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We extend the multireference covariant density-functional theory (MR-CDFT) by including fluctuations in
quadrupole deformations and average isovector pairing gaps simultaneously for the nuclear matrix elements
(NMEs) of neutrinoless double-beta (0νββ ) decay in the candidate nuclei 76Ge, 82Se, 100Mo, 130Te, and 136Xe
assuming the exchange of either light or heavy neutrinos. The results indicate a linear correlation between the
predicted NMEs and the isovector pairing strengths, as well as the excitation energies of 2+

1 and 4+
1 states. By

adjusting the pairing strengths based on the excitation energies of the 2+
1 states, we calculate the NMEs for 0νββ

decay, which are reduced by approximately 12% to 62% compared with the results obtained in the previous
studies by Song et al. [Phys. Rev. C 95, 024305 (2017)]. Additionally, upon introducing the average isovector
pairing gap as an additional generator coordinate in the calculation, the NMEs increase by a factor ranging from
56% to 218%.

DOI: 10.1103/PhysRevC.108.054304

I. INTRODUCTION

Neutrinoless double-beta (0νββ) decay is a hypothetical
second-order weak-interaction process in which an even-even
nucleus decays into its neighboring even-even nucleus with
two fewer neutrons and two more protons, with the emission
of only two electrons [1]. The observation of this process
would provide direct evidence for the existence of lepton-
number violation processes in nature and implies the existence
of a Majorana mass term for the neutrino [2]. As a result, the
search for 0νββ decay in atomic nuclei has been a significant
research frontier in particle and nuclear physics [3–9]. How-
ever, to date, no signal has been observed. The most sensitive
half-life limits have been obtained from experiments on 136Xe,
with T 0ν

1/2 > 2.3 × 1026 yr at 90% C.L. [10], and on 76Ge, with
T 0ν

1/2 > 1.8 × 1026 yr at 90% C.L. [11].
If 0νββ decay is mainly driven by the mechanism of

exchanging light Majorana neutrinos, the half-life of 0νββ

decay offers a way to determine the absolute masses of neu-
trinos, provided that the nuclear matrix element (NME) M0ν

is known. The NME cannot be measured experimentally but
relies on nuclear model calculations. However, various nu-
clear models predict NMEs that differ from each other by a
factor of about three or even more [3,12–31], causing a large
uncertainty in the extracted effective Majorana neutrino mass
〈mββ〉 from the half-life of 0νββ decay. For 136Xe, the upper
limit of 〈mββ〉 = [36, 156] meV is obtained from the most re-
cent measurement on the half-life [10], where the uncertainty
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of a factor about 2–3 comes from the NMEs from different
model calculations. The discrepancy is mainly from the sys-
tematic uncertainty, which is however challenging to decrease
because different nuclear models have different choices of
model spaces [32]. Therefore, understanding and reducing
the discrepancy in the NMEs among different models is of
particular importance to provide a strict constraint on neutrino
masses and has attracted lots of attention in the nuclear theory
community [5,8].

Pairing correlation is one of the most important correla-
tions that have a significant impact on the NMEs of 0νββ

decay. The observed large discrepancy in the NMEs among
different nuclear models, except for the recent ab initio studies
starting from nuclear chiral forces [33–35], might partially
originate from different treatments of pairing correlations in
candidate nuclei [36,37]. The NME is very sensitive to the
strength parameter of pairing forces between nucleons. The
competition between the components of two decaying neu-
trons with the coupled angular momentum J = 0 and J �= 0
leads to almost complete cancellation of the contribution to
the NME at the long distance [37]. This competition enhances
the sensitivity of the final NMEs to the strengths of pairing
forces. As shown in the interacting shell model (ISM) study
based on a schematic pairing plus quadrupole interaction
[23,38], where the pairing strength is treated as a variable
parameter, the use of an increased monopole isovector pairing
strength by 30% enhances the excitation energy of the 2+ state
by 65% and the NMEs by 80% (50%) for the 0νββ decay
from 130Te to 130Xe (136Xe to 136Ba) [38]. It is worth not-
ing that the NMEs calculated by quasiparticle random-phase
approximation (QPRA) methods are highly sensitive to the
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ratio of isoscalar pairing (T = 0) strength to isovector pairing
(T = 1) strength, particularly around the value required to
reproduce the NME of two-neutrino double beta decay. Even a
slight shift in the ratio value can result in a significant change
in the predicted NME of 0νββ decay. This deficiency can be
partially remedied in the renormalized QRPA [39–41], where
the isovector pairing strength is usually adjusted to the NME
of 2νββ decay and its effect mainly modifies the Fermi matrix
element [42]. A recent study with a self-consistent QRPA
method has shown that a large discrepancy exists in the NMEs
from the calculations with a volume and surface types of
pairing forces [43], even though the pairing strengths in the
two calculations are optimized to the same pairing gaps from
the data of odd-even mass difference. Thus, a more elaborate
treatment of pairing correlation between nucleons is required
in the studies of the NMEs of 0νββ decay.

The generator coordinate method (GCM) [44–46] has
proven to be a powerful tool for nuclear low-lying states
[47–49], and it has been applied to calculate NMEs of 0νββ

decay based on different Hamiltonians and energy density
functionals (EDFs) [5,32]. In the GCM study based on a non-
relativistic Gogny force [50], the impact of isovector pairing
fluctuation on the NMEs of candidate nuclei was consid-
ered by including pairing amplitudes as one of the generator
coordinates. It was found that the NMEs increase by a fac-
tor of 10%–40%. Multireference covariant density-functional
theory (MR-CDFT) [51,52], a combination of GCM with
CDFT [53–55], has been successfully employed to ex-
plore various phenomena concerning nuclear low-lying states
[48,49,56,57]. This framework provides a beyond relativistic
mean-field (RMF) description for the NMEs of 0νββ decay
[3,18,21,58], where the fluctuation in quadrupole shapes has
been considered. In recent years the ab initio version of GCM,
called in-medium (IM) GCM [33,59], has been developed for
nuclear low-lying states and NMEs of 0νββ decay in the
lightest candidate nucleus starting from nuclear forces from
chiral effective-field theory and transition operators evolved
from multireference similarity renormalization-group method
[60]. The IM-GCM has demonstrated success in studying
low-lying states of deformed nuclei. However, its application
to heavy candidate nuclei of 0νββ decay remains a significant
challenge.

Considering the aforementioned points, this study further
extends the framework of MR-CDFT for the NMEs of 0νββ

decay. It incorporates fluctuations in both quadrupole shapes
and isovector pairing gaps for the five well-established candi-
date nuclei 76Ge, 82Se, 100Mo, 130Te, and 136Xe assuming the
exchange of either light (ν) or heavy (N) neutrinos. Since the
NMEs are sensitive to the quadrupole deformations and aver-
age isovector pairing gaps of the mean-field configurations,
taking both of them as generate coordinates will eliminate
greatly the sensitivity of the predicted NMEs to the choice
of their specific values. Besides, this work presents the first
study of utilizing nuclear low-lying state information for the
calibration of NMEs in 0νββ decay within an EDF-based
GCM framework.

The article is organized as follows: In Sec. II, we present an
introduction to the extended MR-CDFT with fluctuations in
both quadrupole shapes and isovector pairing gaps, as well as

the formulas for the NMEs of 0νββ decay in the mechanisms
of exchanging either light or heavy neutrinos. In Sec. III,
we present the result on the correlation relation between the
NMEs of 0νββ decay, excitation energies of 2+

1 and 4+
1 states

and isovector pairing strengths with the MR-CDFT. Using
the pairing strengths adjusted to the excitation energies of
2+

1 states, we calculate the NMEs of 0νββ decay with and
without the isovector pairing fluctuation. A summary and
perspective are given in Sec. IV.

II. FORMALISM

A. The multireference covariant density-functional
theory for nuclear low-lying states

In the MR-CDFT, the wave function of a nuclear low-lying
state is constructed as a superposition of quantum-number
projected mean-field wave functions within the GCM [46],∣∣�JMNZ

σ

〉 =
∑

q

f J
σ (q)|JMNZ, q〉, (1)

where σ distinguishes different states with the same quantum
numbers JM. The basis function is constructed as

|JMNZ, q〉 ≡ P̂J
M0P̂N P̂Z |�(q)〉, (2)

where P̂J
MK , P̂N,Z , and P̂π are the projection operators that

extract the component with the right angular momentum J ,
neutron number N , proton number Z ,

P̂J
MK = 2J + 1

8π2

∫
d�DJ∗

MK (�)R̂(�), (3a)

P̂Nτ = 1

2π

∫ 2π

0
dϕτ eiφτ (N̂τ −Nτ ), (3b)

where Nτ = N and Z for neutrons and protons, respectively.
The mean-field wave functions |�(q)〉 are generated from the
self-consistent relativistic mean-field plus Bardeen-Cooper-
Schrieffer (RMF + BCS) theory [51] with constraints on both
the mass quadrupole moment and pairing amplitude [61,62]

〈�|Ĥ |�〉 = 〈�|Ĥ0|�〉 − 1

2
λQ(〈�|Q̂20|�〉 − q20)2

−
∑

τ=n,p

λτ (〈�|N̂ |�〉 − Nτ )

− ξp(〈�|P̂T =1|�〉 − P1), (4)

where 〈�|Ĥ0|�〉 is given by the energy functional in the
CDFT [55,63], and λQ, λτ , and ξp are Lagrange multipli-
ers. The quadrupole moment operator is defined as Q̂20 =
r2Y20, where Y20 is a spherical harmonic function. The axial
deformation parameter β2 of the mean-field state |�(q)〉 is
determined by the expectation value of the quadrupole mo-
ment β2 = 4π

3AR2 〈�(q)|Q̂20|�(q)〉, where R = 1.2A1/3 fm with
A being the mass number. Following Refs. [62,64], the last
term in (4) is introduced to generate mean-field states with
different isovector pairing amplitudes defined by the follow-
ing operator:

P̂T =1 = 1

2

∑
k>0

(c†
kc†

k̄
+ ck̄ck ). (5)
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We find that the last constraint term on the pairing amplitude
simply replaces the pairing gap �k of kth single-particle state
in the canonic basis,

�τ
k =

∫
ψ

†
k (r)�τ (r)ψk (r)dr, (6)

with �τ
k + ξp in the BCS equations [46], where the pairing

field corresponding to the density-independent δ force multi-
plied by a scaling factor χ

V pp
τ (r1, r2) = χV pp

τ δ(r1 − r2) (7)

is given by

�τ (r) = V pp
τ

2
κτ (r) (8)

and the pairing tensor

κτ (r) = −2
τ∑

k>0

fkukνk|ψk (r)|2. (9)

Thus, a continuous change of the parameter ξp generates a set
of BCS wave functions |�(q)〉 labeled with different average
pairing gaps,

�uν = 1

2

(
�n

uν + �p
uν

)
, �τ

uν =
∑τ

k>0 �τ
k fkukνk∑τ

k>0 fkukνk
, (10)

where ν2
k is the occupation probability of the kth single-

particle state, uk = (1 − ν2
k )1/2, and fk is a cutoff function

decreasing smoothly with the increase of single-particle en-
ergy [47,51]. Axial symmetry is imposed in the calculation.
Thus, the obtained mean-field wave functions |�(q)〉 are
labeled with two collective coordinates (β2,�uν ) for the in-
trinsic axial deformation parameter β2 and pairing gap �uν ,
respectively.

The weight functions f J
σ (q) and the energies EJ

σ of the
states |�JNZ

σ 〉 are the solutions of the Hill-Wheeler-Griffin
(HWG) equation [46],∑

q′

[HJ
00(q, q′) − EJ

σN J
00(q, q′)

]
f J
σ

(
q′) = 0, (11)

where the norm N J
00 and Hamiltonian HJ

00 kernels are given
by

N J
00(q, q′) = 〈�(q)|P̂J

00P̂N P̂Z |�(q′)〉, (12)

HJ
00(q, q′) = 〈�(q)|ĤP̂J

00P̂N P̂Z |�(q′)〉. (13)

In the energy kernel, the energy overlap is taking the same
functional form as that of mean-field energy, but replacing the
densities and currents with mixed ones, where the bra and ket
states are different [52].

The spectroscopic quadrupole moment Qs of the state Jπ
σ

is defined as [65]

Qs(J
π
σ ) =

√
16π

5

〈
�JM=JNZ

σ

∣∣er2Y20

∣∣�JM=JNZ
σ

〉

= e

√
16π

5

〈JJ20 | JJ〉√
2J + 1

×
∑
qq′

f J∗
σ (q′) f J

σ (q)〈JNZ, q′‖Q̂2‖JNZ, q〉. (14)

The electric quadrupole (E2) transition strength for Jπ
σi

→ Jπ
σ f

is determined by

B
(
E2; Jπ

σi
→ Jπ

σ f

)

= 1

2Ji + 1

∣∣∣∣∣∣
∑
q′,q

f
J∗

f
σ f (q′)〈Jf NZ, q′‖Q̂2‖JiNZ, q〉 f Ji

σi
(q)

∣∣∣∣∣∣
2

,

(15)

where the reduced matrix element in (14) and (15) contributed
solely from protons is determined as

〈Jf NZ, q′||Q̂2||JiNZ, q〉

= (2Jf + 1)(−1)Jf

2∑
μ=−2

(
Jf 2 Ji

0 μ −μ

)

× 〈�(q′)|r2Y2μP̂Ji
−μ0P̂N P̂Z |�(q)〉. (16)

B. Nuclear matrix elements of 0νββ decay

In the mechanism of exchanging either light (α = ν) or
heavy (α = N) Majorana neutrinos, the half-life T 0ν

1/2 for the
0+

1 to 0+
1 transition can be factorized as below [19,21,66]:

[
T 0ν

1/2

]−1 = G0νg4
Aη2

α

∣∣M0ν
α

∣∣2
, (17)

where gA � 1.26 is the axial-vector coupling constant, and
the phase-space factor G0ν can be determined rather precisely
[67]. The quantity ηα describes the physics beyond the stan-
dard model [19,66].

(i) For the mechanism of exchanging light neutrinos, the
ην factor is related to the masses of light neutrinos

ην =
∣∣∣∣ 〈mββ〉

me

∣∣∣∣ =
∣∣∣∣∣
∑3

ν j=1 U 2
eν j

mν j

me

∣∣∣∣∣. (18)

(ii) For the mechanism of exchanging heavy neutrinos, the
ηN factor is related to the masses of heavy neutrinos

ηN =
∣∣∣∣ mp

〈Mββ〉
∣∣∣∣ =

∣∣∣∣∣∣
3∑

Nj=1

U 2
eNj

mp

MNj

∣∣∣∣∣∣. (19)

In the above expression, me = 0.511 MeV (mp = 0.938
GeV) is the electron (proton) mass. The Ueν and UeN are
the elements of the neutrino mixing matrix that connect the
electron flavor eigenstate to the mass eigenstates of light and
heavy neutrinos, respectively. The effective neutrino masses
of light and heavy Majorana neutrinos are defined as

〈mββ〉 =
3∑

ν j=1

U 2
eν j

mν j ,
〈
M−1

ββ

〉 =
3∑

Nj=1

U 2
eNj

MNj

. (20)

The NME is computed with the wave functions for the
initial and final nuclei,

M0ν
α = 〈�F |Ô0ν

α |�I〉. (21)

The 0νββ-decay operator is derived from the second-order
weak Hamiltonian with charge-exchange nucleonic and lep-
tonic currents. In the closure approximation, the transition

054304-3



DING, ZHANG, YAO, RING, AND MENG PHYSICAL REVIEW C 108, 054304 (2023)

operator can be written as follows [5]:

Ô0ν
α = 4πR

g2
A

∫∫
d3x1d3x2

∫
d3q

(2π )3 hα (q)

× Ĵ †
μ (x1)Ĵ μ†(x2)eiq·(x1−x2 ), (22)

with R = 1.2A1/3 fm. The neutrino potential hν (q) of ex-
changing light neutrinos is

hν (q) = [q(q + Ed )]−1,

Ed ≡ Ē − (EI + EF )/2, (23)

where EI (EF ) corresponds to the energy of initial (final) nu-
clear state, and Ē is the average energy of intermediate states.
The value of Ed is chosen according to the empirical formula
Ed = 1.12A1/2 MeV [68]. The neutrino potential hN (q) of
exchanging heavy neutrinos is

hN (q) = (mpme)−1. (24)

Within the impulse approximation, the one-body charge-
changing nucleon current operator can be written into second-
quantization form,

Ĵ †
μ (0) =

∑
pp′

〈N (p′)|J †
μ (0)|N (p)〉a†

p′ap, (25)

where p, p′ are the momenta of nucleons in free space. The
matrix element reads

〈N (p′)|J †
μ (0)|N (p)〉 ≡ ψ̄ (p′)�μ(q)τ−ψ (p). (26)

Here τ− is the 2 × 2 matrix representation of the isospin-
lowering operator, changing neutron to proton, and ψ (p) is
composed of two Dirac spinors for neutron and proton wave
functions. q = p − p′ is the transferred momentum. The cou-
pling vertex reads [5,66],

�μ(q) = gV (q2)γμ − igM (q2)
σμν

2mp
qν

− gA(q2)γμγ5 + gP(q2)qμγ5, (27)

where σμν = i
2 [γμ, γν] and gi(q2) are form factors [3,5,66].

Substituting the above expression into (22), one finds that
the NME is composed of five terms: vector coupling (VV),
axial-vector coupling (AA), interference of the axial-vector
and induced pseudoscalar coupling (AP), the induced pseu-
doscalar coupling (PP), and weak-magnetism coupling (MM)
terms, which are related to the products of two current opera-
tors Ĵ †

μ Ĵ μ† with the following forms [3,18],

VV : g2
V (q2)(ψ̄γμτ−ψ )(1)(ψ̄γ μτ−ψ )(2), (28a)

AA : g2
A(q2)(ψ̄γμγ5τ−ψ )(1)(ψ̄γ μγ5τ−ψ )(2), (28b)

AP : 2gA(q2)gP(q2)(ψ̄γγ5τ−ψ )(1)(ψ̄qγ5τ−ψ )(2), (28c)

PP : g2
P(q2)(ψ̄qγ5τ−ψ )(1)(ψ̄qγ5τ−ψ )(2), (28d)

MM : g2
M (q2)

(
ψ̄

σμi

2mp
qiτ−ψ

)(1)(
ψ̄

σμ j

2mp
qjτ−ψ

)(2)

.

(28e)

TABLE I. Convergence of nuclear matrix elements for the 0νββ

decay of 130Te in the mechanism of exchanging either light (M0ν
ν ) or

heavy (M0ν
N ) Majorana neutrinos with respect to the number of H.O.

major shells in the expansion of single-particle wave functions.

nf 6 8 10 12

M0ν
ν 5.057 5.214 4.893 4.916

M0ν
N 253.844 273.553 257.644 259.389

With the nuclear wave functions constructed in Eq. (1), the
total NME can be written as

M0ν
α =

∑
qI ,qF

f
0+

F
1 (qF ) f

0+
I

1 (qI )
√
N J=0

00 (qI , qI )N J=0
00 (qF , qF )

× M̃0ν
α (qF , qI ), (29)

with the normalized NME defined as

M̃0ν
α (qF , qI ) = 〈�F (qF )|O0ν

α P̂J=0P̂NI P̂ZI |�I (qI )〉√
N J=0

00 (qI , qI )N J=0
00 (qF , qF )

, (30)

where |�I/F (q)〉 are the mean-field wave functions of initial
and final nuclei with collective parameters qI and qF , respec-
tively. The nucleon wave function ψ in the matrix element
(26) of current operator corresponds to a single-particle state
of neutron or proton inside atomic nucleus.

The short-range correlation (SRC) effect between nucleons
on the NME of 0νββ decay is taken into account by multiply-
ing a Jastrow correlation function,

F (r) = 1 − ce−ar2
(1 − br2), (31)

onto the transition operator [69,70]

Ô0ν (r) → F (r)Ô0ν (r)F (r), (32)

where r ≡ |x1 − x2| is the distance of two nucleons. The
CD-Bonn parameters a = 1.52 fm−2, b = 1.88 fm−2, and
c = 0.46 are employed. See Refs. [21,71] for details.

III. RESULTS AND DISCUSSIONS

In the mean-field calculations, parity, x-simplex symmetry,
and time-reversal invariance are imposed. The Dirac equa-
tions for neutrons and protons are solved by expanding the
large and small components of Dirac spinor in the basis
of eigenfunctions of a three-dimensional harmonic oscillator
(H.O.) in Cartesian coordinates with n f major shells. Table I
shows the NMEs M0ν

ν/N of 0νββ decay from the MR-CDFT
calculation with only quadrupole shape fluctuation and n f =
6, 8, 10, 12. One can see that the NME varies only 0.6% when
the n f increases from 10 to 12. Therefore, n f = 10 is adopted
in the subsequent calculations. The relativistic point-coupling
density functional PC-PK1 [63] is adopted. We note that, in
the previous studies with MR-CDFT [3,18,21,58], the pairing
strength parameters V pp

τ were chosen as −314.550 MeV fm3

and −346.500 MeV fm3 for neutrons and protons, respec-
tively, which were determined by fitting to the neutron and
proton average pairing gaps as functions of deformation pa-
rameter β2 in 150Nd, and 150Sm provided by the separable
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FIG. 1. The excitation energies of 2+
1 , 4+

1 states as a function
of the scaling factor of the pairing strengths for 130Te and 130Xe.
The Pearson correlation coefficient r is provided for each case. The
dashed lines mark the location of corresponding data taken from
Ref. [75]. See main text for details.

finite-range pairing force [72]. In this work, these pairing
strengths will be adjusted to the excitation energy of 2+

1 state
of each nucleus by multiplying a scaling factor χ for both
neutrons and protons, cf. (7). As demonstrated in this work,
the excitation energy of 2+

1 state is linearly correlated to the
scaling factor of the pairing strengths. Thus, it is justified to
determine the pairing strengths using the data of excitation
energies, instead of the data of odd-even mass difference.
The Gauss-Legendre quadrature is used for integrals over the
Euler angle θ and gauge angle ϕτ=n,p in the calculations of the
quantum-number projected norm and Hamiltonian kernels. To
accelerate the MR-CDFT calculation with both shape fluctua-
tion and isovector pairing fluctuation, the recently proposed
orthogonality condition method [73,74] is employed to se-
lect the optimal configurations relevant for nuclear low-lying
states and the NMEs of 0νββ decay.

A. Calibration of pairing strengths and nuclear matrix elements
of 0νββ decay with excitation energies

We first examine the correlation between the excitation
energies of nuclear low-lying states and nucleon isovector
pairing strengths in the MR-CDFT. To this end, we carry
out GCM calculations with the mixing of different axially
deformed configurations using different values of the scaling
factor χ in the isovector pairing strengths V pp

τ . For the illus-
tration purpose, we only show the excitation energies of 2+

1
and 4+

1 states for 130Te and 130Xe in Fig. 1 as a function of χ .
The value of the Pearson’s correlation coefficient r defined as

r =
∑N

i=1 (xi − x̄)(yi − ȳ)√∑N
i=1 (xi − x̄)2 ∑N

i=1 (yi − ȳ)2
(33)

FIG. 2. Correlation between excitation energies of 2+
1 , 4+

1 states
and the NMEs M0ν

ν/N in 130Te and 130Xe. The Pearson correlation
coefficient r is provided. The dashed lines indicate the location of
the corresponding data from Ref. [75].

is also given to demonstrate the linear correlation between the
two variables (x, y). One can see that the correlation coeffi-
cient r is very close to one. It indicates that the excitation
energies of 2+

1 and 4+
1 states are linearly correlated with the

pairing strengths in both nuclei. A similar linear correlation is
also observed in other four candidate nuclei. In the meantime,
we find that the excitation energies are also linearly correlated
with the predicted NMEs of 0νββ decay, as shown in Fig. 2.
In other words, the NMEs of 0νββ decay are sensitive to
the scaling factor χ , i.e., the isovector pairing strengths. A
similar correlation was also found in the recent ISM study
based on a pairing-plus-quadruple Hamiltonian [23,38]. These
findings provide a strong foundation to calibrate the pairing
strengths and finally the NMEs of 0νββ decay in MR-CDFT
calculations using the data of excitation energies. Table II
presents the scaling factors for the ten nuclei of interest,
which are determined by fitting to the data of the excitation
energies of 2+

1 states [75]. Figure 3 displays the excitation
energies of 2+

1 and 4+
1 states in the five pairs of 0νββ-

decay candidate nuclei from the MR-CDFT calculation with
the pairing strengths of the previous studies [3], labeled as
GCM(β2), and those multiplied by the scaling factors, labeled
as GCM(β2)(χ ). As shown in the previous study [18] and
Fig. 3, the excitation energies of 2+

1 states and 4+
1 states are

systematically overestimated in the GCM(β2) calculation by
a factor ranging from 1.3 to 2.2. After introducing the scaling
factor parameter χ in the GCM(β2)(χ ) calculation, we are
also able to excellently reproduce the excitation energies of
the 4+

1 states. Previous studies have demonstrated that part of
the overestimation of the excitation energies can be reduced
by including cranked states [79–82], because cranked configu-
rations take into account alignment effects which increase the
angular momentum without changing pairing correlations. If
this effect is included in the GCM calculation, one anticipates

TABLE II. The employed values of the scaling factor χ (7)
multiplied to the pairing strengths for the nuclei of interest.

76Ge 76Se 82Se 82Kr 100Mo 100Ru 130Te 130Xe 136Xe 136Ba

0.671 0.852 0.836 0.736 0.950 0.985 0.831 0.811 0.630 0.807
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FIG. 3. Excitation energies of (a) 2+
1 states and (b) 4+

1 states in
the candidate nuclei of 0νββ decay from the GCM calculation with
and without multiplying the pairing strengths by the scaling factor χ ,
in comparison with corresponding data [75].

the scaling factors χ of the isovector pairing strengths would
be slightly larger. Its impact on the predicted NME will be
discussed later. Of particular interest is that the description of
the E2 transition strengths B(E2; 2+

1 → 0+
1 ) remains roughly

similar with the presence of the scaling factor, as shown in
Fig. 4.

Table III lists the decomposition of the 0νββ-decay NMEs
M0ν

α from the GCM(β2) and GCM(β2)(χ ) calculations for
the five candidate nuclei. We note that the observed slight
difference between the previous NMEs [21] and the value

FIG. 4. Same as Fig. 3, but for the electric-quadrupole transition
strength B(E2 : 2+

1 → 0+
1 ) (e2 fm4) from 2+

1 state to 0+
1 state.

FIG. 5. The energies of mean-field states (normalized to the
global energy minimum) from the CDFT calculation with the ad-
justed pairing strengths for (a) 130Te and (b) 130Xe as a function of
quadrupole deformation parameter β2 and average pairing gap �uν

of protons and neutrons. The red dots mark the location of �uν in the
states from the mean-field calculation with a constraint only on the
quadrupole deformation parameter β2.

by the GCM(β2) in Table III is from the different choices
of parametrizations of the short-range correlation. Here, we
choose the CD-Bonn parametrization, instead of the Argonne
V18 [71]. In Table III, it is evidently seen that the NMEs of
exchanging both light and heavy neutrinos are significantly
reduced in the calculation with the scaling factors. Quantita-
tively, the total NME is reduced by a factor ranging from 12%
to 62%. Using the current half-life limit of each candidate
nucleus, we find that the reduction of the NME increases the
upper (lower) limit on the effective masses of light (heavy)
neutrinos by 13%–163%.

B. Impact of nucleon isovector pairing fluctuation

Since the NMEs of 0νββ decay are sensitive to the
isovector pairing strengths and also the pairing gaps of the
mean-field configurations, it is natural to take pairing gap
parameter �uv as one of the generator coordinates in the
GCM calculations. It provides a way to quantify the isovector
pairing fluctuation effect on the NMEs of 0νββ decay in the
MR-CDFT calculation using the adjusted isovector pairing
strengths. Figure 5 shows the mean-field energy surfaces of
130Te and 130Xe in the (β2,�uν ) plane, where the average
pairing gap �uν ) has been defined in Eq. (10). It is seen that
the energy minimum of 130Te is located around the spher-
ical shape, but very soft against the change of quadrupole
deformation parameter β2 and pairing gap parameter �uν . In
contrast, the global energy minimum for 130Xe locates around
β2 � 0.15, which is also soft along the �uν direction. It was
pointed out in Ref. [61] that the softness of the energy surface
occurs in the region with pure configurations, corresponding
to the region with low level density. After the restoration of
particle numbers and angular momentum with J = 0, two
energy minima competing in energy show up around β2 =
±0.10 in 130Te, as shown in Fig. 6. In particular, the two
energy minima locate at the states with pairing gap parameter
(�uν = 1.2), larger than that (�uν = 0.8) of the mean-field
energy minimum, indicating that pairing correlation effect
could be enhanced after considering pairing fluctuation. In-
deed, the wave function |g0

1|2 of the ground state (0+
1 ),
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TABLE III. The NMEs M0ν
ν/N of 0νββ decay and the limits of the effective neutrino mass |〈mββ〉| (meV) and |〈Mββ〉|−1 (×106 GeV) for

five candidate nuclei with and without multiplying the pairing strengths by the scaling factor χ . The transition operator corresponding to the
mechanism of exchanging either light or heavy Majorana neutrino is employed. The lower half-life limits for five candidate nuclei are taken
from the latest experimental measurements [10,11,76–78].

M0ν
ν (light neutrino) M0ν

N (heavy neutrino)

Isotopes Models VV AA AP PP MM Tot |〈mββ〉| VV AA AP PP MM Tot |〈Mββ〉|−1

76Ge GCM(β2) 1.30 5.83 −1.85 0.73 0.22 6.23 <113.0 64.45 295.28 −186.48 103.25 14.98 291.49 >284.2
76Ge GCM(β2)(χ ) 0.48 2.22 −0.70 0.28 0.09 2.37 <297.1 25.81 119.92 −73.22 40.89 6.62 120.02 >117.0
82Se GCM(β2) 1.17 5.09 −1.68 0.66 0.20 5.43 <276.7 59.03 270.22 −174.05 93.50 13.71 262.42 >83.8
82Se GCM(β2)(χ ) 0.48 2.36 −0.78 0.30 0.10 2.46 <610.8 28.91 137.71 −83.24 43.86 7.34 134.58 >43.0
100Mo GCM(β2) 1.26 6.47 −2.01 0.83 0.24 6.78 <283.1 72.55 330.16 −215.71 121.35 18.29 326.63 >82.3
100Mo GCM(β2)(χ ) 1.10 5.73 −1.77 0.73 0.21 6.01 <319.4 64.13 292.30 −190.44 106.91 16.27 289.17 >72.9
130Te GCM(β2) 0.93 4.66 −1.51 0.62 0.19 4.89 <118.7 53.88 255.56 −157.04 89.40 15.85 257.64 >213.2
130Te GCM(β2)(χ ) 0.32 1.83 −0.59 0.25 0.08 1.89 <307.1 22.20 109.57 −62.00 35.86 7.42 113.06 >93.6
136Xe GCM(β2) 0.81 4.08 −1.31 0.53 0.16 4.27 <41.6 46.75 223.31 −135.93 75.68 13.60 223.41 >586.2
136Xe GCM(β2)(χ ) 0.37 2.20 −0.66 0.26 0.10 2.27 <78.2 24.61 124.83 −66.89 37.26 8.14 127.95 >335.7

defined as

gJ
σ (q) =

∑
q′

[N J
00

(
q, q′)]1/2

f J
σ (q′), (34)

is concentrated around the two energy minima of projected
states with large average pairing gaps. A similar phenomenon
is also observed in 130Xe. Actually, it is understandable
that the beyond mean-field effect arising from symmetry
restoration generally deepens the symmetry-breaking states,

FIG. 6. The energies of states (normalized to the global energy
minimum) for (a) 130Te and (c) 130Xe with projection onto the particle
numbers (N, Z) and angular momentum (J = 0) as a function of β2

and �uν . The distribution of the square of collective wave functions
|g0

1|2 for the ground states of (b) 130Te and (d) 130Xe in the β2-�uν

plane. The red dots are the same as those in Fig. 5.

generating a pronounced minimum as found in the near-
spherical nuclei and triaxial γ -soft nuclei [83].

Figure 7 displays the configuration-dependence of the nor-
malized NMEs M̃0ν

ν (qF , qI ) defined in (30) for 130Te. It is
clearly shown that the NME is large if the initial and final
nuclei have the same collective coordinates, i.e., qI = qF . In
particular, the NMEs of the subfigures corresponding to the
configurations of near-spherical shapes for both nuclei are
similar and generally larger than those of other subfigures.
Within each subfigure, the NME increases smoothly with the
pairing gaps of initial and final nuclei. It is consistent with the
conclusion in the previous studies [3,13,23,50] that the states
of initial and final nuclei with a stronger pairing correlation

FIG. 7. The normalized NME M̃0ν
ν (qF , qI ) (30) of 0νββ decay

from the calculation with the exchange of light Majorana neutrinos
as a function of the parameters (β2, �uν ) of 130Te and 130Xe, where
quadrupole deformation parameter β2 in each subfigure is fixed to
different value changing from −0.30 to +0.30, while the pairing gap
�uν varies from 1.0 to 2.0 MeV.
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TABLE IV. Comparison of NMEs M0ν
ν/N of 0νββ decay for the five candidate nuclei from GCM calculations with the relativistic EDF

PC-PK1 and nonrelativistic EDF D1S, ab initio VS-IMSRG calculation, deformed QRPA calculations with the Brueckner G matrix and
Skyrme EDF SkM∗, interacting boson model (IBM2) and interacting shell model (ISM) calculations. In the two GCM results, the upper and
lower boundary values correspond to the results of calculations with and without isovector pairing fluctuation. In the VS-IMSRG results, the
upper and lower boundary values correspond to the results of calculations with and without the contact transition operator.

GCM(PC-PK1)(χ ) GCM(PC-PK1,β2) GCM(D1S) VS-IMSRG dQRPA(G) dQRPA(SkM∗) IBM2 ISM
Isotopes This work [21] [13,50] [34,84] [24] [15] [85,86] [87]

76Ge [2.37,6.34] 6.04 [4.60,5.55] [2.14(9),−] 3.12 5.09 5.46 3.07
82Se [2.46,5.68] 5.30 [4.22,4.67] [1.24(5), −] 2.86 4.41 2.90

M0ν
ν

100Mo [6.01,9.40] 6.48 [5.08,6.59] 3.73
130Te [1.89,6.02] 4.89 [5.13,6.40] [−, 1.96(44)] 2.90 1.37 4.06 2.96
136Xe [2.27,5.06] 4.24 [4.20,4.77] [−, 1.49(41)] 1.11 1.55 2.45
76Ge [120.02,280.10] 209.1 187.3 104.0 188
82Se [134.58,273.54] 189.3 175.9 82.9 175

M0ν
N

100Mo [289.17,444.59] 232.6 164.0
130Te [113.06,315.79] 193.8 191.4 91.8 210
136Xe [127.95,263.01] 166.3 66.9 72.6 167

produce a larger NME. The distributions of the NMEs in the
case of exchanging light and heavy neutrinos are similar. The
final NME M0ν

α is obtained from the configuration-dependent
normalized NME M̃0ν

α (qF , qI ) convoluted with the weight
functions of the ground states for the initial and final nuclei
from the solution of the HWG equation (11). After including
the isovector pairing fluctuations, the total NMEs systemati-
cally increase, as shown in Table IV. Quantitatively, the NMEs
of both M0ν

ν and M0ν
N increase by a factor ranging from 56%

to 218%. This enhancement effect from the isovector pairing
fluctuation is consistent with the movements of the global
energy minimum in the energy surface after symmetry restora-
tion and the location of predominant configurations in the
ground-state wave functions of both nuclei, as shown in Fig. 6
for 130Te. Compared with the GCM(β2) calculation with only
quadrupole shape fluctuation, the predominant configurations
of the ground states for both nuclei in the GCM(β2,�uv)
calculations are moved to regions with large average pairing
gaps, resulting in a larger NME of 0νββ decay, see the upper
boundary values of the GCM(PC-PK1)(χ ) in Table IV. We
note that the NMEs also increase with the isovector pairing
fluctuation in the calculation based on the nonrelativistic D1S
force [50], showing a similar enhancement pattern in the
NMEs of the five candidates, even though the enhancement is
much more moderate. The observed larger isovector pairing
fluctuation effect in the GCM calculation based on the rel-
ativistic EDF may be due to the lower level density around
the Fermi energy resulting from a smaller effective nucleon
mass in relativistic frameworks [88,89]. This leads to softer
energy surfaces along the direction of �uν , as seen in Fig. 5
and Ref. [61].

The NMEs from different nuclear model calculations are
compared in Fig. 8. The detailed values, excluding those from
the calculations without deformation effect, are presented in
Table IV. The values of GCM calculations with and with-
out the isovector pairing fluctuation are set as upper and
lower boundaries, respectively. It is seen from Fig. 8 that
the NMEs from the MR-CDFT calculation with the mixing
of only axially deformed shapes using the scaling factor of

χ = 1 are generally located within the error bars. Previous
Hamiltonian-based GCM studies have shown that includ-
ing isoscalar pairing can reduce the NMEs [22,33,90,91].

FIG. 8. The NMEs of 0νββ decay for the five candidate nuclei
from the MR-CDFT calculation with pairing strengths adjusted to
the excitation energies of 2+

1 states, labeled as GCM(PC-PK1)(χ ).
The results of calculations with and without the isovector pairing
fluctuation are set as the upper and lower boundaries, respectively.
The NMEs from the GCM(β2) calculations using χ = 1 [21] are
indicated with red dots. The NMEs are compared with those from
other nuclear model calculations, including the GCM with the D1S
force [50], interacting boson model (IBM2) [85,86], ISM [87], the
spherical [19] and deformed QRPA [24] based on the G matrix, the
spherical [43] and deformed [15] QRPA based on Skryme EDFs, and
the ab initio VS-IMSRG calculation with the long-range (L) [34] and
additionally short-range (L + S) [84] transition operators.
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One may anticipate that the inclusion of isoscalar pairing
in the EDF-based GCM calculations may also compensate
partially the enhancement effect of isovector pairing fluctu-
ation. Moreover, we have not considered the cranked states.
On the other hand, however, the inclusion of cranked states
in the GCM(β2)(χ ) calculation would lead to a somewhat
larger scaling factor χ for the isovector pairing strengths, and
thus a larger value of NME. As a result, the net effect of
isoscalar pairing correlation and cranked states is expected to
be moderate in the GCM(β2,�uv )(χ ) calculation. Of course,
to draw a more solid conclusion on the effects of isoscalar
pairing correlation and cranked states requires the extension
of the MR-CDFT further, which is beyond the scope of
this work. If we set the NMEs from the GCM(β2)(χ ) and
GCM(β2,�uv )(χ ) calculations as the uncertainty of our cal-
culations, the predicted NMEs are in line with most of other
model calculations. Extension of the present study with the
effects of isoscalar pairing correlation [90], cranked states,
and other possible higher-order deformed states [18,29] is
expected to shrink this uncertainty.

IV. SUMMARY

We have explored the correlation relations among the
NMEs of 0νββ decay, the excitation energies of 2+

1
and 4+

1 states, and the isovector pairing strengths within
the multireference covariant density-functional theory
(MR-CDFT) with the mixing of axially deformed shapes.
Based on the obtained correlation relations, we have adjusted
the scaling factor of isovector pairing strengths for the five
candidate nuclei to the excitation energies of 2+

1 states and
computed the NMEs of 0νββ decay with and without the
additional consideration of isovector pairing fluctuation. The
results have shown that the description of the low-lying states
has been improved with the adjusted pairing strengths in the

MR-CDFT calculation. In the mean time, the predicted NMEs
are reduced by about 12%–62%. Furthermore, including the
average isovector pairing gap as one additional generator
coordinate in the MR-CDFT calculation provides a way to
eliminate the dependence of the results on the choice of
pairing gap parameter and it increases the NMEs by about
56%–218%. The present study provides a promising starting
point to determine the NMEs of 0νββ decay using the
information of low-lying states within the MR-CDFT.

It is worth noting that the NMEs by the MR-CDFT with
and without the isovector pairing fluctuation effect can cause
an uncertainty of a factor up to three, which is comparable
to the observed discrepancy among various nuclear mod-
els. It indicates that a precision determination of the NMEs
of 0νββ decay with mean-field-based nuclear models de-
mands a comprehensive consideration of pairing correlation
in atomic nuclei. The inclusion of additional isoscalar pair-
ing correlation is not expected to change significantly the
excitation energy of 2+

1 state, but is expected to reduce the
impact of isovector pairing fluctuation and the NMEs of 0νββ

decay. With the further extension of MR-CDFT by includ-
ing additional isoscalar pairing correlation, cranked states
and possible higher-order deformed states, and the pairing
strengths constrained with the data of low-lying states, one
can obtain NMEs with a greatly reduced uncertainty.
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