, respectively, and the trend of Rc(6He)>
Rc(8He) > Rc(4He) is reproduced.

Since angular momentum projection usually changes the
quadrupole deformation of the mean-field ground state from
near zero to a larger value [83,84], I attempt to reproduce
the experimental deformations for 6He and 8He by applying
angular momentum projection after variation. In Figs. 6(a)–
6(c), the mean-field and projected potential energy surfaces
(PESs) for 4,6,8He calculated with the DD-PC1 effective in-
teraction are shown. Note that here DD-PC1 is used instead
of PK1 since symmetry restoration calculation with the latter
effective interaction has not been realized. In Figs. 6(a)–6(c),
the quadrupole deformations for these three nuclei are zero
in the mean field, consistent with the results in Fig. 2(a1).
With angular momentum projection, the PES for 4He is very
soft, while those for 6He and 8He evidently reach deformed
energy minima. Precisely, the locations of the energy minima
for 4,6,8He are β20 = 0.20, 0.90, and −0.50. The correspond-
ing energy differences between the projected and mean-field
energy minima are 0.01 MeV, 0.22 MeV, and 0.17 MeV,
respectively. One can conclude that the experimental defor-
mations for 6He and 8He can be partly explained by doing
angular momentum projection, and the influence of symme-
try restoration on 4He can be neglected. However, this issue
might persist after configuration mixing calculation due to the
softness of the PESs, similar to the case of 32Mg calculated
with PC-F1 [84]. Detailed discussions of configuration mixing
are beyond the scope of this article.

For beryllium isotopes, in Fig. 2(a2), the studied nuclei are
prolate except for 6Be and 12Be. As expected, the deforma-
tion of 8Be is β2 = 1.145, forming a typical two-α cluster
structure. With more or fewer neutrons, the α cluster structure
diminishes or even disappears. 12Be, which consists of four
extra neutrons compared to 8Be, is a well-known nucleus
in discussions about shell evolution. The disappearance of
the magic number N = 8 has been suggested in this nu-
cleus through various observables measured in experiments,
such as lifetime [17], charge radius [18], and single-neutron
removal cross sections [19]. However, as listed in Table I, it
is predicted to be spherical by the RHB model with all the
selected effective interactions. This indicates that the magic
number N = 8 naturally arises in every mean-field description
for this nucleus. A natural understanding of this result is that
the correlations between nucleons are lost with the mean-field
approximation, whereas it is crucial for determining the shell
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FIG. 6. The mean-field and the projected potential energy surfaces for 4,6,8He and 8,10,12Be calculated with the DD-PC1 effective
interaction. The red squares mark the mean-field ground states, and the blue crosses represent the energy minima after angular momentum
projection.

closure in this mass region. For example, in the molecular-
orbital models, by coupling with the spin-triplet states, the
energy of the (3/2−)2(1/2+)2 configuration for the four va-
lence neutrons is almost the same as, or even lower than,
the (3/2−)2(1/2−)2 corresponding to the closed p-shell con-
figuration. This results in the breaking of the neutron magic
number N = 8 [87,88]. However, the inclusion of this effect
is difficult within a single-reference configuration.

Similar to the discussion in helium isotopes, the radius for
12Be calculated using Eq. (21) with the spherical mean-field
radius of 2.312 fm and experimental quadrupole deforma-
tion β2 = 0.88 is 2.644 fm, which is slightly larger than the
measured charge radius of 2.503(15) fm [18]. The projected
PESs calculated with the DD-PC1 effective interaction are
presented in Figs. 6(d)–6(f). In this figure, one could observe
the distance between the two α particles in 8Be enlarges
after projection, as the corresponding β20 in the projected
energy minimum is larger than that in the mean field. The
same phenomenon occurs for 10Be. However, it is hard to
conclude that 12Be is well deformed after projection, because
the projected PES appears very soft in the figure. I increase
the pairing strength for neutrons by 20% and obtain a stiffer
projected PES with a prolate energy minimum. This suggests
that an enhancement of pairing interactions may contribute to
breaking up the shell closure in this nucleus.

Finally, I discuss the carbon isotopes. Calculated with PK1,
in Fig. 2(a3), 10,16C are prolate, 14C is spherical, and 12,18,20C
are oblate. These shapes align with those calculated with the
MDC-RMF model, except for 18C [26], which is predicted
to be triaxially deformed in its ground state. In comparison
with the DRHBc model, my results are consistent with theirs,
except for 16C. The discrepancy arises from the softness of
the PES in the γ direction with triaxial degree of freedom.
It is worth noting that in Ref. [59], the deformation parame-
ter is obtained from an electric quadrupole transition of the

nucleus, and distinguishing between prolate (β20 > 0) and
oblate (β20 < 0) shapes is not feasible. Consequently, when
compared to the results from Ref. [59], the calculated defor-
mations for 16,18,20C are quite accurate. For 10C, prediction
from the MDCRHB model indicates a smaller quadrupole
deformation parameter compared to the experimental value of
0.701 [59]. As for 12C, this work supports an oblate shape with
β20 = −0.40(2) [67].

14C, with six protons and eight neutrons, provides an im-
portant platform to study the possible existence of the magic
number 6 in certain semimagic unstable nuclei. The fact
that the systematics of proton radii, B(E2) values, and the
empirical proton-subshell gaps for most carbon isotopes are
comparable to those for proton-closed shell oxygen isotopes
manifests 14C as a doubly magic nucleus [16]. In the MD-
CRHB model, 14C is predicted to be spherical in its ground
state using all the effective interactions I employed. When
compared with the cases of 8He and 12Be, the mean-field
calculations consistently yield strong spin-orbit coupling for
the 1p state, leading to the magic number 6. As a result,
shell closures are achieved in 8He and 14C. However, the poor
description of deformations in helium and beryllium isotopes
shows the absence of the many-body correlations in the mean-
field approximation.

IV. SUMMARY

This study delves into the efficacy of the mean-field ap-
proach in describing light nuclei. To this end, the ground-state
properties of helium, beryllium, and carbon isotopes are
examined using the MDCRHB model and its associated cor-
rections. These properties include binding energy, quadrupole
deformation, root-mean-square (rms) charge radius, rms mat-
ter radius, and neutron skin. Eight effective interactions are
employed to assess the theoretical uncertainty arising from
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effective interactions. Notably, the full microscopic center-
of-mass correction for the radius, which has been neglected
in the descriptions of medium and heavy nuclei, is in-
corporated. Additionally, angular momentum projection is
performed on the potential energy surfaces after mean-field
calculations.

The binding energies of the investigated nuclei are
accurately described by the MDCRHB model incorporating
microscopic center-of-mass correction and rotational correc-
tion. The average mean-field energies calculated with these
corrections exhibit an exponential relation to the calculated
binding energies, with a coefficient of mass correlation.
Regarding the radius, the exchange terms in the center-of-
mass correction cannot be neglected, which contrasts with
the situation in heavier mass regions. With the PK1 effective
interaction, most of the charge and matter radii closely match
the experimental values. The neutron skin ratio can be used
to distinguish the type of center-of-mass correction, and the
neutron skin becomes smaller with microscopic center-of-
mass correction. Shell closures are achieved in 8He and 14C
due to the consistently strong spin-orbit coupling for the 1p
state predicted by mean-field calculations. However, the poor
description of deformations in helium and beryllium isotopes

indicates the absence of many-body correlations in the mean-
field approximation. Deformation is a key property to test
the ability of mean-field models in describing light nuclei,
and angular momentum projection after variation can partially
aid in reproducing the deformations in helium and beryl-
lium isotopes. Further utilization of realistic nucleon-nucleon
interactions to calculate ground states within this framework
would be of interest.
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[45] T. Nikšić, D. Vretenar, and P. Ring, Prog. Part. Nucl. Phys. 66,

519 (2011).
[46] J. L. Egido, Phys. Scr. 91, 073003 (2016).
[47] L. M. Robledo, T. R. Rodríguez, and R. R. Rodríguez-Guzmán,

J. Phys. G: Nucl. Part. Phys. 46, 013001 (2019).
[48] J. A. Sheikh, J. Dobaczewski, P. Ring, L. M. Robledo, and C.

Yannouleas, J. Phys. G: Nucl. Part. Phys. 48, 123001 (2021).
[49] X.-X. Sun and S.-G. Zhou, Sci. Bull. 66, 2072 (2021).
[50] J. M. Yao, J. Meng, P. Ring, and D. Vretenar, Phys. Rev. C 81,

044311 (2010).
[51] J. M. Yao, J. Meng, P. Ring, and D. Pena Arteaga, Phys. Rev. C

79, 044312 (2009).
[52] Y.-T. Rong, X.-Y. Wu, B.-N. Lu, and J.-M. Yao, Phys. Lett. B

840, 137896 (2023).
[53] M. M. Sharma, M. A. Nagarajan, and P. Ring, Phys. Lett. B 312,

377 (1993).
[54] S. E. Agbemava, A. V. Afanasjev, and A. Taninah, Phys. Rev. C

99, 014318 (2019).
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