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Multilinear analysis of the systematics of proton radioactivity
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It is shown that the proton formation probabilities, extracted from experimental decay half-lives, can be well
reproduced by a simple multilinear formula with only three parameters. The parameters obtained by considering
the standard root mean square deviation and the mini-max criteria are very similar to each other. In addition,
we applied Bayesian analysis to study the uncertainties of the parameters and the model predictions. In this way
we explain the systematics of proton decay half-lives. The multilinearity of the model also provides a way to
classify the relative hindrance of different proton decays. All the recent experimental data agree very well with
the model prediction. Our Bayesian analysis suggests that those new data do help constrain the uncertainty of
the model parameters.
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I. INTRODUCTION

Significant recent advances have been made in studying
the nuclear proton radioactivity [1–5]. In total there are now
nearly 50 observed proton decay events from the ground and
low-lying isomeric states of neutron-deficient nuclei above
100Sn. In the systematic studies of nuclear radioactivity, there
exists a striking linear correlation between the logarithm of
the alpha decay half-life and the energy of the outgoing α

particle. This is known as the Geiger-Nuttall law [6] which
works extremely well even today in describing α as well as
heavier cluster decays [7,8]. Theoretically, one would expect
the proton radioactivity to follow a similar behavior since
the process, as in α decay, is dominated by the tunneling
through the Coulomb and centrifugal barriers. However, there
has been no success in finding a simple linear pattern in proton
decay half-life systematics [9–12]. Instead, the then available
proton decay data seem to cluster around roughly two straight
lines with large spread. In addition, there are quite a few data
falling in between the two lines. That makes it difficult not
only for having a reliable systematic prediction on the decay
half-life but also for understanding the physics behind the
decay process.

The proton decay is often described as the tunneling of a
simple (unbound) proton single-particle orbital. In reality that
may not always be true since the wave functions of both the
initial and final states of the decay can be of complex many-
body nature. Therefore the decay rate can be affected by the
overlap between the initial, final and decaying proton wave
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functions in addition to the tunneling rate. The overlap can
be evaluated through the so-called decay formation amplitude
within the two-step R-matrix approach. The half-life can be
evaluated accordingly as [7]

T1/2 = ln 2

ν

∣∣∣∣
H+

l (χ, ρ)

RFl (R)
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2

, (1)

where Fl is the formation amplitude and H+
l (χ, ρ) is the

Coulomb-Hankel function with standard arguments. ν and l
are the velocity and angular momentum of the emitted proton,
respectively. R is the radius where the Fl and Hl functions
match, which can be taken as the touching point. Both func-
tions Fl and Hl depend on R but their ratio does not. In the
extreme single-particle model, the proton formation amplitude
can be simply expressed as

F (R) = 1

R3/2
, (2)

which defines the so-called particle decay unit (pdu) [13].
The deviations of the proton decay formation amplitude from
the pdu value would therefore reflect the influence of nuclear
structure effect on the decay. On the first glance, one may
deem every proton decay case to be different as they connect
different and complex initial and final states and therefore
would not expect any regular systematic behavior. However,
as we understand now and will illustrate later, the dominant
nuclear structure effects for proton decay are actually the
nuclear deformation and pairing correlation, both of which
mostly show very smooth behavior when going from one nu-
cleus to neighboring ones. Therefore, it can still be interesting
to search for regular behaviors in the proton decay system-
atics, even if it may not be as simple as the Geiger-Nuttall
law. The possible existence of such regular pattern could help
reveal the fundamental mechanism underlying the decay and
the structure of the many-body states involved. From a general
perspective, one can state that one of the most important
aspects in nuclear and many-body physics is the emergence
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of regular and simple patterns from the complex correlation,
without which it would be very difficult even to solve the
many-body wave function.

In this work we will focus on studying the systematic
properties of the formation amplitude instead of the half-life
since the Coulomb-Hankel function can be calculated analyt-
ically and is independent of the nuclear interaction [11]. The
experimental formation amplitude, which reflects the nuclear
structure effect on the decay, can be extracted when the ex-
perimental decay half-life and Q value are known [14,15]. We
will show that all available proton formation amplitudes (and
equivalently the decay half-lives) including the most recent
data [1–5] can be described extremely well by a simple mul-
tilinear model with only three parameters. The uncertainty of
the model prediction will also be evaluated based on variance
analysis and Bayesian analysis.

II. THE MODEL

We assume that the proton formation amplitude data can
be described by a system of multiple lines as

yk = (k − 1)(αx + β ) + o (3)

with the same basic parameters α (slope), β (intercept), and o
(offset). The difference between them lying in an integer pro-
portionality k. Each datum is thus associated with a classifier
k which can take values between k = 1 and N , where N is
the maximum number of lines to be considered in the system.
We would like to keep the model as simple as possible. For
that one aims to find the minimal value of N that can describe
well the available data. In practice we choose to study two
yk quantities, the logarithm of |RFl (R)|2 (in unit fm−1) and
Fl (R)R3/2 (unitless), which will be referred to as the proton
decay formation probability and the formation amplitude in
particle decay unit, respectively. We study their evolution as
a function of the quantity x = ρ ′ =

√
AZd (A1/3

d + 1) with
A = 1/(Ad + 1).

The formula Eq. (3) is proposed by first considering the
fact that the logarithm of the half-life and the Coulomb-
Hankel function are also proportional to ρ ′ [11]. And there
should be no systematic dependence of the formation proba-
bility on the decay Q value (or χ ). In addition, as indicated
in Eq. (2), the formation probability should decrease in the
extreme single-particle picture. In that case we would expect
α to be negative since the formation amplitude decreases as
increasing R (or ρ ′). The parameter o would be a small number
representing the minimum value of the predicted formation
amplitude in the large R limit or for the least favored proton
decay classification with k = 1. Correspondingly, k = N clas-
sify the most favored proton decay events. There will be only
one line with k = N = 2 in the ideal case where the formation
probability varies smoothly as predicted by the single-particle
model.

A. Determination of the model parameters

To determine the three parameters of the multilinear model,
we first consider to minimize the standard root mean square

FIG. 1. Comparison between logarithm experimental proton de-
cay formation probabilities (in unit fm−1) and the multilinear model
with N = 1 (a), 3 (b), and 8 (c). The shaded area marks the 1σ

deviation from the mean value of the fit.

deviation (RMSD) as

σ 2 = 1

T

T∑

i=1

(yi − yki )
2, (4)

where yi is the ith observed value up to T and yki is the
corresponding predicted value with classifier k determined by
taking the kth line that is closest to the data point. In practice,
for a given N , we search for the global minimum of σ on a
dense grid defined in the (α, β, o) space. For each set of α, β,
and o, we first assign a classifier k for each data point and then
sum over the square deviations. The set that gives the minimal
σ value is returned as the optimal parameters.

In Fig. 1 we compared the proton decay formation prob-
abilities extracted from experimental decay half-lives and the
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multilinear fits with N = 1, 3, and 8. The rest of the results are
given in the Supplemental Material [16]. As expected and can
be inferred based on earlier studies (c.f., Fig. 2 in Ref. [11]),
the experimental data are far from being explainable by a
linear fit or fitting to two lines. However, a very stimulating
result as one can see from Fig. 1 is that a good agreement
between data and the multilinear fit can be achieved already
with N = 3. With N = 3 and only three parameters, one gets
a much better description than earlier two-line analyses with
four (or more) parameters.

One can expect the RMSD values from above least squares
method to decrease as increasing N . However, this is an
uninteresting result in relation to the risk that uncertainty
of a model may increase as well, in particular for complex
nonlinear models. In Fig. 1 we also plotted the the evolution
of the variance σ 2 as a function of N . In addition to that, we
analyzed a product σ 2N2 which may to some extent illustrate
the total uncertainty of the model, where one sees a big drop
at N = 3 and, inconsistent with what we speculated above,
start to increase for N > 8. We therefore deem our N = 3
model as the simplest model with reliable predictions while
the N = 8 model as the most optimal model with lowest
variance and uncertainty. The optimal parameters were found
to be [α, β, o] = [−0.01400, 0.56727,−2.64286] for N = 8.
Those correspond to a variance of about σ 2 = 0.00317 for all
observed data. As a comparison, for N = 3(2) one reaches
σ 2 = 0.02975 (0.07914), which indicates that the experimen-
tal data can be reproduced within a factor of around 1.5 (2).

We have also compared the results from fitting with and
without the five new or updated data. The results are quite
similar to each other. No noticeable increase in σ is observed.

In Fig. 2 we plotted the differences between the experi-
mental and theoretical proton decay formation probabilities
together with the experimental errors and theoretical uncer-
tainty. For N = 8 the differences are close to zero and are
significantly smaller than many of the experimental error bars.
For N = 3, there is still one datum that deviates quite notice-
ably from is the systematics. That corresponds to the l = 5
decay from the presumed 146Tm isomeric state. We have also
studied the statistical distributions of the differences which
follow nicely the Gaussian distribution around mean value
zero for all N values we studied.

We focus on minimizing the RMSD, Rq. (4), for the above
and following analyses. Another common criterion is to min-
imize the mean squared weighted deviation

χ2 =
T∑

i=1

(yi − yki )
2

σ 2
i

, (5)

where σi denotes the error in the corresponding experimental
data as shown in Fig. 2. The results are quite similar to what
we got above. Part of the results are given in the Supplemental
Material [16].

In addition to the least squares method above, the so-
called mini-max method was applied in nuclear physics in
Refs. [17–19] and is getting very popular nowadays in various
artificial intelligence algorithm studies. We are interested in
that method in particular by considering the relatively large
discrepancy seen in the N = 3 model in Fig. 2. The object

FIG. 2. The deviations of experimental proton decay formation
probabilities (in unit fm−1, without logarithm) from the multilinear
fits with N = 3 (a) and 8 (b). The shaded area marks the theoretical
uncertainty. The bar indicates the error in the experimental formation
probabilities that are extracted based on the errors in the experimental
decay half-lives and Q values.

of the mini-max fit is to minimize the maximum deviation
or the largest discrepancy in the parameter and data space
(α, β, o, i) as

ε = arg min
α̂

max
i

|yi − yki |, (6)

where arg min (arg max) stands for the argument for which the
value of the given expression attains its minimum (maximum)
value and α̂ denote the set of parameters (α, β, o). We adapted
a procedure that is similar to the above least squares method.
On each grid point of the parameter space, the proton decay
event(s) with the largest deviation is returned. Then one can
search for the parameter set that minimizes that value. After
the optimal α̂ is determined, there will be four data points
(number of parameters plus one) with the same largest de-
viation value. In other words, the parameters are determined
by just very few data points with the largest deviation. If those
points deviate strongly from the systematic behavior of the
rest data points, one would observe a large difference between
the fits from above least squares and mini-max methods. On
the contrary, the parameters thus determined tend to be pretty
similar to those given by the least squares method. Therefore
we only plotted the N = 3 model in Fig. 3 as a comparison.
In that case a noticeable difference is seen in the slope values
from the mini-max and least squares methods but is within
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FIG. 3. Comparison between logarithm of experimental proton
decay formation probabilities (in unit fm−1) and the multilinear
model with N = 3 with parameters optimized with the mini-max
approach (solid) and the least squares method (dashed) from Fig. 1.

the theoretical uncertainty. Detailed and results can be found
in the Supplemental Material [16]. MThe similarity between
the least square and the mini-max fit indicate that the present
model analysis is quite robust and does catch the systematic
behaviors of all data.

B. The Bayesian analysis

The third method we consider to constrain the model pa-
rameters is the Bayesian statistical analysis which can be in
particularly useful when the number of data points is small.
There is increasing interest in applying in Bayesian anal-
ysis in various theoretical nuclear physics studies (see, for
example, Refs. [20,21]) in connection, in particular, to the
increasing emphasis on quantifying the uncertainties of the-
oretical models. The Bayesian analysis adapts a philosophy
which is quite different from the standard fitting procedures
as we have done above. Instead of looking for the optimal
parameters and predicted values, Bayesian analysis aims at
constraining the distributions/uncertainties of the parameters
as well as the predictions. We only explain it briefly here based
on how we have implemented it for our multilinear analysis.
The Bayesian analysis is based on the theorem that

posterior ∝ prior × likelihood, (7)

where the prior distribution represents our initial or present
knowledge of the parameters and the likelihood distribution
evaluates the probability the chosen parameters in describing
the observed data. The likelihood is assume to be

likelihood = 	i
1√

2πσ 2
e

(yi−yki
)2

2σ2 . (8)

The posterior thus obtained from the product, after normaliza-
tion, gives us an updated knowledge on the parameters. The
initial prior can be taken as Gaussian or uniform distributions.
It is hoped that a good constraint on the parameters can be
obtained independent of the initial choice with increasing
number of data points. That is indeed the case as we saw from
the Bayesian analysis of the proton decay data by gradually

increasing the number of data points included in the analysis.
The results for both the parameters and the predicted values
got quite close to those from the least squares method when
the majority of the data are taken into account. In particular,
when the most recent data from Refs. [1–5] are taken into
account, one notices a quite large decrease in the theoretical
uncertainty in the distribution of the parameters.

Part of the results we obtained from the Bayesian analysis
are plotted in Fig. 4. The results for both the theoretical
uncertainty/width of the distributions as well as their mean
values are quite close to those obtained from the least squares
method. The mean values of the parameters are also very
close to those from the least squares method, which are nearly
identical for N = 3 and a bit separated for N = 8 but within
the theoretical uncertainty. Another remarkable feature is that
the distribution of the slope parameter α and the intercepts
β + o are dominated by a small area of the parameter space
and follows a linear pattern.

III. DISCUSSION

Unlike proton decay, α decay systematics can be rather
well described by the original Geiger-Nuttall law and its var-
ious generalizations [6,7,22]. One main reason for the good
agreement is the smooth transition in the nuclear structure and
pairing correlations, which dominate the α formation process,
when going from one nucleus to its neighboring nuclei. On
the contrary, the proton decay formation probability can be
rather sensitive to the nuclear deformation, where the decay
formation probability can very much hindered if the decay
is from a small spherical component of the deformed state.
The formation probability can also be sensitive to the pairing
correlation (but in a way that can be opposite to α decay) as
well as the neutron-proton residual correlation/coupling [2].
From a simple theoretical perspective, the proton emitter can
be described by the coupling of the outgoing proton and the
daughter core. The deformed single-particle orbital (denoted
by Nilsson quantum number �) of the outgoing proton can be
expanded in its spherical components as

�(�) =
∑

n jl

c�
n jl |n jl〉. (9)

In that case the corresponding formation amplitude would be
proportional to

F�
l (R) ∝ u�

jl c
�
jl

1

R3/2
, (10)

where we assume the single particle states are the same as in
pdu formalism and l denotes the decaying proton orbital and
u is the probability that the orbital is empty in the daughter
nucleus after the decay.

In a well-deformed nucleus the decay can proceed through
both the small and large components of the spherical com-
ponents of the deformed orbit (see, for example, Fig. 6 in
Ref. [8]). Both scenarios have been observed experimentally.
In spherical or weakly deformed nuclei the decay proceeds
through the only component that is available and, as a re-
sult, the formation probability is large and can approach
unity when expressed in the particle decay unit. The pairing
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(a)

(b)

(c)

FIG. 4. Comparison between logarithm of experimental proton
decay formation probabilities (in unit fm−1) and the multilinear
model with N = 3 (a) and 8 (b). The distributions of the parameters
in the lower panels (c) and (d) of the figure, plotted as α versus β + o
for simplicity, is determined by the Bayesian analysis. The shaded
area is the distribution of the predicted values from those parameter
distributions. Their mean values are indicated by the solid lines. The
results from the least squares method are drawn as dashed lines for
comparison which is indistinguishable for N = 3. The dots in the
lower two panels mark the peak of the distribution while the cross
are results from RMSD in Fig. 1.

correlation can play a tricky role in proton decay. The for-
mation probability can actually be strongly suppressed if the
decaying orbit is highly occupied in the remaining daughter
nucleus due to interference from the pairing [leading to small
u value in Eq. (10)].

One may have doubted whether the proton decay sys-
tematics would follow any correlation behavior at all. In
Refs. [9–12], the proton decay data were roughly divided
into two regions separated by mass number A = 144. The
nuclei in the lighter mass region are mostly deformed. There-
fore the division was often discussed in terms of nuclear
deformation effects. But quite many proton emitters above
A = 144 including the recent 149Lu [3] are also expected to
be deformed. In addition, there are quite a few cases in that
heavier mass region that, in contrary to the rest, show strong
hindrance in proton formation as in the lighter mass region.
Our present multilinear model not only reproduce the avail-
able data including the most recent ones with high accuracy
and precision but also indicates a much stronger correlation
and systematic trend than those of the two region division. It
may be interesting to mention that, with only three parameters,
one can reach a mean deviation that is comparable to our
complex and nonlinear artificial neural network analysis of
the α and proton decay formation probabilities [23]. One can
state that the regular multilinear behaviors we have found is
a reflect on the smooth transition of the nuclear deformation
and pairing correlations for most regions of proton decaying
nuclei of interest. Otherwise, the extracted formation proba-
bilities would have scattered around the whole phase space of
(log10 |RF (R)|2, ρ ′).

Among the still limited amount of observed data on
proton decays, we have ten strongly hindered cases with
log10 |RF (R)|2 ∼ −2.5 which include most nuclei with
Z � 63 (decay of small components of the deformed proton
orbital) and the heavier 177mTl (decay of a hole state with
vanishing u). There are nine cases show intermediate val-
ues. The rest 27 cases are strongly favored with formation
amplitude closes to unity in pdu since decays involve either
dominant component of the deformed orbital or a spherical
proton orbital.

In the present setup, our multilinear model will give up to
N choices for the values of the formation amplitude when
predicting an unknown case. With commonly accepted tab-
ulations of nuclear deformations and pairing gaps (see, for
example, Ref. [24]), it is straightforward to do a system-
atic calculations on the u and c coefficients for all possible
low-lying proton decaying states in nuclei along the proton
dripline. The calculations can be done with our codes for
deformed shell model and exact pairing diagonalizations that
are available to the public [19,25]. We are also developing a
simple PYTHON code for that purpose that will be included in
the PYTHON package for our multilinear model.

We have focused on the proton decays from nuclei above
Z = 50 in the analysis above. One may also expect the ob-
servation of proton decay from proton-rich nuclei below that
shell closure, which can be important not only for nuclear
structure but also for the astrophysical rapid-proton capture
(rp) process. There have been quite many β delayed proton
emissions observed in the light nuclei (see Table 1 in Ref. [14]

054311-5



AMARO, KARLSSON, AND QI PHYSICAL REVIEW C 108, 054311 (2023)

TABLE I. Experimentally observed proton decays from nuclei
below Z = 50, the extract proton decay amplitudes and their values
in pdu as well as the orbital angular momentum l , radius parameter
ρ ′ and the classifier k of the N = 3 model.

Nucleus T p
1/2 log10 |RFl (R)|2 RFl (R)(pdu) l ρ ′ k

93Ag 228(16) ns −1.750 0.196 4 15.8 2
72Rb 103(22) ns −1.900 0.192 3 13.5 2
54mNi 0.73(6)µs −6.804 7.78 × 10−6 7 11.2 1
53mCo 18.8(6) s −7.515 1.78 × 10−8 9 11.0 1

and the compilation of Ref. [26]). But the observation of direct
proton emission was for long time limited to the isomeric state
in 53mCo [27,28] (which was the first observed proton decay
case) and was recently extended to 54mNi [29]. Direct ground
state decays have been observed from the nucleus 72Rb [30]
and 93Ag [31]. The Q values for nuclei including 28,30Cl [32],
66As, 73Rb [30,33], and 89Rh [31] are also measured. But
their decay half-lives are not known yet. In Table I we have
listed the available proton decay observations. The extracted
proton decay probabilities for 93Ag and 72Rb agree well with
classification k = 2 in our simple N = 3 model in relation
to the fact that the decaying orbital indeed corresponds to
the expected dominant components (g9/2 and f5/2) in their
ground state wave functions. The decays of 53mCo and 54mNi
are highly hindered with k = 1 since one would only expect
a tiny occupation of the l = 9, 7 orbitals in those isomeric
states. The fine structure for the proton decays of 53mCo and
54mNi have also been observed [28,29] which, as expected,
also show strong hindrance but less than those decays to the
ground states.

IV. SUMMARY

In summary, we have shown in this paper that the proton
formation probabilities, extracted from experimental decay
half-lives and Q values, can be well represented by a simple
multilinear formula with only three parameters, Eq. (3). To
determine the model parameter, we applied the usual root

mean square deviation method as well as the mini-max and
Bayesian analysis approaches by considering the fact that
the total number of proton decay data points are still rela-
tively low. The results obtain from above three approaches are
very similar to each other which indicates that the model is
quite robust. In particular, the recent experimental data agree
very well with the model predictions from all above three
approaches. Based on the variance and Bayesian analysis of
the multilinear model, we have studied the theoretical un-
certainties of the parameters and the model predictions. In
addition to the well reproduction of the systematic trends,
the multilinearity of the model also provide a way to classify
the relative hindrance of different proton decays. It can also
be compared with theoretical calculations on the formation
probability and similar quantities like the spectroscopic factor.

We deem the presence of a classifier as a useful feature of
the model. But one possible disadvantage of the model is that
it will not predict a unique value for a new or unknown proton
decay data but a set of classifiers instead. Here, we would like
to emphasize that an extremely good agreement between ex-
perimental data and the multilinear fit can be achieved already
with N = 3 which divides the available experimental data into
three groups from the most hindered (due to large deformation
or pairing hindrance), intermediate as well as most favored
(single-particle state) decays. That could provide much more
useful nuclear structure information than the absolute value
of the formation probability from a systematic perspective.
When predicting unknown proton decays, the choices of clas-
sifier value k can be further constrained by simple deformed
shell model plus exact pairing calculations that will be in-
cluded in the PYTHON package to be distributed for the present
multilinear model.
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