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Entanglement entropy of nuclear systems
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We study entanglement entropies between the single-particle states of the hole space and its complement in
nuclear systems. Analytical results based on the coupled-cluster method show that entanglement entropies are
proportional to the particle number fluctuation and the depletion number of the hole space for sufficiently weak
interactions. General arguments also suggest that the entanglement entropy in nuclear systems fulfills a volume
instead of an area law. We test and confirm these results by computing entanglement entropies of the pairing
model and neutron matter, and the depletion number of finite nuclei.
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I. INTRODUCTION

Entanglement is a key property in quantum mechanics [1].
It refers to nonlocal aspects of a wave function and usually
makes it hard to numerically solve a quantum many-body
problem. Expressions such as “wave-function correlations” or
“fluctuations” are often used as synonyms for entanglement.
However, the latter has the advantage that it can be quantified
using entropies. In this article, we are interested in entangle-
ment entropies of ground states in neutron matter and nuclear
models that arise when the single-particle basis is partitioned
into two complementary sets.

Entanglement is widely studied in different areas of
physics [2]. In shell-model calculations, understanding entan-
glement helps when applying the density-matrix renormaliza-
tion group [3,4]. Recently, advances in quantum information
science and quantum computing also renewed an interest in
exploring entanglement in nuclear systems [5–13]. A better
understanding of entanglement might thus benefit both classi-
cal and quantum computations of atomic nuclei.

Let us define those metrics that quantify the entanglement
of quantum systems. We assume that the Hilbert space H is
decomposed as a H = HA ⊗ HB in terms of the Hilbert spaces
of two subsystems A and B. The density matrix of the ground
state |�〉 is

ρ = |�〉〈�| , (1)

and the reduced density matrix of the subsystem A is obtained
by tracing over the subsystem B, i.e.,

ρA = TrB ρ . (2)

The density matrices ρA and ρ are Hermitian, non-
negative (i.e., they have non-negative eigenvalues), and fulfill
Tr ρ = 1. And we say ρA is entangled with B when it can-
not be represented by a pure state, i.e., Tr ρ2

A < 1. Measures
such as entropy or mutual information can be used to quan-
tify the entanglement. In this paper, we consider the Rényi

entropy [14]

Sα = 1

1 − α
ln Tr ρα

A . (3)

Here α ∈ (0, 1) ∪ (1,∞), and the von Neumann entropy
arises as the limiting case of the Rényi entropy for α → 1,
i.e.,

S1 = lim
α→1

Sα = −Tr(ρA ln ρA). (4)

In lattice systems with local interactions, one often finds
that the entanglement entropy grows proportional with the
area (times some logarithmic corrections) when the system
is partitioned into two subsystems [2]. Figure 1 shows how
this meets expectations. The red-colored sites within the
blue subsystem have links to the white complement, and
their number is proportional to the size of the boundary.
This leads to an area law for entanglement entropy in three
dimensions.

Wolf [16] and Gioev and Klich [17] showed that the von
Neumann entanglement entropy for fermionic tight-binding
Hamiltonians and free fermions in d dimensions, respectively,
scales as S1 ∼ Ld−1 ln L, where L is a linear dimension of
subsystem A. Thus, these fermionic systems fulfill area laws
with logarithmic factors. Gioev and Klich [17] and Klich [18]
also showed that the particle-number variation (�N )2 gives
upper and lower bounds of the von Neumann entropy via

4(�N )2 � S1 � O(ln L)(�N )2. (5)

Leschke et al. [19] extended the proof to general Rényi
entanglement entropies Sα . Extensions to interacting (and
exactly solvable systems) can be found in Refs. [20,21].
Masanes [22] pointed out that area laws with logarithmic
factors hold for a fermionic state if “(i) the state has suffi-
cient decay of correlations and (ii) the number of eigenstates
with vanishing energy density is not exponential in the
volume.”
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FIG. 1. Lattice system (sites and links) partitioned into two re-
gions (colored blue and white). The red sites in the blue region
have links to sites in the white region. Taken from Ref. [15] with
permission of the authors; see also Ref. [2].

While the first condition is expected to be fulfilled for
atomic nuclei, the second seems not to be fulfilled. After all,
nuclei are open quantum systems and resonant and scattering
states are abundant. A question also arises about how to par-
tition the Hilbert space when dealing with a finite system. We
will see that a partition in Fock space, based on the orbitals
that are occupied and unoccupied in the Hartree-Fock state, is
most useful and natural.

This paper is organized as follows. In Sec. II we give argu-
ments that entanglement entropies in nuclear systems fulfill
a volume law. In Sec. III, we present analytical results for
the entanglement entropy in finite interacting systems. As we
will see, model-independent results can only be derived in
the limit of sufficiently weak interactions. In particular, we
are able to generalize analytical results valid in noninteracting
systems to the case of weak interactions. This allows us to
relate entanglement entropies (which are difficult to compute)
to other observables such as the occupation number variation
or the depletion number. These can then serve as entangle-
ment witnesses that are easier to compute. In Sec. IV we
test our predictions and present results for the pairing model,
neutron matter, and finite nuclei. The pairing model serves
to verify our analytical arguments. Using a simple model for
neutron matter we see that the entanglement entropies fulfill
volume laws. Finally, we turn to nuclei computed within chiral
effective field theory. There we use the depletion as an entan-
glement witness and confirm a volume law. We summarize
our results in Sec. V.

II. ARGUMENTS FOR A VOLUME LAW

We partition the system into the single-particle states of
the reference state (the hole space) and its complement (the
particle space). This partition results, e.g., from a Hartree-
Fock computation or from a naive filling of the spherical
shell model. The single particle states in both subspaces are
usually delocalized in position space. Hartree-Fock orbitals,
for instance, are localized on an energy surface in phase
space but spread out in position space. One can now imagine
using unitary basis transformations in the hole and particle

FIG. 2. Position-space sketch of the nuclear volume (depicted in
light blue) and its complement (depicted in gray) for a finite spherical
basis. The red points represent (localized) hole states while the black
points symbolize localized particle states. The former (latter) exhibits
a nearest neighbor distance that is inversely proportional to the Fermi
momentum (momentum cutoff). Thus, one expects a volume law for
the entanglement entropy between particle and hole states.

spaces such that single-particle states become localized in
both partitions [23–25]. (Orthogonality requirements might
lead to somewhat less localized single-particle states, though.)
The ideal situation is depicted in Fig. 2. Here, the red points
are the hole states in position space. Their nearest neighbor
distance is about π/kF where kF is the Fermi momentum.
The “volume” occupied by the reference state is depicted in
light blue. The region outside the nuclear volume is depicted
in light gray. The black points denote the states of the particle
space. Their nearest-neighbor distance is about π/�, where �

denotes the momentum cutoff. Thus, their density in position
space is larger than the density of the red hole states, and the
resolution of the finite-Hilbert-space identity also demands
that there is a considerable number of particle states “inside”
the volume occupied by the nucleus. (The density of localized
states in the grey and light blue areas is equal.) Even for a
short-ranged (and possibly local) nuclear interaction, we see
that every hole state is correlated with particle states. Thus,
we expect a volume law for the entanglement entropy between
particle and hole space.

This expectation also holds in momentum space. There,
the hole states occupy the Fermi sphere (evenly distributed)
while the particle states occupy the complement. As the nu-
clear interaction is short-ranged in position space, it becomes
long-ranged in momentum space and thereby also leads to a
volume law for entanglement entropy.

Similar expectations also hold for lattice computations of
atomic nuclei [26] where the single-particle basis consists of
a cubic lattice in position space. Let us consider a nucleus
with an average density n0 ≈ 0.16 fm−3. The nucleus with
mass number A occupies a volume A/n0, and the number of
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available single-particle states inside this volume

� = gst
A

a3n0
, (6)

where a is the lattice spacing and gst = 4 the spin/isospin
degeneracy. The reference state of the nucleus consists of A
single-particle states (also occupying the volume A/n0). We
have

� − A = �

(
gst

a3n0
− 1

)
, (7)

and, for typical lattice spacing a = 1.3 fm or a = 2 fm
[27,28], we find � − A ≈ 10A and 2A, respectively. Thus we
expect a volume law for the entanglement entropy. We also
note that � ∼ a−3 for a → 0 and recall that the ultraviolet
cutoff is � = π/a. Thus, entanglement is expected to increase
with increasing cutoff of the nuclear interaction.

The arguments given in favor of a volume law for the en-
tanglement entropies are somewhat surprising at first glance.
Pazy [9] employed the nuclear contact [29–31] and argued
that short-range correlations yield a volume law for the entan-
glement entropy between momentum modes below and above
the Fermi energy. Here, we find a similar volume dependence
but employ the full fermionic many-body wave function and
a partition between a generalized hole space (taking the set of
orbitals that comprise the reference state, e.g., the Hartree-
Fock reference) and particle space (its complement). This
approach will allow us to relate the analytical results (made in
Sec. III to the exact results from Refs. [16–22]; those works
also consider a partition of two regions consisting each of
many single-particle sites.

III. ANALYTICAL RESULTS

In this section, we utilize coupled-cluster theory [32–35]
to derive analytical results for the Rényi entropy, the particle
fluctuation of the hole space, and their mutual relation.

A. Coupled-cluster theory

Following the standard coupled-cluster formulations, for a
many-body system with N fermions, we express the ground
state wave function |	〉 as

|	〉 = eT̂ |�〉, (8)

using the reference state

|�〉 =
N∏

i=1

â†
i |0〉. (9)

The cluster operator T̂ = T̂1 + T̂2 + · · · + T̂N contains all pos-
sible k-particle–k-hole excitations,

T̂k = 1

(k!)2

∑
i1 ,...,ik ;
a1 ,...,ak

t a1...ak
i1...ik

â†
a1

· · · â†
ak

âik · · · âi1 . (10)

Here the indices ik and ak represent occupied (hole) and unoc-
cupied (particle) orbitals respectively. We use the convention
that indices i, j and a, b refer to hole and particle states,

respectively. To obtain the coupled-cluster amplitudes t a1...ak
i1...ik

,
we solve the amplitude equations〈

�
a1a2...
i1i2...

∣∣e−T̂ ĤeT̂ |�0〉 = 0, (11)

where ∣∣�a1a2...
i1i2...

〉 ≡ â†
a1

â†
a2

· · · âi2 âi1 |�0〉, (12)

and then compute the energy via

E = 〈�|e−T̂ ĤeT̂ |�〉. (13)

For the purpose of analyzing results of the pairing model
and neutron matter, we use the coupled cluster doubles (CCD)
approximation. Here the cluster operator is T̂ = T̂2, and the
ground state becomes

|	CCD〉 = exp(T2)|�〉. (14)

The omission of singles (i.e., one-particle–one-hole excita-
tions) is valid because the pairing-model Hamiltonian only
changes the occupation of pairs and because neutron matter
is formulated in momentum space where the conservation of
momentum forbids single-particle excitations. For other finite
systems, the contributions of singles are small in the Hartree-
Fock basis. The N-body density matrix associated with the
ground state is

ρ̂ = |	CCD〉〈	CCD|
〈	CCD|	CCD〉 . (15)

Since we separate particles and holes we can express states as
the following products:∣∣�a1a2...

i1i2...

〉 = |a1a2 · · · 〉 ⊗ ∣∣i−1
1 i−1

2 · · · 〉. (16)

The hole-space reduced density matrix ρH is obtained by trac-
ing the density matrix ρ over the particle states. The matrix
elements of ρH are

〈|ρH |〉 = 〈�|ρ̂|�〉,〈
i−1
1 i−1

2

∣∣ρH

∣∣ j−1
1 j−1

2

〉 =
∑

a1<a2

〈
�

a1a2
i1i2

∣∣ρ̂∣∣�a1a2
j1 j2

〉
,

...〈
i−1
1 · · · i−1

N

∣∣ρH

∣∣ j−1
1 · · · j−1

N

〉 =
∑

a1<···<aN

〈
�

a1...aN
i1...iN

∣∣ρ̂∣∣�a1...aN
j1... jN

〉
.

(17)

The first line in Eq. (17) is obtained by tracing over the
vacuum state in the particle space, and the second line results
from tracing over two-particle states; for the last two lines the
trace is over N-particle states. As we use the CCD approxima-
tion, all traces over odd-numbered particle states vanish. We
can easily check that Tr ρH = 1.

B. Approximate entropies

The exact evaluation of all matrix elements is challenging,
and we make the approximation

|	CCD〉 ≈ (1 + T̂2)|�〉 = |�〉 + 1

4

∑
abi j

t ab
i j

∣∣�ab
i j

〉
. (18)
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assuming that T̂2 is small in a sense we specify below.
Thus, we obtain the T̂2 amplitudes from the solution of the
coupled-cluster equations but only employ the linearized ap-
proximation of the wave function for the computation of the
density matrix. Then,

ρ̂ = C−1|	CCD〉〈	CCD|, (19)

with the normalization coefficient

C ≡ 〈	CCD|	CCD〉 = 1 + t2. (20)

Here we used the shorthand

t2 ≡ 1

4

∑
i jab

t ab
i j t ab

i j . (21)

The approximation (18) is valid for t2 � 1, and this quantifies
in what sense T̂2 is small. Tracing over the particle space yields
the reduced density matrix

ρ̂H = 1

C

(
|〉〈| +

∑
a<b

tab
i j t ab

kl

∣∣k−1l−1〉〈 j−1i−1
∣∣). (22)

Here, |〉 denotes the vacuum state in the hole space. It is useful
to rewrite this expression as the block matrix

ρ̂H = 1

1 + t2

[
1 0
0 ρ̂2

]
. (23)

Here, the two-hole–two-hole matrix ρ̂2 has elements

ρkl
i j =

∑
a<b

tab
i j t ab

kl . (24)

We have i < j and k < l and the matrix ρ̂2 has dimension
D ≡ N (N − 1)/2 for a system with N fermions. As a check,
we see that

Tr ρ̂2 =
∑
i< j

ρ
i j
i j = t2, (25)

and we indeed have Tr ρ̂H = 1. The expression (23) is exact
and can be used to numerically compute the entropies of the
state (18) using Eqs. (3) and (4).

For what follows, we rewrite

ρ̂2 = t2σ̂ , (26)

where σ̂ is a density matrix, i.e., Tr σ̂ = 1.
To compute the Rényi entropies (3) we use

Tr ρ̂α
H = (1 + t2)−α (1 + t2α Tr σ̂ α ). (27)

From here on, we restrict ourselves to α � 1. We seek further
analytical insights and use t2 � 1. Then,

Sα = t2α Tr σ̂ α − αt2

1 − α
+ O(t4) + O(t4α ). (28)

For α → 1 we employ the rule by l’Hopital and find

S1 = t2[1 − Tr (σ̂ ln σ̂ ) − ln t2] + O(t4). (29)

The matrix σ̂ has dimension D. Thus, 0 � − Tr(σ̂ ln σ̂ ) �
ln D. Here, the minimum arises when all but one eigenvalue
of σ̂ vanish, while the maximum arises when all eigenvalues

are equal. Equations (28) and (29) are the main results of this
section. As we have assumed that t2 � 1,

Sα = α

α − 1
t2 + O(t2α ) + O(t4) for α > 1, (30)

i.e., the Rényi entropies become independent of the eigenval-
ues of the matrix (26) for sufficiently large index α.

The entropies (28) and (29) further simplify for arbitrarily
weak interactions (i.e., for t2 → 0), and we find the asymp-
totic behavior

Sα →
{−t2 ln t2 for α = 1 and t2 → 0,

α
α−1 t2 for α > 1 and t2 → 0.

(31)

Note that the asymptotic results are independent of the matrix
σ̂ in Eq. (26). The derivation of these results also makes clear
that the limits α → 1 and t2 → 0 do not commute.

C. Particle numbers in the hole space

The number operator for the particles in the hole space is

N̂H =
N∑

i=1

â†
i âi. (32)

Its matrix representation (limiting the basis to up to two holes)
is

N̂H =
[

N 0
0 N − 2

]
. (33)

This matrix has the same block structure (and dimensions) as
ρ̂H in Eq. (23). Thus,

〈NH 〉 ≡ Tr(ρ̂H N̂H ) = N − 2t2 + O(t4), (34)

and 〈
N2

H

〉 ≡ Tr
(
ρ̂H N̂2

H

) = N2 − 4t2(N − 1) + O(t4), (35)

and the particle-number fluctuation is

(�NH )2 ≡ 〈
N2

H

〉 − 〈NH 〉2 = 4t2 + O(t4). (36)

Thus, t2 ≈ (�NH )2/4, and substituting this expression into
Eqs. (28) and (29) shows that the Rényi entropies [and their
asymptotic expressions (31)] are functions of the particle-
number fluctuation. These expressions extend the pioneering
results [18] to finite systems of interacting fermions.

As it will turn out below, calculations of the expecta-
tion value (34) are much simpler than computations of the
particle-number fluctuation (36) or the entanglement entropy.
In particular, the depletion number of the reference state [36]

δNH ≡ N − 〈NH 〉 = 2t2 + O(t4) (37)

is simple to compute in interacting many-body systems, and
this also allows us to express the entanglement entropy as a
function of this quantity. Thus,

1
4 (�NH )2 ≈ 1

2 (δNH ) ≈ t2 (38)

and corrections to this relation are higher powers of δNH or
(�NH )2 or t2.
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The proportionality between the entropy and the particle-
number fluctuation breaks down when one includes higher
powers of T2 in the approximation of the CCD ground state
(18). Our analytical results (28), (29), and (31), combined with
(38), generalize the result [18] to weakly interacting finite
Fermi systems.

IV. NUCLEAR SYSTEMS

A. Pairing model

The exactly solvable pairing model [37] is useful for study-
ing entanglement entropy. The model consists of �/2 doubly
degenerate and equally spaced orbitals with two possible spin
states σ = ±1. The Hamiltonian is

Ĥ = δ
∑
pσ

(p − 1)a†
pσ apσ − 1

2
g
∑

pq

a†
p+a†

p−aq−aq+. (39)

with p, q = 1, 2, . . . , �/2. We set orbital spacing δ = 1 with-
out losing generality, i.e., all energies (and the coupling g) are
measured in units of δ.

We consider the model at half filling with orbitals being
either empty or doubly occupied. For sufficiently small cou-
pling strengths, the CCD approximation accurately solves the
pairing model [38].

We solve the doubles amplitudes t ab
i j using Eq. (11) with

〈�ab
i j | as the bra state. We then compute the reduced density

matrix (23) and the Rényi entropy (3). For the computation
of the von Neumann entropy (4) we diagonalize the reduced
density matrix. The results are shown in Fig. 3. The full and
hollow markers are results for α = 1 and α = 2, respectively,
and the dash-dotted and dashed lines are the analytical results
(30) and (31), respectively, combined with Eq. (38). The dif-
ferent coupling strengths g are identified by the colors and
shapes of the markers. Identical markers show the results
of systems containing one to twelve pairs. Entropies (and
particle-number fluctuations) increase with coupling strengths
and with an increasing number of pairs. Overall we see that
our analytical results agree with data for sufficiently weak
interactions, i.e., sufficiently small values of (�NH )2.

The agreement between numerical and analytical results
can be examined closer when plotting the absolute differences
between them, normalized by the numerical results. This is
shown in Fig. 4. We see that the analytical result for S1 is
probably only reached asymptotically for (�NH )2 → 0; this is
expected also from Fig. 3. We also see that the difference �S2

between the numerical and analytical results is as predicted of
order S2

2 . We attribute the visible deviations from this behavior
for g/δ = 10−3 to numerical precision limits, noting that �S
is close to machine precision.

A key question is, of course, how the entanglement en-
tropy scales with increasing system size. We can answer that
question analytically for small interaction strengths g/δ by
using second-order perturbation theory. We write the cluster
amplitudes t ab

i j as

t ab
i j ≈ 〈ab|v̂|i j〉

εab
i j

, (40)

H

H

H

FIG. 3. Rényi entropies S1 (full markers) and S2 (hollow mark-
ers) of the reduced hole-space density matrix ρH versus the
particle-number fluctuation (�NH )2 of the hole space for the half-
filled pairing model, with δ = 1.0 and different couplings g as
indicated. The dash-dotted and dashed lines show analytical results
for α = 1 and α = 2, respectively, and they are valid for values of t2

as indicated. The color and shape of the markers indicate the coupling
strength, and for a given coupling, identical markers show the results
for one to twelve pairs. The entropy increases with the number of
pairs and with increasing coupling strength.

H

FIG. 4. Absolute differences between numerical and analytical
Rényi entropies for S1 (full markers) and S2 (hollow markers),
normalized by the numerical entropy, versus the particle-number
fluctuation (�NH )2 of the hole space for the half-filled pairing model,
with δ = 1.0 and different couplings g as indicated. The color and
shape of the markers indicate the coupling strength, and for a given
coupling, identical markers show the results for one to twelve pairs.
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FIG. 5. Error of the approximation over number of particles, with
δ = 1.0 and g = 1e − 4, 1e − 3, 1e − 2, 1e − 1, 2e − 1, 5e − 1.

where εab
i j = εi + ε j − εa − εb and εp ≡ (p − 1)δ for the pair-

ing model. Thus,

t2 = 1

4

N
2∑

i=1

�
2∑

a= N
2 +1

g2

4δ2(i − a)2

≈ g2

16δ2

N
2∑

i=1

[∫ �
2

N
2 +1

1

(i − a)2
da

]

≈ g2

16δ2

∫ N
2

1

[
1

i − �
2

− 1

i − N
2 − 1

]
di

= g2

16δ2
ln

N (� − N )

2(� − 2)

≈ g2

16δ2
ln

N

4
, (41)

where N = �/2 at half filling. Here the last step is valid when
N  1, and we approximated the sums by integrals using the
Euler-Maclaurin formula. This approximation introduces an
error of order O(N0).

To see this, we compute the relative error at half filling
(� = 2N)

ε =
∣∣t2 − g2

16δ2 ln N2

4(N−1)

∣∣
t2

, (42)

and show the result in Fig. 5. We can see that, for small enough
g, Eq. (40) is valid, and t2 ∝ ln(N ) is the leading approxima-
tion. Thus for α � 2 we have Sα ∝ ln(N ). This agrees with
expectations for a Fermi system in one dimension [19].

B. Neutron matter

Neutron matter is relevant to understand neutron-rich
nuclei and neutron stars. Here, we consider a simple yet
nontrivial model of neutron matter based on the Minnesota
potential [39]. This is a simplification from more realistic
descriptions, e.g., within chiral effective field theory, and only
employs two-body forces. The Hamiltonian consists of the

kinetic energy t̂0 and the Minnesota potential v̂

Ĥ = Ĥ0 + ĤI =
A∑

i=1

t̂0(xi ) +
A∑

i< j

v̂(ri j ). (43)

The Minnesota potential consists of a repulsive core and a
short-range attraction employing the exponential functions
exp(−αir2) of the two-particle distance r. We compute neu-
tron matter using a basis consisting of discrete momentum
states |kx, ky, kz〉 in a cubic box with periodic boundary
conditions. This follows the coupled-cluster calculations of
Ref. [38], with the Python notebook [40].

The number of cubic momentum states is (2Nmax + 1)3.
The spin degeneracy for each momentum state is gst = 2.
We limit our calculation to neutron matter with density n ≈
0.08 fm−3; this is about half of the saturation density of
nuclear matter. Using N neutrons, the volume is L3 with
L = (N/n)1/3, and we employ closed-shell configurations of
N = 14, 38, 54, 66, 114 particles in our calculation. Details
about the basis space are presented in Refs. [40,41].

We use a simplified version of the coupled-cluster with
doubles approximation based on ladder diagrams only. This
is sufficiently accurate for the Minnesota potential [41] and
agrees with virtually exact results from the auxiliary field
diffusion Monte Carlo (AFDMC) method [42].

The relevant matrix elements of the similarity transformed
Hamiltonian e−T2 HeT2 are

H̄ab
i j = 〈 �ka �kb|v| �ki �k j〉 + P(ab)

∑
c

f b
c t ac

i j − P(i j)
∑

k

f k
j t ab

ik

+ 1

2

∑
cd

〈 �ka �kb|v| �kc �kd〉t cd
i j + 1

2

∑
kl

〈 �kk �kl |v| �ki �k j〉t ab
kl . (44)

Here we introduced the Fock matrix with elements

f p
q = 〈 �kp|t0| �kq〉 +

∑
i

〈 �kp �ki|v| �kq �ki〉, (45)

and P(pq) is a permutation operator. Solving the equa-
tion H̄ab

i j = 0 yields the amplitudes t ab
i j .

Figure 6 shows the correlation energy per neutron as a
function of neutron number. The correlation energy is de-
fined as the difference between the CCD energy (13) and the
Hartree-Fock energy EHF,

EHF =
∑

i

〈 �ki|t0| �ki〉 + 1

2

∑
i, j

〈 �ki �k j |v| �ki �k j〉, (46)

of the reference state. We see that the correlation energy
depends weakly on N (and becomes approximately con-
stant) for Nmax = 5. We attribute the peak at N = 54 to
finite-size effects, i.e., shell oscillations. We note that these
shell oscillations can be reduced using twist-averaged bound-
ary conditions [41,43,44]. The total energies, obtained from
adding the correlation and the Hartree Fock energies, in
the Nmax = 5 case, are 9.5, 8.2, 8.3, 9.1, 9.6 MeV for N =
14, 38, 54, 66, 114 respectively. These energies are close to
results from more sophisticated theories (giving 9–10 MeV
per neutron when three-nucleon forces are also included) [45],
and they are very close to results from nucleon-nucleon forces
only (giving about 8.7 MeV per neutron) [46].
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FIG. 6. Correlation energy per neutron versus the neutron num-
ber N = 14, 38, 54, 66, 114 with different sizes Nmax of momentum
space.

Table I shows the value of t2 from Eq. (21) for various
Nmax. We see that t2 � 1, required for the applicability of
our analytical results regarding entropies, is only valid for
N � 66. Thus, we limit the analysis to N � 66 for neutron
matter.

We compute the entanglement entropies by partitioning the
single-particle basis as follows: The Fermi sphere, i.e., the set
of lattice sites occupied in the Hartee-Fock state of a closed-
shell configuration, is the hole space, and all other lattice sites
are the particle space. Figure 7 shows Rényi entanglement
entropies Sα for α = 1, 2, 4, and 8 of neutron matter as a
function of the neutron number N . The entropies increase
approximately linearly with increasing neutron number (and
N = 54 is again an outlier). This is expected because the
short-range Minnesota potential couples the Fermi sphere to
all momentum states in the particle space. Thus, a volume law
holds for neutron matter in momentum space.

Figure 8 shows the entanglement entropies versus the par-
ticle number fluctuations. Again, the relation is approximately
linear.

The results of this section show that neutron matter ex-
hibits entanglement entropies (in momentum space) that are
approximately proportional to the neutron number; they are
also approximately proportional to the particle-number fluc-
tuations. The latter result is less accurate than for the pairing
model. This is because the size of the T2 amplitudes is sizable,
i.e,. we have t2 < 1 but not really t2 � 1.

TABLE I. Numerical values for t2 for different neutron matter
models N = 14, 38, 54, 66, 114 with increasing momentum space
size.

N = 14 N = 38 N = 54 N = 66 N = 114

Nmax = 3 0.106 0.298 0.246 0.475 1.239
Nmax = 4 0.106 0.322 0.299 0.557 1.431
Nmax = 5 0.106 0.324 0.308 0.581 1.565

FIG. 7. Rényi entropy (von Neumann entropy S1 is denoted as
limiting case of Rényi entropy) versus the neutron numbers N =
14 (triangle_up), N = 38 (circle), N = 54 (square), N = 66 (trian-
gle_left), Nmax = 5 of momentum space.

C. Finite nuclei

Computing the entanglement entropy in finite nuclei is
a computationally daunting task: model spaces consist of
O(1000) of single-particle states, and the hole-space density
matrix required for this task is a many-body operator. In-
stead, we use the depletion number (37) as an entanglement
witness, because for small cluster amplitudes, the depletion
number is proportional to the Rényi entropies; see Eqs. (30)
and (38). The depletion number can be accurately computed
with coupled-cluster theory, as we describe in the following
paragraph. In contrast, the particle-number fluctuation of the
hole space is a small number resulting from cancellations of
two large numbers. Being non-Hermitian, the coupled-cluster
method does not guarantee that the particle-number variation
is non-negative.

FIG. 8. Rényi entropy (von Neumann entropy S1 is denoted as
limiting case of Rényi entropy) versus the particle number variation
with N = 14 (triangle up), N = 38 (circle), N = 54 (square), N = 66
(triangle left), Nmax = 5 of momentum space.
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FIG. 9. Depletion number δA of the hole space in the nuclei 4He,
16O, 40Ca, and 100Sn computed with the interactions of Ref. [47] as
indicated, as a function of the mass number A.

We perform coupled-cluster singles-and-doubles (CCSD)
computations of the closed-shell nuclei 4He, 16O, 40Ca, and
100Sn using the interactions of Ref. [47]. The CCSD approxi-
mation accounts for about 90% of the correlation energy and
is a size-extensive method, i.e., the error in the correlation
energy is proportional to the mass number A. For the cal-
culations, we employ a model space of 15 major harmonic
oscillator shells and use an oscillator spacing of h̄ω = 16
MeV. We perform a Hartree-Fock computation to obtain the
reference state |�〉, and this defines the hole space. We
then solve the CCSD equations, and compute the similarity-
transformed Hamiltonian H where

O ≡ e−T̂ ÔeT̂ (47)

for any operator Ô. We solve for the left ground state 〈L| ≡
〈�|(1 + �̂) of H ; here �̂ is a 1p-1h and 2p-2h deexcitation
operator. We then compute the hole-space occupation as

〈NH 〉 = 〈L|N |�〉, (48)

and the depletion number becomes

δA = A − 〈NH 〉 (49)

for a nucleus with the mass number A. This approach is valid
also for large coupled-cluster amplitudes.

Figure 9 shows the results for the depletion number (49) for
4He, 16O, 40Ca, and 100Sn computed with the interactions from
Ref. [47] as a function of the mass number A. The numbers
in the labels indicate the values of the momentum cutoffs
(in fm−1) employed for the two- and three-body interactions,

respectively. The depletion number is larger for “harder” inter-
actions, i.e., for those with larger momentum cutoffs, and this
meets our expectations. We see also that the depletion num-
ber approximately is an extensive quantity (i.e., linear in A).
Its scaling with A is certainly closer to A1 than to A2/3, thus
preferring a volume over an area law. This is consistent with
the arguments presented in Sec. I.

V. SUMMARY

We studied entanglement in nuclear systems, based on a
partition of the single-particle space into holes and particles.
This is the most natural choice for finite systems. Analyti-
cal arguments based on coupled-cluster theory show that the
Rényi entropies Sα for α > 1 are proportional to the num-
ber variation and the depletion number of the hole space.
This extends analytical arguments for noninteracting fermions
to systems with sufficiently weak interactions. For arbitrary
weak interactions, we also obtain universal results for the von
Neumann entropy S1.

We confirmed our analytical results using numerical so-
lutions of the pairing model. For a semirealistic model of
neutron matter, we showed that entanglement entropies of the
Fermi sphere are approximately proportional to the particle
number fluctuations of the hole space and to the number of
neutrons. The former confirms our analytical results and the
latter agrees with expectations for short-ranged interactions.
Finally, we computed the depletion number in finite nuclei us-
ing interactions from chiral effective field theory. We saw that
the entanglement witness increases with an increasing cutoff
of the employed interaction and again grows approximately
linear with the mass number.
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