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We calculate single-neutron spectroscopic overlaps for lithium isotopes in the framework of the ab initio
symmetry-adapted no-core shell model. We report the associated neutron-nucleus asymptotic normalization
coefficients (ANCs) and spectroscopic factors (SFs) that are important ingredients in many reaction cross-
section calculations. While spectroscopic factors have been traditionally extracted from experimental cross
sections, their sensitivity on the type of reactions, the energy, and the underlying models point to the need
for determining SFs from first-principle structure considerations. As illustrative examples, we present 6Li +n,
7Li +n, and 8Li +n, and we show that the results are in a good agreement with those of other ab initio
methods, where available, including the quantum Monte Carlo approach. We compare ANCs and SFs to available
experimentally deduced values, with a view toward expanding this study to heavier nuclei and to extracting
intercluster effective interactions for input into analyses of existing and future experimental data.
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I. INTRODUCTION

In recent years there has been a significant interest in
describing nuclear reactions from ab initio approaches and
especially in constructing them from first-principles effec-
tive intercluster interactions, often referred to as optical
potentials. Various methods have been developed to derive
ab initio optical potentials including the Green’s function
method with coupled-cluster many-body calculations [1,2],
the self-consistent Green’s function framework [3], the mul-
tiple scattering approach for intermediate projectile energies
[4–6], from two- and three-nucleon chiral forces in nuclear
matter [7], the ab initio symmetry-adapted no-core shell
model (SA-NCSM) [8] for the astrophysically relevant low-
energy regime based on the Green’s function method [9], and
microscopic structure-based methods [10,11] using Feshbach
projection [12]. Furthermore, channel-dependent effective
intercluster interactions can be constructed in the framework
of the resonating group method (RGM), the no-core shell
model with continuum (NCSMC) [13,14], and the symmetry-
adapted SA-RGM applicable to the intermediate-mass region
[15].

In this study, we focus on important ingredients for con-
structing such effective interactions that account for the
microscopic structure of the reaction fragments (or clusters).
Specifically, using the A-body SA-NCSM description of the
composite system with correct asymptotics at large distances,
we study a nucleon plus target partitioning, which is impor-
tant for studies of transfer, knockout, and radiative capture
reactions.

In general, any nuclear many-body system can be
described by single-nucleon spectroscopic overlaps. The
norms of these overlaps are called spectroscopic factors (SFs).
These overlaps can be derived as solutions of the Schrödinger
equation with an effective inter-cluster potential and thus con-
vey important information about the interaction of a single
nucleon with the target nucleus. For example, the solutions
of the Schrödinger equation derived from the single-particle
Green’s function equation of motion [16,17] provide nor-
malized spectroscopic overlaps, with SFs deduced from the
energy derivative of the effective potential (see, e.g., Eq. (10)
of Ref. [17]). Equally, the spectroscopic overlaps with their
SFs can be obtained by solving an inhomogeneous equa-
tion with a source term (see, e.g., Refs. [18,19]).

Historically, SFs have been used as a measure of
single-nucleon clustering in nuclei. Experimentally, they are
extracted from direct reaction measurements, as a normaliza-
tion factor in the reaction cross section, which, however, takes
into account any deviations from the model employed. Here,
we provide SFs that are directly derived from many-body first-
principle solutions and, as such, at infinite model spaces can
be considered as a true measure of the single-nucleon clus-
tering in nuclei. Indeed, various direct-reaction calculations
of cross sections are often reduced to using well-informed
SFs and global optical potentials as inputs. In addition, unlike
cross sections that largely change depending on the energy of
the projectile and the mass range of the target, SFs provide
a simpler quantity for comparison of different systems. Even
though SFs are model dependent, when extracted from differ-
ent types of reactions they can be indicators of the physical
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relevance of the underlying model (see the comprehensive
review [20] and references therein, as well as, e.g., Ref. [21]).
Furthermore, SFs can be directly used in constructions of
optical potentials as they can be interpreted as a measure of
coupling strengths for different reaction channels [11].

The asymptotic form of a spectroscopic overlap function
is characterized by the asymptotic normalization coefficient
(ANC). ANCs can be extracted from experimental data with
fewer assumptions as compared to SFs, given reactions (e.g.,
well below the Coulomb barrier) that probe only the asymp-
totic part of the spectroscopic overlaps. Much of the work on
ANCs has been motivated by their connection to astrophysical
cross sections; however, they are also important tests of long-
range nuclear physics.

In this paper we present calculations of spectroscopic
overlap functions, SFs and ANCs using the ab initio SA-
NCSM for a series of Li isotopes. We compare the SFs and
ANCs to the values deduced from experiments and quan-
tum Monte Carlo (QMC) calculations [22,23]. Specifically,
the SA-NCSM [24–28] uses a physically relevant symmetry-
adapted (SA) basis that can achieve significantly reduced
model spaces compared to the corresponding complete
ultralarge model spaces, without compromising the accuracy
of results for various observables [24,29,30]. The SA basis
enables the SA-NCSM to accommodate contributions from
more shells and to describe heavier nuclei, such as 20Ne
[25], 21Mg [31], 22Mg [32], and 28Mg [33], as well as 32Ne
and 48Ti [8,34]. Given the access of the SA-NCSM to these
nuclear systems, the methods developed in this work can be
extended to the medium-mass region (A � 50) and nuclei with
enhanced radii, deformation, and clustering, especially those
near the drip lines.

II. THEORETICAL FRAMEWORK

The ab initio SA-NCSM is a no-core shell model that
uses an Sp(3,R)-coupled or SU(3)-coupled basis, referred to
as “symmetry-adapted” (see Refs. [24,25] and the references
therein). It builds upon a harmonic oscillator (HO) single-
particle basis, similar to the NCSM [35,36], where the HO
major shells are separated by a parameter h̄�. The model
space is limited by an Nmax cutoff which is the largest number

of total excitation quanta considered above the lowest HO
configuration for a given nucleus. The nuclear Hamiltonian
utilized in the SA-NCSM is nonrelativistic and uses transla-
tionally invariant nucleon-nucleon plus Coulomb interactions.
Since we perform calculations in laboratory coordinates, we
eliminate the spurious center-of-mass (c.m.) excitation states
from the low-lying spectrum with a Lawson term [37,38].
The Lawson procedure uses a Lagrange multiplier term that
is added to a Hamiltonian expressed in laboratory-frame co-
ordinates, H + λNc.m., where Nc.m. is the operator that counts
the number of c.m. excitations and nc.m. is its eigenvalue. For
a typical value of λ ∼ 50 MeV, the nuclear states of interest
(with energy � 30 MeV) have wave functions that are free
of center-of-mass excitations (nc.m. = 0), while CM-spurious
states (nc.m. > 0) lie much higher in energy. For a given
nucleus the SA-NCSM constructs the nuclear interaction
Hamiltonian and calculates its eigenvalues and eigenvectors.
The eigenvectors are subsequently used for calculations of
the nuclear observables. As the model space increases, the
calculations approach the exact value. The results become
independent of the HO parameter h̄� at the Nmax → ∞ limit
or at convergence. The SA-NCSM results exactly match those
of the NCSM for the same interaction within a given complete
Nmax model space. The use of symmetries in the SA-NCSM
allows one to select the model space by considering only
the physically relevant subspace, which is only a fraction
of the corresponding complete Nmax space. The calculations
throughout this paper are performed using the NNLOopt chiral
interaction [39] that are not renormalized (e.g., by using the
SRG technique) in the nuclear medium. This interaction min-
imizes the effect of the three-body forces and has been shown
to give a good description of nuclear structure and reaction
observables (see, e.g., Refs. [4,30,31,33,40]).

To calculate the spectroscopic overlap for a single-nucleon
projectile (a = 1) and a composite nucleus of mass A, we
use the SA-NCSM, which provides wave functions for the
A − 1 and A systems in laboratory coordinates with the center-
of-mass contribution exactly factored out and in the lowest
HO state. The spectroscopic overlap has the following form
[41,42]:

uAαJ
A−1α1I1;l 1

2 j
(r) =

∑
n

Rnl (r)
〈
�AαJ |A�J

A−1α1I1;l 1
2 j

〉

=
∑

n

Rnl (r)
1

〈nl00l|00nll〉1/A−1

1

�J
(−1)

n−l
2 〈AαJ‖a†

(n 0)l j‖A − 1α1I1〉su3;L, (1)

where the antisymmetrization A between the two clusters is
included, as shown in Eq. (16) in Ref. [41], and where the
matrix element, 〈‖‖〉, is reduced with respect to the angular
momentum, but calculated in the SU(3) basis using a creation
operator expressed as an SU(3) tensor a†

(n 0)l j ≡ a†
nl j HO shell

number n (cf. Ref. [42] for the conventional shell-model nota-
tions in terms of the HO radial quantum number nr = n−l

2 ),
I1 and J are the total angular momenta of the target and

composite nuclei, respectively, and �J = √
2J + 1. The cou-

pling of the orbital momentum l of the nucleon with its spin
(1/2) yields j (we note that we work in a proton-neutron
formalism and isospin is not a good quantum number of the
basis; also, we omit the nucleon spin label 1/2 from the
formulas below). The labels α1 and α denote the additional
quantum numbers needed to characterize the eigenstates. The
Rnl (r) is the radial wave function that is positive at origin.
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In the SA-NCSM the reduced matrix element is calculated
using the eigenvectors of the initial and final many-body states
expressed in the SU(3)-coupled basis. The bra and ket eigen-
states correspond to the laboratory-frame wave functions of
the composite and target nuclei, respectively, calculated from
the many-body theory. A Lawson procedure ensures that both
eigenfunctions can be factorized to an intrinsic wave func-
tion and a c.m. wave function that is in the lowest HO state
(nc.m. = 0 and lc.m. = 0) [37]. The Talmi-Moshinsky bracket
that transforms the c.m. coordinates of the two clusters in the
laboratory frame to a relative distance r between the clusters
for translationally invariant spectroscopic overlaps is given by
[41]

〈nl00l|00nll〉a/A−a = (−1)l

(
A − a

A

)n/2

, (2)

where a and A − a are the numbers of nucleons in the clusters.
The norm of the spectroscopic overlap,

SAαJ
A−1α1I1;l j =

∫ ∞

0

∣∣uAαJ
A−1α1I1;l j (r)

∣∣2
r2dr (3)

=
∑

n

∣∣uJ
νl j;n

∣∣2
, (4)

is called the spectroscopic factor (SF), where in the second
line of Eq. (4) we use the channel notation ν = {Aα, A −
1α1I1}, along with uJ

νl j (r) = ∑
n Rnl (r)uJ

νl j;n.
For a nucleus of A particles, partitioned into two clusters

A − a and a, the cluster wave function is considered in two
regions: interior, where the wave function is driven by the
internucleon interactions and is given by Eq. (1) in this study,
and exterior, where the only interaction between the clusters
is the Coulomb force and the exact Coulomb eigenfunctions
are used.

For bound states the exterior wave function for two clusters
with relative angular momentum l and separated at distance r

is given by the asymptotically decaying Whittaker function
[43–45]:

W−η,l+ 1
2
(2kr) −−−→

r→∞ (2kr)−ηe−kr, (5)

with k = √
2μB/h̄, where B is the cluster separation energy

and μ is the reduced mass of the two clusters A − a and a,
and η = ZaZA−aμe2/h̄2k is the Sommerfeld parameter. The
amplitude of the exterior wave function at large distances r
is called the asymptotic normalization coefficient (ANC), and
hence the exterior bound-state wave function is given as

φJ, ext
νl j (r) ≈ CJ

νl j

W−η,l+ 1
2
(2kr)

r
. (6)

Here, CJ
νl j corresponds to the ANC, where ν represents all

quantum numbers needed to fully characterize the respective
states of the two clusters, and contains their parities and total
angular momenta.

Asymptotically, for large r the interior cluster wave func-
tion (or the spectroscopic overlap) uJ

νl j (r) should approach the
exterior wave function in Eq. (6). To extract the ANCs, one
can match the interior wave function to the exterior one at the
channel radius rc between the centers of masses of the two
clusters similar to Ref. [22]:

CJ
νl j ≈ rcuJ

νl j (rc)

W−η,l+ 1
2
(2krc)

. (7)

This formula assumes that the interior wave functions at the
channel radius are approximately equal to the long-range
Coulomb solution. Other methods for calculating ANCs are
described in Refs. [23,43,46,47]. Since matching the tail of
the overlap function may change the SF, we modify Eq. (7) to
preserve the SF of Eq. (4):

CJ
νl j ≈

√
SAαJ

A−1α1I1;l j

⎡
⎣(

W−η,l+ 1
2
(2krc)

rcuJ
νl j (rc)

)2 ∫ rc

0
[ruJ

νl j (r)]2dr +
∫ ∞

rc

[
W−η,l+ 1

2
(2kr)

]2
dr

⎤
⎦

−1/2

. (8)

Clearly, for sufficiently large rc, the last equation reduces
to Eq. (7). As often done, we choose the channel radius to
maximize the ANC or, equivalently, to match the logarithmic
derivatives. In this study, the channel radii are found to be
typically large, so Eqs. (8) and (7) yield practically the same
outcome.

III. RESULTS AND DISCUSSIONS

We present SA-NCSM calculations of single-nucleon over-
laps 〈7Li | 6Li +n〉, 〈8Li | 7Li +n〉, and 〈9Li | 8Li +n〉 for the
ground states of the Li isotopes. We match the calculated over-
laps to the exterior Whittaker function to calculate the ANCs
and compare them to the experimentally deduced values.
Using the wave functions from the many-body calculations

and Eq. (1), we calculate the single-nucleon overlaps for par-
tial waves p1/2 (l = 1, j = 1/2) and p3/2 (l = 1, j = 3/2).

The corresponding SA-NCSM ground-state energies of the
Li isotopes are found to be on a converging trend in suffi-
ciently large model spaces (Fig. 1). Since the calculations are
performed in a finite model space, the ground-state energies
converge to the infinite-space results from above. We perform
calculations using the HO parameter h̄� = 10, 15, and 20
MeV, and for each of the h̄� values, we extrapolate to the
infinite space using a three-parameter exponential formula,
similar to Ref. [48]:

E (Nmax) = E (∞) + a exp(−cNmax), (9)

where E (∞) is the energy at the infinite model space. The
error bars indicate the combined uncertainty due to the h̄�
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FIG. 1. Ground-state energies of 6Li, 7Li, and 8Li from SA-
NCSM calculations with NNLOopt interaction with HO parameters
h̄� = 10, 15, and 20 MeV and compared to the experiment. The
blue bands indicate the extrapolated energies (denoted as “Extrap.”).
The uncertainties of the extrapolated values are from fitting and h̄�

variance.

variance and the fitting. The extrapolated values are in a good
agreement with the experiment (Fig. 1).

A. Spectroscopic factors

The ground states of Li isotopes that differ in mass by one
nucleon have opposite parities. Since the parity of the nucleon

TABLE I. SA-NCSM calculations of SFs for Nmax = 12 model
space.

Transition h̄� = 10 MeV h̄� = 15 MeV h̄� = 20 MeV

〈7Li | 6Li +n〉 p3/2 0.51 0.53 0.54
p1/2 0.27 0.26 0.25
f5/2 6.7 × 10−5

〈8Li | 7Li +n〉 p3/2 0.92 0.92 0.92
p1/2 0.12 0.08 0.07
f5/2 3.4 × 10−3

f7/2 1.1 × 10−4

〈9Li | 8Li +n〉 p3/2 0.82 0.89 0.92
p1/2 0.01 0.02 0.03
f5/2 1.5 × 10−3

f5/2 1.9 × 10−6

is given by (−1)l , l must be odd to preserve the parity. In
addition, as it was shown in Ref. [23] and observed in our
calculations, the l = 3 overlaps are much smaller than the
l = 1 overlaps (see Table I). Hence, we limit our analysis to
only l = 1, p1/2 ( j = 1 − 1/2) and p3/2 ( j = 1 + 1/2) partial
waves. For these two values of j we explore the dependence
of the 〈7Li | 6Li +n〉 overlaps on the model space size for a
fixed h̄� (Fig. 2). With increasing the Nmax model space,
the changes between successive curves become smaller,
indicating convergence of the overlaps. Similar dependence
is observed for 〈8Li | 7Li +n〉 and 〈9Li | 8Li +n〉 overlaps with
a fixed h̄�. It should be noted that peripheral reactions and
long-range observables, such as rms radii and quadrupole
moments, are sensitive to the overlap at large distances (tail).
Indeed, the tail approaches the exact Whittaker functions with
increasing model space size (Fig. 2, inset). For example, in the
case of 6Li +n, at Nmax = 12 the tail coincides with the exact

FIG. 2. Single-nucleon overlaps 〈7Li|6Li + n〉 in Nmax = 6 to 12
with h̄� = 15 MeV for partial waves p1/2 and p3/2 vs the separation
between 6Li and the neutron. Inset: Same, but for p3/2 only and in
log10 scale on the ordinate axis along with the exterior Whittaker
function.

054303-4



AB INITIO SINGLE-NEUTRON … PHYSICAL REVIEW C 108, 054303 (2023)

FIG. 3. (a) Single-nucleon overlaps of the 7Li ground state with 6Li +n in Nmax = 12 for partial waves p1/2 and p3/2 vs the separation
between 6Li and the neutron, r, compared to GFMC results from Ref. [51]. The dotted lines correspond to the exterior Whittaker function. The
shaded bands indicate the uncertainty due to the h̄� variance from 10 to 20 MeV (interior to exterior wave function matching radii differ for
different h̄�, see text for details). For all but the first two points, the GFMC uncertainties are smaller than the marker size on the plot. Inset:
SA-NCSM overlaps compared to a typical Woods-Saxon parametrization (see text for details). (b) Calculated SFs with the increasing model
space Nmax and compared to the experimentally deduced values from Jun et al. [49] and Wuosmaa et al. [52]. Also shown are SFs calculated
in the NCSM from Ref. [41] and GFMC from Ref. [22].

solution up to about 7 fm, thereby allowing for matching.
Since the overlaps decay quickly at larger radii, it is more
informative to present them in a logarithmic scale [Fig. 3(a)].
In this figure, we use the exact Whittaker function at large
distances. Furthermore, the overlaps are represented as bands
of values due to the variance of the HO parameter h̄� from 10
to 20 MeV, typical for nuclei in this mass range. The matching
radii are different depending on the HO parameter. For com-
parison, overlaps from ab initio Green’s function Monte Carlo
(GFMC) (gray crosses) as well as a typical Woods-Saxon
(WS) potential (Fig. 3, inset) are presented. The depth of the
WS potential has been fitted to reproduce the experimental
neutron separation energy of 7Li for each partial wave: V0 =
−71.95 MeV for p1/2 and V0 = −61.31 MeV for p3/2, along
with R0 = 1.25A1/3 fm radius and a = 0.65 diffuseness, and a
spin-orbit term with VSO = 6 MeV depth and the same R0 and
a. The overlaps from the WS solutions have been normalized
to reproduce the same SFs as the SA-NCSM ones. Even
though SA-NCSM and GFMC use different nucleon-nucleon
(NN) interactions, both ab initio approaches yield very similar
overlaps. In contrast, the WS overlaps peak at higher values
for both partial waves and are below the ab initio overlaps
at long distances, which would result in smaller ANCs. We
integrate the overlaps to obtain the SFs for each of the partial
waves using Eq. (4), with the total SF given by the sum of
the SF for both partial waves. For 〈7Li | 6Li +n〉 the calculated
SFs converge towards the experimentally deduced value from
Ref. [49] as the model space increases [Fig. 3(b)]. In addition,
we compare our calculations to the values from GFMC [22]
and NCSM [41] (also, cf. Ref. [50]).

A similar behavior is found for the 〈8Li | 7Li +n〉 and
〈9Li | 8Li +n〉 overlaps (Figs. 4 and 5). In 〈8Li | 7Li +n〉 the
spread of values due to the h̄� variance is small in the short-
range part of the wave function but becomes more apparent
at larger radii. This shows that the description of the long-

range part of the wave function is sensitive to the h̄� values
for a given Nmax model space. The larger spread in the p1/2

overlap of 〈9Li | 8Li +n〉 is due to its smaller values (by an
order of magnitude) compared to p3/2 [Fig. 5(a)]. For both
〈8Li | 7Li +n〉 and 〈9Li | 8Li +n〉 the calculations of SFs with
all HO frequencies considered are converging to the uncer-
tainty range of the experimentally deduced results [Figs. 4(b)
and 5(b)]. A particularly interesting case is 8Li +n, where
the two experimentally deduced SFs reported in Fig. 5(b)
agree with each other within the uncertainties; however, the
calculated SFs are closer to the outcome of Wuosmaa et al.
(Ref. [55]), as shown in the figure. Since both experiments
use the same reaction, 2H(8Li, p) 9Li, at a similar energy
regime but different data sets, this suggests that the data
analysis in Ref. [54] has likely underestimated the neutron
p-wave channel contribution to 9Li. Nonetheless, we note
that all these outcomes are considered in a good agreement.
For more experimental evaluations of 〈9Li | 8Li +n〉 SFs, see
Ref. [56].

Among the three cases we present, the calculated SFs in
the largest model spaces are close to 1, except for the case
of 6Li +n. This suggests a more complicated structure of
the 7Li ground state, which could be related to a low-lying
α + t threshold that lies closer to the ground state compared
to the 6Li +n threshold. In comparison, the neutron channel
is the lowest in energy for both 8Li and 9Li. It is, therefore,
interesting to study the α overlap for 7Li and the effects of
α clustering. Further examining dependence of the SFs on
the neutron threshold, we find a slow decrease of SFs as
the separation energy increases (Fig. 6), similar to Fig. 18
in Ref. [20]. This suggests a stronger single-particle cluster-
ing when the neutron binding is weaker, although we leave
a detailed analysis for future SA-NCSM studies that will
span a broader region of nuclei. We note that the neutron
thresholds reported in Fig. 6 are determined from Nmax → ∞
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FIG. 4. Same as Fig. 3 but for 7Li +n. The experimentally deduced SF is from Schiffer et al. [53], and the variational Monte Carlo (VMC)
result is from Ref. [51].

extrapolations of the binding energies, with uncertainties that
take into account the model space selection and h̄� variance.
All the thresholds are in agreement with the experimental
values.

B. Spectroscopic factors and amount of clustering

The spectroscopic overlaps are calculated in this paper
using Eq. (1) based on the |A�J

A−1α1I1;l 1
2 j

〉 two-cluster states.

The antisymmetrization guarantees that the Pauli exclusion
principle is correctly taken in account within the A-nucleon
system; however, it renders the set of cluster wave functions to
be neither normalized nor orthogonal. This nonorthonormality
prevents one from interpreting |uAαJ

A−1α1I1;l j (r)|2 in Eq. (4) as a
probability on an absolute scale (e.g., see Refs. [57,58]) and to
relating the spectroscopic factors to the amount of clustering.
Therefore, in order to probe the amount of clustering, it is
necessary to utilize an orthonormalized cluster wave function
[57,58]:

SJ
νl =

∑
j1n1, j2n2,k

uJ
νl j1;n1

e(k)
νl j1;n1

1

Nνl;k
e(k)
νl j2;n2

uJ
νl j2;n2

, (10)

where Nνl;k is the kth eigenvalue of the norm matrix Nνl , and
e(k)
νl j1;n1

are the components of the corresponding eigenstate.

While, in general, the norm matrix mixes orbital momenta,
in this study we neglect l = 3, as discussed above. We
also note that SFs are calculated before matching and
remain practically unchanged after matching, which justifies
the use of configuration representation in Eq. (10). The
orthonormalization process involves the inversion of the
norm kernel, which in configuration representation is a
matrix whose elements are given by the overlap between two
cluster wave functions (see, e.g., Ref. [13]). Typically, the
amount and magnitude of the off-diagonal elements reflect
the nonorthogonality of the cluster wave functions under
consideration.

To test the amount of clustering SJ
νl , in this study, the

norm kernel is computed and studied through the use of
the symmetry-adapted RGM [15]. We find that the off-
diagonal elements involving the nucleon projectile being
in p3/2 or p1/2 are extremely small (around 10−3). Hence,
their contribution to SJ

νl is expected to be negligible. As
a consequence, only diagonal elements were considered
in the computation with SJ

ν,l=1 = SJ
νp1/2

+ SJ
νp3/2

. Indeed,

for 6Li +n the Hilbert-Schmidt norm of Nνl − 1 is only
0.01, whereas the relative difference of the spectroscopic
factors given in Fig. 3(b) compared to the one using nor-

FIG. 5. Same as Fig. 3 but for 8Li +n. The experimentally deduced SFs are from Li et al. [54] and Wuosmaa et al. [55]. The values from
VMC and NCSM are from Refs. [41,51], respectively.
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FIG. 6. Calculated SFs in Nmax = 12 vs the extrapolated neutron
separation energies (Sn) from calculations. Uncertainties on Sn are
from h̄� variance and SA model space selection.

malized cluster wave functions is only 1.6%–2.1% across
h̄� = 10-25 MeV.

To summarize, for the systems under considerations, the
norm matrix is approximately the identity matrix, yielding
SFs that are practically the same as the measure for clustering
S . We note that, in general, the effect of the norm matrix
should not be neglected, especially when more partial waves
need to be considered.

C. Asymptotic normalization coefficients

Obtaining ANCs directly from matching the overlaps to
Eq. (8) can be challenging for the many-body methods that use
the HO basis, since the asymptotics at large radii is affected
by the model space cutoff. To ensure the correct asymtotics,
large model spaces are required, as illustrated in the inset of
Fig. 2(a). Alternative methods have been also developed to
address this issue, e.g., see Refs. [23,46,47]. The challenges
associated with each of the methods are reviewed in Ref. [59].

TABLE II. ANCs (in fm−1/2) from extrapolations of the SA-
NCSM calculations to infinite model space and compared with
the VMC, the GFMC, and the experimentally deduced (“Expt.”)
values. Systematic uncertainties on GFMC values are 5% or less.
The experimentally deduced ANCs for the three systems are from
Refs. [60,63,64], respectively.

Transition SA-NCSM VMC GFMC |Expt.|
〈7Li | 6Li +n〉 p3/2 1.9(1) 1.89(1) 2.29

p1/2 1.6(1) 1.65(1) 1.73
total 2.5(1) 2.51(1) 2.87 1.26–2.82

〈8Li | 7Li +n〉 p3/2 −0.72(7) −0.618(11) 0.62(3)
p1/2 0.24(4) 0.218(6) 0.22(3)
total 0.76(8) 0.655(12)

〈9Li | 8Li +n〉 p3/2 −1.21(6) −1.140(13)
p1/2 0.22(2) 0.308(7)
total 1.23(6) 1.180(15) 1.15(14)

In addition, the extractions of ANCs from Eq. (8) require the
separation energy B. To be fully consistent in determining the
ANCs from overlaps, one should use theoretically calculated
separation energies Bth. Nevertheless, in most models the
experimental value Bexp is used to make the ANCs practical
for reaction calculations, since even small deviations of Bth

from Bexp can affect the ANCs [23].
We calculate the ANCs by directly matching the spec-

troscopic overlap to the exterior Whittaker function and
preserving the SF of the unmatched overlap. We choose
a channel radius rc that maximizes the ANC (or, equally,
ensures slope continuity), and we use Bexp, which falls within
the calculated extrapolated energy for all cases under consid-
eration, as shown in Fig. 1. To report a parameter-free ANC
(Table II), we use the Shanks transformation [61,62] for the
Nmax = 8, 10, and 12 calculations, with h̄� = 15 and 20 MeV
that are close to convergence with Nmax; in addition, the fi-
nal estimate is required to be independent from the channel

FIG. 7. ANCs for 〈7Li | 6Li +n〉 (a) as functions of the channel radius rc with h̄� = 15 MeV, with the connected gray points showing
the extrapolated results (denoted as “Extrap.”), and (b) for h̄� = 10-20 MeV vs the model space size and compared to the experiment [60]

(denoted as “Expt.”). The label “Total” in panel (a) denotes
√∑

C2
l j for the p1/2 and p3/2 partial waves. The horizontal dot-dashed line with

the band in panel (b) shows the extrapolation from h̄� = 15 and 20 MeV calculations with the uncertainty from h̄� variance.
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FIG. 8. Total ANCs for (a) 〈8Li | 7Li +n〉 and (b) 〈9Li | 8Li +n〉 for h̄� = 10-20 MeV vs the model space size and compared to the
experimentally deduced values. The channel radius that ensures slope continuity at matching is used. The horizontal dot-dashed lines
correspond to the extrapolated (“Extrap.”) results from h̄� = 15 and 20 MeV calculations with the blue band representing the uncertainty. The
calculations are for the total of p1/2 and p3/2 partial waves. The experimentally deduced values (“Expt.”) are from Ref. [63] for 〈8Li | 7Li +n〉
and from Ref. [64] for 〈9Li | 8Li +n〉.

radius, as illustrated in Fig. 7(a). For the Li isotopes discussed
here the fastest convergence of ANCs is observed for h̄� = 15
MeV, which appears to be the optimal h̄� value, that is,
where the convergence of results is achieved at comparatively
smaller model spaces, while other h̄� values demand larger
Nmax to produce the same estimate. In particular, the ANC for
h̄� = 15 MeV for 〈7Li | 6Li +n〉 flattens around rc = 4.6-5 fm
[Fig. 7(a)], where the SA-NCSM overlap function indeed
coincides with the Whittaker function, as shown in Fig. 2.
The total ANC for the p1/2 and p3/2 partial waves is calcu-

lated by Cl =
√

C2
p1/2 + C2

p3/2 (using a diagonal norm matrix,

which is an excellent approximation, as discussed above). Our
prediction based on the extrapolated results of h̄� = 15 and
20 MeV is 2.5 ± 0.1 fm−1/2 (cf. Table II), which is within
the experimentally deduced range of 1.26–2.82 fm−1/2 [60].
Indeed, the h̄� = 15 and 20 MeV calculations are on con-
verging trend with Nmax, and at Nmax = 12 they agree with the
extrapolated estimates and with the experimentally deduced
range [Fig. 7(b)].

The experimentally inferred ANCs for the 〈8Li | 7Li +n〉
wave function are available for p1/2 and p3/2 partial waves
separately [63]. Thus, we compare the extrapolations of the
calculated ANCs for each of the respective partial waves
(Table II). For this system, both h̄� = 15 and h̄� = 20 MeV
yield extrapolated results almost independent of the channel
radius. For both of these HO parameters the calculations
converge within the experimentally deduced range in compar-
atively small model spaces [Fig. 8(a)]. We note that only the
squares of the experimentally deduced ANCs are available,
and the sign of an ANC is not an observable, thus one needs
to compare only the absolute values of the calculations in
Table II to the experimentally inferred values. Nonetheless,
the signs of the ANCs, and their magnitudes, calculated from
the SA-NCSM and the VMC and GFMC models are all in
agreement.

As mentioned above, the 〈9Li | 8Li +n〉 overlap is domi-
nated by the p3/2 partial wave. This results in the total ANC
being almost indistinguishable from the p3/2 ANC [Figs. 8(b)

and Table II]. Again, the extrapolations of ANCs for h̄� = 15
and 20 MeV are close to each other and practically do not
depend on rc. Similarly to the previous two systems, our
extrapolated value agrees very well with the experimentally
deduced value from Ref. [64].

IV. CONCLUSIONS

We have reported SA-NCSM calculations of single-
neutron spectroscopic overlaps for a series of lithium isotopes
using a realistic chiral potential. As expected for the HO basis,
large model spaces are imperative to accommodate the tail of
the overlaps, and we show that these tails converge towards the
exact Whittaker functions as the model space size increases.
Using these overlaps, we have calculated the associated SFs
and ANCs and showed a good agreement between them and
the experimentally deduced values as well as previous GFMC
and VMC calculations. The current study can be extended
to heavier nuclei that are within the reach of the SA-NCSM
[8]. We have also discussed the effect of the normalization
of the cluster wave functions, and for the illustrative example
of 6Li +n the spectroscopic factors practically coincide with
the measure for clustering, since the orthogonalization of the
two-cluster states results in a negligible effect.

The single-nucleon overlaps can be modeled by solutions
of the Schrödinger equation with a nucleon-nucleus effective
potential. Hence, the overlaps calculated in the ab initio SA-
NCSM approach can be used to fit the parameters of these
potentials using, e.g., Bayesian techniques [65]. This will
allow one to perform uncertainty quantification of the poten-
tial parameters. Most importantly, this will provide probability
distribution functions for the parameters that will, in turn,
quantify uncertainties in cross sections calculated in few-body
reaction models. Such models are often employed in the anal-
yses of experimental data, where a microscopic input with
quantified uncertainties is essential.
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