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Antiproton-deuteron hydrogenic states from a coupled-channel approach
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A coupled-channel nucleon-antinucleon interaction model is developed as an alternative to traditional optical
models and is adjusted to reproduce the same NN̄ low-energy dataset as the Kohno-Weise potential. The
scattering lengths of the antiproton-deuteron system and the level shifts of its lowest hydrogenic states are
computed by solving the Faddeev-Merkuriev equations in configuration space. The calculations are carried out
with two different nucleon-nucleon interactions and the results compared with those obtained with an optical
model to explore the model-dependence, which is found to be weak. The antiproton annihilation densities on
deuteron are finally calculated and compared.
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I. INTRODUCTION

The Low-Energy Antiproton Ring (LEAR) and its rich
experimental program at CERN [1–3] have made low-energy
antiproton physics an active field of research from the early
1980s until its closure in 1996. More recently, the develop-
ment of facilities such as the Antiproton Decelerator (AD) or
the Extra Low-Energy Antiproton ring (ELENA) has offered
new opportunities to study the properties of antimatter, its
interplay with standard matter, as well as baryon-antibaryon
symmetries through various experiments. Low-energy an-
tiprotons have namely been used for the formation and the
study of antiprotonic atoms [1,4]. In these experiments, an
antiproton is captured in a highly excited atomic Coulomb
orbital, after ejecting one of the electrons. It then decays
to lower states by x rays or Auger electron emissions, and
finally annihilates with a nucleon under the influence of the
strong hadronic interaction. The same mechanism will be
exploited in the PUMA experiments [5], which aims to study
nucleus skin densities of short-lived isotopes produced by
ISOLDE. Low-energy antiproton annihilation is a promising
tool to probe the nuclear structure [6–8]. In particular, the
measurement of nucleon-antinucleon annihilation products is
expected to provide a unique sensitivity to the proton and
neutron densities at the surface of the nucleus.
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While a qualitative picture of what will happen in the
PUMA experiments is known, a fully microscopic treatment
of the antiproton-nucleus interaction dynamics remains to be
developed. From a theoretical point of view, the description
of antiprotonic atoms mainly relies on nucleon-antinucleon
(NN̄) optical potentials [9–13]. Such models provide a con-
venient way to include the NN̄ annihilation and can be used
together with nucleon-nucleon (NN) interactions in ab ini-
tio calculations. However, the reliability of such approaches
is hard to assess due to the limited amount of data avail-
able to constrain NN̄ interaction models. Since the PUMA
project relies on the detection of annihilation products, it is
of paramount importance to test the validity of the models
which will be used to analyze experimental data. In this
paper, an alternative approach to traditionally used optical
models is explored, where the annihilation is modeled by the
addition of effective meson channels. The coupled-channel
potential is adjusted to reproduce the optical model results
for NN̄ systems, which allows us to investigate the impor-
tance of annihilation dynamics in one of the simplest cases of
antiproton-nucleus annihilation: the deuteron-antiproton (d p̄)
system.

If only interacting through the Coulomb interaction, the d p̄
spectrum would include an infinite set of well-known Rydberg
states, whose energies are approximately provided by

E (C)
n = EB − Ry(d p̄)

n2
, (1)

where EB ≈ 2.22 MeV is the binding energy of the deuteron
and Ry(d p̄) ≈ 16.6662 keV is the d p̄ Rydberg energy. Apart
QED and relativistic corrections, which these Rydberg states
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are affected (these corrections are not considered in this work
but can be assessed perturbatively afterwards), they are sub-
ject to the strong interaction, which introduces additional shift
and broadening (due to finite time it takes to annihilation)
of these levels. These atomic states are expected to play an
important role in the PUMA experiments. Wave functions
and eigenenergies of these states are calculated in this work
by solving the Faddeev-Merkuriev equations in configuration
space [14,15], employing the coupled-channel approach. The
results are then compared with those obtained in Ref. [16],
where traditional optical models were considered.

In this paper, the optical and coupled-channel formalisms
are first presented. A formal extension of the Faddeev-
Merkuriev equation formalism to include particle coupled
channels is then presented. The model dependence is investi-
gated by computing and comparing the d p̄ scattering lengths
obtained with different NN and NN̄ models. The complex en-
ergy shifts with respect to the energy of the hydrogenic states
are then computed from both direct resonant state calculations
and from the scattering lengths or volumes by employing the
Trueman relation [17]. Finally, the d p̄ annihilation is investi-
gated by computing and analyzing the annihilation densities.

II. FORMALISM

A. The NN̄ interaction

For a long time the meson-exchange theory was used to
formulate the NN interaction [18]. Within this framework, the
nuclear interaction is expressed as a sum of different terms,
each one associated with the exchange of a specific meson:

VNN =
∑

m=π,ρ,ω,...

V (m)
NN . (2)

The real part of the NN̄ interaction then follows via G-parity
transform of the NN interaction [19], providing a multiplica-
tive factor for each term of Eq. (2):

UNN̄ =
∑

m=π,ρ,ω,...

G(m)V (m)
NN , (3)

where G(m) = C(−1)Tm is the G-parity of the meson m, defined
with the charge conjugation operator C and the meson isospin
Tm. To avoid the nonintegrable singularities due to spin-orbit
and tensor terms, UNN̄ is regularized when the interparticle
distance is below a given cutoff radius.

In this work we concentrate on hydrogenic states, which
are dominated by pp̄ Coulomb interaction, which does not
comply to isospin symmetry. Therefore the particle basis in-
volving nucleon-antinucleon pairs is here more appropriate.
Using the isospin convention of Ref. [20], the isospin state of
the NN̄ pairs are given by

|pp̄〉 = 1√
2

(|0 0〉 + |1 0〉), |np̄〉 = |1 − 1〉,

|nn̄〉 = 1√
2

(|0 0〉 − |1 0〉). (4)

The NN̄ potential should not only describe the attractive
or repulsive features between the particles but should also
account for the NN̄ annihilation. Given the substantial amount

of energy available in the NN̄ annihilation at rest, this process
includes a large number of meson-producing channels, mainly
involving pions and kaons [21]. This variety of multimeson
final states induces complex dynamics presenting a significant
challenge to microscopic theories. For this reason, the NN̄ an-
nihilation is treated in a phenomenological way. Two different
approaches emerge and are hereafter developed: the optical
and coupled-channel models.

1. Optical model

In the optical model framework, the annihilation is ac-
counted by the addition of a complex phenomenological term
W to UNN̄ so that the resulting NN̄ potential reads

VNN̄ = UNN̄ + W (W ∈ C). (5)

For the sake of numerical convenience, a Woods-Saxon form
is often chosen to represent W by fixing the same range and
strength parameters for all considered partial waves and ad-
justing them to fit the experimental data. The imaginary part
of the potential induces a loss of probability flux in the NN̄
channels, which simulates the cumulative effects of producing
mesons. Only the NN̄ degrees of freedom are therefore explic-
itly included in practical calculations. In the present work, we
utilize the Kohno-Weise (KW) potential [11], in which W is
purely imaginary.

In the particle basis, the coupled-channel Schrödinger
equation for pp̄, nn̄, and np̄ systems can be summarized by

(
E − Hi j̄

0 − δmi j̄c
2
)
ψi j̄ =

∑
i′ j̄′

Vi j̄,i′ j̄′ψi′ j̄′ , (6)

where Hi j
0 is the diagonal two-body kinetic-energy operator

for a particle-antiparticle pair i j̄ and E denotes the energy
measured relative to a conventionally chosen threshold (ma +
mb̄)c2. Term δmi j̄ = mi + mj̄ − ma − mb̄ eventually accounts
for a mass difference in a coupled-channel case. For the
pp̄ case, particle indexes span two coupled channels i j̄ =
(pp̄, nn̄), whereas for the np̄ case, the sum is limited to a single
channel.

2. Coupled-channel model

In the coupled-channel (CC) approach, the potentials are
real (VNN̄ = UNN̄ ) and the annihilation is accounted by the
addition of effective channels, mimicking the production of
the real mesons. In contrast with optical models, where a part
of the flux is suppressed by an imaginary potential, the flux
is here distributed among the effective channels, providing
a unitary S matrix. Within this approach, the annihilation
dynamics is more complete, involving the possibility of a
nucleon-antinucleon re-emission.

The present model is mainly inspired from Ref. [20]. In
that work, to each NN̄ channel is associated an effective
meson-antimeson (mm̄) one coupled by a phenomenological
interaction. The properties of these effective particles and
the coupling potentials are adjusted for each partial wave
to reproduce a selected set of NN̄ scattering data. For the
sake of simplicity, the effective mesons are supposed to be
noninteracting with each other.
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Within the CC model, the Schrödinger equation (6) re-
mains formally valid, but more particle-antiparticle channels
are involved and thus wave functions contain more compo-
nents. In particular, for the total charge Z = 0 case our model
potential couples four particle-antiparticle components and
has the following symmetrical structure:⎛
⎜⎜⎝
ψm1m̄1

ψm2m̄2

ψpp̄

ψnn̄

⎞
⎟⎟⎠, V =

⎛
⎜⎜⎝

0 0 Vpp̄,m1m̄1 Vnn̄,m1m̄1

0 0 Vpp̄,m2m̄2 Vnn̄,m2m̄2

Vpp̄,m1m̄1 Vpp̄,m2m̄2 Vpp̄,pp̄ Vpp̄,nn̄

Vnn̄,m1m̄1 Vnn̄,m2m̄2 Vpp̄,nn̄ Vnn̄,nn̄

⎞
⎟⎟⎠.

(7)

For the Z = −1 case, our model is limited to two components:(
ψm3m̄3

ψnp̄

)
, V =

(
0 Vnp̄,m3m̄3

Vnp̄,m3m̄3 Vnp̄,np̄

)
. (8)

For simplicity in studying more complex systems, beyond
nucleon-antinucleon case, the mass of the mesons is chosen
the same in each channel and partial wave, i.e., mm1 = mm2 =
mm3 = 775.26 MeV/c2, which corresponds to the mass of the
ρ meson.

Within our CC model, matrix elements coupling NN̄ to NN̄
channels are based on the meson-exchange potential proposed
by Brian and Philipps in Ref. [22] on which the G-parity
transform is applied. When the interparticle distance is be-
low the cutoff radius rc, each isospin component is smoothly
extrapolated by imposing a C1 matching with a polynomial
function of degree two. Moreover, isospin symmetry implies
that Vpp̄,pp̄ differs from Vnn̄,nn̄ only by the presence of an
attractive Coulomb interaction term.

The coupling of NN̄ channels with the meson-antimeson
ones is realized introducing short-range Yukawa potentials,
corresponding to the simplest Feynman diagram for the an-
nihilation process:

Vpp̄,m1m̄1 = Vnn̄,m2m̄2 = h̄cλ1r−1e−r/ra , (9)

Vpp̄,m2m̄2 = Vnn̄,m1m̄1 = h̄cλ2r−1e−r/ra , (10)

Vnp̄,m3m̄3 = h̄cλ3r−1e−r/ra , (11)

where λ1, λ2, λ3 are the dimensionless amplitudes of the cou-
pling potentials and ra = h̄c

mp
≈ 0.21 fm is the proton Compton

wavelength.
For each partial wave, three parameters need to be adjusted

for the pp̄/nn̄ system (rc, λ1, and λ2) and two parameters
for the np̄ system (rc, λ3). For coupled waves, an additional
cutoff radius is introduced to extrapolate the transition tensor
potential at short distances. To investigate the model depen-
dence and the effects of annihilation dynamics in a three-body
system, the parameters of the coupled-channel potential are
adjusted to fit the low-energy S matrix provided by the KW
model. The fitting procedure consists in a simple least-square
fit of the S-matrix elements for NN̄ energies ranging from
E = 0 to 12 MeV in the center of mass frame, and has been
realized for partial waves with l � 5. The parameters for the
pp̄ and np̄ systems are given in the Appendix. Some of the
pp̄ and np̄ scattering lengths computed with the coupled-
channel and Kohno-Weise models are given in Table I for
comparison. The N p̄ scattering lengths are reproduced with

TABLE I. N p̄ scattering lengths and volumes computed with the
KW and CC models.

2S+1LJ pp̄ (KW) pp̄ (CC) np̄ (KW) np̄ (CC)

a0 (fm) a0 (fm) a0 (fm) a0 (fm)

1S0 0.57 − 0.77i 0.57 − 0.76i 1.07 − 0.62i 1.07–0.61 i
3SD1 0.92 − 0.63i 0.90 − 0.65i 0.78 − 0.80i 0.78–0.79 i

a1 (fm3) a1 (fm3) a1 (fm3) a1 (fm3)

1P1 −1.19−0.53i −1.12−0.54i 0.71−0.47i 0.70−0.49i
3P0 −2.77−1.99i −2.82−1.84i 2.43−0.11i 2.39−0.11i
3P1 1.22−0.47i 1.19−0.48i −2.17−0.95i −2.07−0.98i
3PF 2 −0.36−0.75i −0.32−0.73i −0.30−0.45i −0.29−0.47i

5% accuracy or better. The calculations have been carried
out with the nucleon masses mp = 938.2721 MeV/c2 and
mn = 939.5654 MeV/c2.

B. Faddeev-Merkuriev equations

The deuteron-antiproton (d p̄) system consists of two cou-
pled three-particle bases (p, n, p̄) and (n, n, n̄), when optical
NN̄ interaction models are considered. The coupled-channel
model generates additional three-particle bases, associated
with the dynamical production of meson-antimeson pairs
(as will be detailed in what follows). The Faddeev equa-
tion’s ansatz is based on splitting systems wave function
into Faddeev components (FCs) associated with each possible
combination of (2 + 1)-particle clusters.

It is convenient to express these components by associating
a Jacobi coordinate set to each of them:

xi =
√

2mjmk

m0(mj + mk )
(rk − r j ), (12)

yi =
√

2mi(mj + mk )

m0(mi + mj + mk )

(
ri − mjr j + mkrk

mj + mk

)
, (13)

where (i, j, k) is a cyclic permutation of (1,2,3), ri is the
position of particle i, mi its mass, and m0 a reference mass
chosen arbitrarily for the coherence of the units.

1. Optical model

Using NN̄ optical models there are six different FCs asso-
ciated with the following particle configurations:

(np)p, (pn)p, (pp)n, (nn)n, (nn)n, (nn)n. (14)

The last two components are formally identical; the wave
function is antisymmetric relative to the permutation of two
neutrons so that the last component can be comfortably writ-
ten in terms of the fifth one.

The remaining five components are related by the follow-
ing Faddeev-type equations:(

E − Hi jk
0 − δmi jkc2

)
�i j,k

=
∑
i′ j′

Vi j,i′ j′ (�i′ j′,k + �ki′, j′ + � j′k,i′ ). (15)
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These equations enable in theory to study deep bound
states in NNN̄ systems. However they are not appropriate
numerically to study d p̄ Rydberg states and low-energy an-
tiproton scattering on deuteron, which are dominated by the
long-ranged Coulomb attraction between proton and antipro-
ton. The former equations were modified as proposed by
Merkuriev, in order to separate d p̄ Coulomb asymptote in a
single Faddeev-Merkuriev component (FMC), namely �np,p̄.
This feature is realized by splitting, attractive pp̄ Coulomb
interaction into long-ranged and short-ranged parts:

VC,pp̄(xpp̄) = V l
C(xpp̄, ypp̄,n) + V s

C(xpp̄, ypp̄,n), (16)

as explained in Ref. [15]. Equation (15) is then modified as(
E − Hi jk

0 − δmi jkc2 − V l
C,ik − V l

C, jk

)
�i j,k

=
∑
i′ j′

Vi j,i′ j′ (�i′ j′,k + �ki′, j′ + � j′k,i′ )

− V l
C,i j (�ki, j + � jk,i ). (17)

2. Coupled-channel model

The coupled-channel approach introduces explicitly new
particle channels related with production of m1m̄1, m2m̄2, and
m3m̄3 meson pairs. Therefore the d p̄ system involves five
three-particle combinations, namely: (pp̄n), (nn̄n), (m1m̄1n),
(m2m̄2n), (m3m̄3 p). The wave function formally includes 15
FMCs and satisfies similar Faddeev-Merkuriev equations set
to Eq. (17).

Nevertheless, as our model supposes that mesons m1, m2,
and m3 do not interact with each other nor with nucleons,
apart annihilation, all the FMCs associated with a spectator
(anti)meson turn to be null:

�miN,m̄i ≡ �Nm̄i,mi ≡ 0. (18)

This leaves us with nine nontrivial FMCs for which system
of equations (17) should be solved. These components are
associated with the following 2 + 1 particle clusters:

(np) p̄, ( p̄n)p, (pp̄)n, (nn)n̄, (n̄n)n,

(m1m̄1)n, (m2m̄2)n, (m3m̄3)p. (19)

Unlike in optical models, the d p̄ Rydberg states in the CC
model are resonances which cannot be described by square-
integrable wave functions. The wave function, describing
these states, should include components dynamically describ-
ing conversion into stable nucleon-meson-antimeson con-
figurations. Nevertheless employing complex-scaling (CS)
method, the divergent resonant states are transformed into
square-integrable functions [23,24]. By the mean of the com-
plex scaling operator U (θ ), the three-body wave function and
Hamiltonian are transformed into

�θ (x, y) = U (θ )�(x, y) = e3iθ�(xeiθ , yeiθ ), (20)

H θ = U (θ )HU −1(θ ), (21)

satisfying

H θ�θ = E θ�θ . (22)

Furthermore, as the production of nucleon-meson-antimeson
components generates an important amount of kinetic energy,

after CS transformation even with relatively small angles
these components decrease fast.

3. Numerical resolution

For both models, the Faddeev-Merkuriev equations are
solved numerically for states defined by a total angular
momentum J and parity π by expanding each FMC in a
partial-wave expansion:

�θ
i (xi, yi ) =

∑
n

φ(θ,i)
n (xi, yi )

xiyi
Yn(x̂i, ŷi ), (23)

where the index n includes the orbital momenta and spins
(lx, ly, L, sx, S), φ(θ,i)

n is a radial function to be computed,
and Yn(x̂i, ŷi ) is a bipolar spherical harmonics including the
coupling of orbital momenta and spins. When optical poten-
tials are considered, θ = 0 is chosen. Once projected onto
an amplitude Yn, the radial Faddeev-Merkuriev equations are
obtained as∑

n′
Dnn′φ

(θ,i)
n′ (xi, yi ) =

∑
n′n′′

Vnn′ (xie
iθ , yie

iθ )

×
∫ 1

−1
hn′n′′ (xi, yi, u)φ(θ, j)

n′′ (x j, y j )du,

(24)

where hn′n′′ is some integral kernel and Dnn′ is the differential
operator defined as

Dnn′ = E θ δnn′ + e−2iθ

[
h̄2

m0

∂2

∂x2
i

+ h̄2

m0

∂2

∂y2
i

− h̄2

m0

lxn (lxn + 1)

x2
i

− h̄2

m0

lyn

(
lyn + 1

)
y2

i

]
δnn′ − Vnn′

(
xie

iθ , yie
iθ
)
. (25)

The radial functions are expressed on a two-dimensional
regularized Lagrange-Laguerre mesh with

φ(θ,i)
n (xi, yi ) =

kx∑
α=1

ky∑
β=1

c(θ,i)
nαβ f̂α

(
xi

hx

)
f̂β

(
yi

hy

)
, (26)

with f̂i(r) a Lagrange-Laguerre function regularized by
√

r
[25]. The use of such basis makes particularly simple the com-
putation of the radial matrix elements with a Gauss-Laguerre
quadrature. The scaling parameters hx and hy are chosen to
adjust the grid size to the considered system. The mesh points
distribution for the x coordinate is mainly governed by the
deuteron wave function. The motion in y should account for
both nuclear and long-range interactions between the antipro-
ton and deuteron, which requires a larger spatial extension.
When projecting Faddeev-Merkuriev equations onto the basis
of Eq. (26), the differential equations are converted into a sys-
tem of linear equations. Its resolution provides the coefficients
required to evaluate the complex-scaled wave function �θ

which is used in this work to compute the annihilation den-
sities. The wave function � can be extracted by considering
the direct back-rotation:

�(x, y) = e−3iθ�θ (xe−iθ , ye−iθ ), (27)
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but it turns out to be a mathematically ill-defined prob-
lem [26]. If applied directly this causes severe numerical
instabilities, due to introduction of high-frequency noise in
back-rotated wave functions. In practice this approach pro-
vides numerically stable results only for the wave function
region around the origin and only when small values of θ

are involved. A stabilization method has been proposed in
Ref. [27] and is based on the Tikhonov regularization of the
rotated wave function Fourier transform. It is shown that the
radial wave function of Faddeev amplitude n reads

φ(θ,i)
n (xe−iθ , ye−iθ ) =

∫ ∞

0

∫ ∞

0
F (u′, u, θ, κx )F (v′, v, θ, κy )

× φ(θ,i)
n (x0e−u′

, y0e−v′
)du′dv′, (28)

where u = −ln(x/x0), v = −ln(y/y0), x0, and y0 are length
parameters selected here at x0 = y0 = 1 fm, and κx and κy are
smoothing parameters for each coordinate. The function F is
defined as

F (u′, u, θ, κ ) = 2F1
(
1, i(u−u′ )

2θ
+ 1

2 ; i(u−u′ )
2θ

+ 3
2 ; − 1

κ

)
κ (iu − iu′ + θ )

+ 2F1
(
1, 1

2 − i(u−u′ )
2θ

; 3
2 − i(u−u′ )

2θ
; −κ

)
−iu + iu′ + θ

, (29)

where 2F1 is a hypergeometric function.
In our calculations, the following constants have been

used: h̄c = 197.32698 MeV fm, the fine-structure constant
α = 1/137.0360, and h̄2/mN = 41.4711 MeV fm2 where mN

is the nucleon mass. The partial-wave expansion of each Fad-
deev component includes all amplitudes with lx + ly � 8.

III. RESULTS

The purpose of this paper is to investigate the model de-
pendence in the description of the d p̄ three-body states by
comparing the results obtained with the KW and CC mod-
els, which involve very different annihilation dynamics. Even
though the d p̄ orbital momentum is not a good quantum
number since it is not conserved by the nuclear interaction,
it remains relevant for describing d p̄ atomic states, which ex-
tend far beyond the range of nuclear forces. In the following,
the partial waves under study are therefore denoted with the
spectroscopic notation Lπ

J , where L is the orbital momentum
between the deuteron and the antiproton.

A. Scattering lengths

By imposing the appropriate asymptotic behavior for the
�np,p̄ component, the zero-energy d p̄ collision has first been
studied. Within the CC approach, the scattering lengths and
wave functions have been computed by using the complex-
scaling method with θ values of a few degrees. The results
are given in Table II and compared with those obtained with
the KW model. Two NN interactions have been considered
for the calculations: the central Malfliet-Tjon potential [28]
and the realistic Argonne V18 potential [29], allowing us to
investigate the importance of the deuteron SD coupling in the
three-body problem. When compared with the KW model, the
convergence and the stability for the CC model with respect

TABLE II. d p̄ scattering lengths computed with different NN +
NN̄ interactions.

Lπ
J MT + KW [16] MT + CC AV18 + KW [16] AV18 + CC

a0 (fm) a0 (fm) a0 (fm) a0 (fm)

S+
1/2 1.341 − 0.717i 1.32 − 0.71i 1.335 − 0.716i 1.32 − 0.68i

S+
3/2 1.394 − 0.724i 1.40 − 0.73i 1.385 − 0.721i 1.39 − 0.74i

a1 (fm3) a1 (fm3) a1 (fm3) a1 (fm3)

P−
5/2 0.714 − 2.64i 0.6 − 2.7i 0.699 − 2.61i 0.6 − 2.6i

to the grid parameters is slightly worse, requiring a larger
number of radial functions (kx ≈ 40–50, ky ≈ 50–70). The
scaling parameters hx and hy have been chosen between 0.2
fm and 0.3 fm. The accuracy is given within three digits, with
an uncertainty of few units for the last one.

Results in Table II prove to be rather independent on
the NN interaction model in use. It is the case, at least,
for asymptotically spin-uncoupled partial waves. As stated
in Ref. [16], energy shifts of asymptotically coupled spin-
angular-momentum states might depend more strongly on
deuteron properties and in particular on its quadrupole mo-
ment.

Despite their very different implementation of the NN̄ an-
nihilation, the KW and the CC models provide close values for
both the real and the imaginary part of scattering lengths, with
relative differences of few percent. This difference is compat-
ible with discrepancy reproducing low-energy NN̄ data. The
smallest differences appear for the S waves. This agreement
could indicate the small impact of the off-energy shell effects
on three-body dynamics at low energies and probably smaller
importance of three-body forces, relative to one observed in
three-nucleon (which account for ≈10% effect in calculated
binding energies). This also hints on potential predictivity of
NN̄ interaction models in describing more complex systems.

B. Level shifts and Trueman relation

Due to the NN̄ annihilation, the energy En of d p̄ states
includes a negative imaginary part reflecting the finite lifetime
of the antiprotonic states:

En = ER − i
�

2
. (30)

The shift introduced by the nuclear forces with respect to the
energy of the Rydberg states is defined as

�En = En − E (C)
n = �ER − i

�

2
, (31)

and can be calculated by computing the eigenvalues of a
complex Hamiltonian. Its complex nature arises either from
the potential for optical models or from the complex scaling
within the coupled-channel approach. In both cases, the grid
extension has to be adjusted to the size of the hydrogenic
states but should also capture the effects of short-range nu-
clear forces. These requirements are fulfilled by considering
a standard Lagrange-Laguerre mesh with a large number of
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TABLE III. d p̄ energy shifts obtained from the direct calculation (�En) and from the Trueman relation (�E (T )) for different NN + NN̄
interactions.

Lπ
J MT + KW [16] MT + CC

�En (keV) �E (T )
n (keV) �En (keV) �E (T )

n (keV)

S+
1/2 (n = 1) 1.922 − 0.887i 1.925 − 0.890i 1.91 − 0.86i 1.90 − 0.88i

S+
3/2 (n = 1) 2.000 − 0.891i 1.991 − 0.880i 1.99 − 0.89i 1.99 − 0.90i

�En (meV) �E (T )
n (meV) �En (meV) �E (T )

n (meV)

P−
5/2 (n = 2) 51.8 − 213i 55.4 − 205i 46.5 − 209i

AV18 + KW [16] AV18 + CC

�En (keV) �E (T )
n (keV) �En (keV) �E (T )

n (keV)

S+
1/2 (n = 1) 1.913 − 0.886i 1.917 − 0.890i 1.87 − 0.86i 1.88 − 0.85i

S+
3/2 (n = 1) 1.987 − 0.889i 1.979 − 0.888i 1.84 − 0.95i 1.98 − 0.91i

�En (meV) �E (T )
n (meV) �En (meV) �E (T )

n (meV)

P−
5/2 (n = 2) 61.2 − 207i 54.2 − 202i 46.5 − 201i

points or more efficiently with a combination of Lagrange-
Legendre and Lagrange-Laguerre meshes as in Ref. [16].

The complex level shifts can also be approximately com-
puted from the scattering length al by employing the Trueman
relation [17]. Initially formulated for S and P waves, the
generalized Trueman formula takes the form of the following
expansion:

�En

εn
= −4

n

al

B2l+1
αn,l

(
1 − al

B2l+1
βn,l

)
, (32)

where B is the d p̄ Bohr radius, and αn,l and βn,l are some
numerical coefficients defined in Ref. [30]. It has been already
shown in Ref. [30] that the Trueman relation is very accurate
for atomic states of protonium and is consistent with the
direct calculation of the Hamiltonian eigenvalues for d p̄ states
described with the KW model [16].

Table III contains the complex energy shifts for the same
models and partial waves as Table II. The column �En rep-
resents the value obtained from the direct d p̄ resonant state
calculations while �E (T ) is the energy shift obtained from
the Trueman relation and the scattering lengths listed in Ta-
ble II. For all models, the use of the Trueman relation is
consistent with the direct calculations, especially for S waves.
Concerning the P wave, a fair agreement is also observed
with the KW potential. However, the value �En could not be
computed when applying the complex-scaling method: since
the P-wave energy shift is six orders of magnitude smaller
than for the S-wave ones, the small energy dependence in θ

introduced by the complex scaling turns out to be of the same
order of magnitude as the energy shift induced by the strong
interactions. The value obtained from the Trueman relation
is however quite close to the one of the KW model, which
confirms the observed model independence. Calculation of the
scattering length is an easier task than the resonant state one,
due to considerably smaller grid sizes required to accomplish
these calculations. Indeed, they are determined by the size
of the deuteron and the range of the nuclear potential, which
are much smaller than extensions of the Rydberg states. This
indirect approaches appears as a promising alternative for the
description of the Rydberg energy shifts in heavier nuclei.

Nevertheless, we should point out that it is yet limited to spin-
uncoupled partial waves in the asymptote such as S+

1/2, S+
3/2,

and P−
5/2 ones. Since the deuteron is not spherically symmet-

ric, the asymptotic deuteron-antiproton interaction includes,
in addition to the Coulomb potential in 1/r, other multipole
terms starting with the quadrupole one in 1/r3. Due to these
additional contributions, several partial waves such as P−

1/2

or P−
3/2 are asymptotically coupled for which the modified

Coulomb effective range expansion and the Trueman relation
are not valid anymore.

C. Annihilation densities

From the three-body wave function, the resonance width
� can be obtained by computing the expectation value of the
Hamiltonian:

� = −2Im[〈�d p̄|H |�d p̄〉], (33)

where �d p̄ = �np,p̄ + �pp̄,n + �p̄n,p. Equation (33) can be
expressed as a unidimensional integral:

� =
∫ ∞

0
γa(y)dy, (34)

where γa is the annihilation density defined by

γa(y) = −2Im

{∫
�∗

d p̄(x, y)[E − H0]�d p̄(x, y)dxdŷ

}
(35)

and is usually interpreted as the annihilation probability
with respect to the distance y between the antiproton and
the deuteron center of mass. A similar definition exists for
two-body systems [20]. The PUMA project is based on the
intuitive idea that the annihilation is more likely to happen in
the periphery of the nucleus. The consistency of this hypothe-
sis can be verified by comparing the d p̄ annihilation densities
to the nuclear density of deuteron. The annihilation densities
are here computed on the basis of the zero-energy scattering
wave functions, which are expected to be very similar to the
hydrogenic ones in the region governed by the nuclear inter-
action. The deuteron nuclear density is scaled appropriately
for the comparison.
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FIG. 1. S- and P-wave pp̄ annihilation density computed with the KW (red dashed line) and CC (blue full line) models

The NN̄ annihilation densities have already been exten-
sively studied with traditional optical potentials [31–33].
Expectedly, in these works, significant differences were
observed among the considered models. Indeed, several
Hamiltonian corresponding with nearly identical observables
quantities, may lead to dramatically different annihilation
densities inside the interaction region. Given the very different
background of optical and coupled-channel models, similar
conclusions are therefore expected. The pp̄ annihilation den-
sities computed with the KW and CC models illustrate well
the difference in terms of annihilation dynamics, as it can be
observed in Fig. 1. While the 1S0 KW annihilation density
includes a broad peak centered at r ≈ 0.8 fm and is always
positive, the CC one includes a narrower peak centered at
r ≈ 0.42 fm and is negative in some regions. With the op-
tical model, flux is only suppressed from the pp̄ channel
to model the annihilation (W < 0), resulting in a positive
function. With the coupled-channel model, the situation is
more complex and the exchange of flux between the pp̄ and

mm̄ channels may locally introduce negative parts to the an-
nihilation density. Moreover, while the KW model strongly
suppresses the wave function close to the origin, it is not
the case within the coupled-channel approach where high-
energy channels are involved, resulting in a more complex
structure at short distances. Concerning P waves, the annihi-
lation densities computed with the CC models present a peak
which is narrower and slightly shifted closer to the origin in
comparison to those computed with the KW model. The d p̄
annihilation densities computed with the MT + KW and MT
+ CC models are shown in Fig. 2 for S (left panel) and P
waves (right panel). While the two-body annihilation densities
are very different, the curves of Fig. 2 are much more look-
alike, which highlights the fact that antiprotons are not very
likely to penetrate well inside the nucleus. For the S wave,
the peak of the CC density is slightly shifted relative to the
KW result. With both models, the S-wave annihilation density
decreases faster than the deuteron density, which means that
the antiproton is still able to penetrate into the nucleus before
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FIG. 2. S+
1/2 (left) and P−

5/2 (right) d p̄ annihilation densities computed with the MT + KW (red dash-doted line) and MT + CC models
(blue full line). These curves are compared with the appropriately scaled deuteron density (black dashed line).

being annihilated. The P-wave annihilation densities are more
similar. Moreover, the asymptotes of the curves scale closely
to the deuteron density, with a similar exponential decay pat-
tern. The sensitivity to the tail of nuclear density indicates a
peripheral annihilation, which tends to confirm PUMA’s main
hypothesis.

IV. CONCLUSION

We have considered an alternative approach to optical
models, based on the addition of effective meson channels
for describing the NN̄ annihilation. The parameters of the
coupled-channel models have been adjusted to fit the low-
energy S matrix obtained with the KW model for pp̄, nn̄, and
np̄ systems. The antiproton-deuteron states have then been
computed by solving the Faddeev-Merkuriev equations with
both optical and coupled-channel models to test the model
dependence relative to the NN̄ input. The influence of the NN
interaction has also been discussed.

Despite their very different dynamics, the d p̄ scattering
lengths and resonance energies computed with the CC and
KW models are fairly similar. The use of the coupled-channel
potential is however more tedious due to the additional
Faddeev components and the three-body breakup in meson
channels, and involves a slower convergence in comparison
to its optical counterpart. The calculation of the complex
energy shifts with the Trueman relation provides consistent
results relative to the bound-state calculations, while requir-
ing less numerical effort. This indirect approach is therefore

promising for heavier nuclei. A generalization of this method
to spin-coupled partial waves is however yet to be developed.

In PUMA’s experiments, the annihilation is assumed to
happen far from the nucleus center. To test the consistency
of this hypothesis, we computed the d p̄ annihilation densities
and compared them with the deuteron nuclear density. For S
wave, the CC and KW curves are sightly shifted with respect
to each other and decrease faster than the nuclear density. A
significant fraction of the annihilation is nevertheless expected
to happen far from the deuteron center. The sensitivity to
the nuclear density tail is more visible for P waves where
the annihilation densities are more similar and follow more
closely the asymptote of the deuteron density, which indicates
the dominance of the peripheral absorption of the antiprotons.
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TABLE IV. Parameters of the pp̄ coupled-channel potential ad-
justed to fit the low-energy S-matrix obtained with the Kohno-Weise
potential.

2S+1LJ rc (fm) λ1 λ2

1S0 0.995 12.043 4.417
3P0 1.368 8.764 −0.5860
1P1 1.083 8.705 0.039
3P1 1.173 13.568 4.902
3S1 2.182 2.237 −4.926
3D1 0.956 11.280 −9.500
3SD1 0.789
1D2 1.201 22.475 −0.145
3D2 1.310 11.355 −11.355
3P2 1.163 8.679 −0.1485
3F2 1.796 −3.567 0.0325
3PF 2 1.346
1F3 0.350 11.395 −8.955
3F3 1.972 1.039 −0.4280
3D3 1.512 8.3445 14.576
3G3 1.290 −3.012 −0.187
3DG3 1.336
1G4 0.300 31.00 0.0
3G4 2.155 4.685 −0.170
3F4 0.930 0.386 4.156
3H4 0.616 −4.877 2.371
3FH 4 0.877

made by GENCI (Grand Equipement National de Calcul In-
tensif).

APPENDIX: COUPLED-CHANNEL POTENTIAL
PARAMETERS

The parameters of the coupled-channel potential adjusted
to fit the low-energy S matrix computed with the KW model

TABLE V. Parameters of the np̄ coupled-channel potential ad-
justed to fit the low-energy S-matrix obtained with the Kohno-Weise
potential.

2S+1LJ rc (fm) λ3

1S0 0.910 2.063
3P0 0.854 7.619
1P1 1.134 8.710
3P1 1.178 8.698
3S1 0.967 7.545
3D1 0.459 9.257
3SD1 1.479
1D2 1.396 22.926
3D2 0.467 6.287
3P2 1.396 8.748
3F2 0.629 7.538
3PF 2 0.699
1F3 3.170 0.810
3F3 0.523 21.43
3D3 1.172 22.64
3G3 0.694 3.811
3DG3 1.814
1G4 3.170 7.042
3G4 0.319 23.35
3F4 0.710 1.129
3H4 0.432 4.240
3FH 4 0.677

are collected in Tables IV and V for pp̄ and np̄ systems. The
first column represents the cutoff radius for the NN̄ potential
close to the origin while the others represent the dimension-
less amplitudes of the Yukawa potentials coupling the meson
channels to the NN̄ ones.
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