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Relativistic mean-field model for the ultracompact low-mass neutron star HESS J1731-347
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The recent observation of the object HESS J1731-347 suggests the existence of a very light and very compact
neutron star, which is a challenge for commonly used equations of state for dense matter. In this work we present
a relativistic mean-field model enriched with isovector and isoscalar meson crossing terms. These interactions
dominate the behavior of the symmetry energy and account for the small radius. The proposed model fulfills
the recent constraints concerning the symmetry energy slope and the state-of-the-art compact star constraints
derived from the NICER measurements of the pulsars PSR J0030 + 0451 and PSR J0740 + 6620, as well as
from the GW170817 event and its associated electromagnetic counterparts AT2017gfo/GRB170817A.
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I. INTRODUCTION

The recent observation of a neutron star labeled as HESS
J1731-347 [1] that has been identified as a very com-
pact and light object challenges most of the state-of-the-art
theoretical descriptions. To fulfill constraints from other ob-
servations, namely gravitational waves from GW170807 [2]
and radio/x-ray detection of pulsars among others [3,4], re-
alistic equations of state (EoSs) for compact stars tend to
be stiff at higher densities (predicting more massive objects),
whereas at lower densities they should be relatively soft. The
characteristic feature of such EoSs is that the mass-radius
relation has a Z-like shape with low-mass stars more compact
than their high-mass counterparts. In this work we present a
nuclear model capable of fulfilling all the recent observational
constraints, including the inferred mass and radius values of
HESS J1731-347.

HESS J1731-347 has been determined to be a very
low-mass, small, compact star, associated with a supernova
remnant. This is not the first time an object with such char-
acteristics has been reported. However, in most other cases,
corrections due to observations of radiating hot spots instead
of the entire surface of the star had to be applied, resulting in
larger stellar objects. One of the most important properties of
compact stars featuring such surface spots is the signal pulsa-
tion. It is indeed the detections of x-ray pulsations produced
by radiating spots that have allowed the NICER detector to
derive estimates of the masses and radii of PSR J0030 +
0451 and PSR J0740 + 6620. The case of HESS J1731-347
has been reported as an exceptional central compact ob-
ject (CCO), which is isolated, radio-quiet, and nonaccreting
but thermally radiating. No pulsations were detected in its
thermal emission, and its atmospheric composition has been
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determined to be mostly carbon. Moreover, the distance to
this source, a very important quantity for electromagnetic flux
determination, has been robustly derived from Gaia observa-
tions [5]. It would be honest to mention that despite many
arguments supporting the low mass and compact size of the
object, its unusual parameters are still a matter of debate, like
for example in [6].

The very small stellar radius for light neutron stars con-
siderably reduces the available parameter space for nuclear
EoSs and highlights the potential of the HESS J1731-347
observation. The nuclear symmetry energy, whose stiffness
is usually characterized by its slope-related parameter L, has
a considerable impact on the compact star radius. The gen-
eral trend is that larger L values result in larger stellar radii
[7]. Here, we show that a small L around 40 MeV, being in
agreement with the properties of nuclear matter, can make a
compact size for HESS J1731-347.

In the next section, we introduce the pure hadronic rel-
ativistic mean-field (RMF) model with scalar-scalar and
scalar-vector meson interactions and provide details of its
properties. In the Results section, the important features of
compact stars are discussed and compared to the recent obser-
vational data.

II. THE MODEL

In the RMF model, the interactions of nucleons are medi-
ated by four types of mesons: σ , ω, ρ, and δ. The proposed
Lagrangian L includes Lkin, the standard kinetic part for
mesons and nucleons; LNφ , Yukawa-type couplings of nu-
cleons to mesons; U (σ ), the self-interaction term for σ ; and
Lcross, meson-meson interactions (crossing terms) between δ

and σ and between δ and ω (further details are presented in
[8]):

L = Lkin + LNφ − U (σ ) + Lcross, φ = σ, ω, ρ, δ. (1)

2469-9985/2023/108(4)/045803(5) 045803-1 ©2023 American Physical Society

https://orcid.org/0000-0001-8774-8270
https://orcid.org/0000-0002-1188-1419
https://orcid.org/0000-0003-1874-8116
https://orcid.org/0000-0001-6835-3687
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.108.045803&domain=pdf&date_stamp=2023-10-30
https://doi.org/10.1103/PhysRevC.108.045803


KUBIS, WÓJCIK, CASTILLO, AND ZABARI PHYSICAL REVIEW C 108, 045803 (2023)

The most crucial ingredient is the crossing term

Lcross = 1
2 gσδ σ 2�δ2 + 1

2 gωδ ωμωμ�δ2, (2)

which represents quadratic coupling of two scalar mesons,
σ and δ, and vector ω mesons to scalar δ mesons. In this
paper, we extend the model presented in [8] to ω-δ cou-
pling. It is interesting that the model does not include other
meson-meson interaction terms, except the very common self-
interaction term for the σ meson, but leads to results in
complete agreement with the present set of relevant astrophys-
ical observations. For future reference, we name the model
Cracow crossing terms (CCT). The total Lagrangian L leads
to the following equations of motion:

m2
σ σ̄ = gσ

(
ns

p + ns
n

) − U ′(σ̄ ) + gσδσ̄ (δ̄(3) )2, (3)

m2
ωω̄0 = gωn − gωδω̄0(δ̄(3) )2, (4)

m2
ρρ̄

(3)
0 = 1

2 gρ (2x − 1)n, (5)

m2
δ δ̄

(3) = gδ

(
ns

p − ns
n

) + gσδσ̄
2δ̄(3) + gωδω̄

2
0 δ̄

(3). (6)

The meson names with the bars represent the mean field
values (for isovector mesons �ρ, �δ only their third component
is nonvanishing), n and x are baryon number density and
proton fraction x = np/n, respectively, the scalar densities ns

i
for proton and neutron i = p, n are given by the integrals
ns

i = 2
(2π )3

∫ kF,i

0
mi√

k2+m2
i

d3k, where kF,i are the nucleon Fermi

momenta. The nucleon effective masses mi, appearing in the
integrals do not need to be equal as the nonvanishing δ̄(3)

introduces the effective mass splitting [9]:

mp = m − gσ σ̄ − gδ δ̄
(3), (7)

mn = m − gσ σ̄ + gδ δ̄
(3). (8)

The effective masses can be used to replace the meson mean
field of nucleons. Then, after including Eqs. (3)–(8), the en-
ergy density for nucleonic matter may be expressed in terms
of only the densities and the effective nucleon masses:

εnuc =
∑
i=p,n

1

4
(3EF,ini + min

s
i ) + 1

2C2
σ

(m − m̄)2

+ C2
ω

2

n2

1 + C2
ω	ωδ (
m/2)2

+ C2
ρ

8
(2x − 1)2n2

+ 
m2

8C2
δ

+ 1

8
	σδ (m − m̄)2
m2 + U (m − m̄), (9)

where the first term in Eq. (9) represents the energy of the nu-

cleonic Fermi sea, i.e., the integrals 2
(2π )3

∫ kF,i

0

√
k2 + m2

i d3k.

The integrals can be expressed by already defined scalar den-
sities ns

i and Fermi energy EF,i =
√

k2
i + m2

i .
The expression for the energy density shows that it is con-

venient to replace the coupling appearing in the Lagrangian
by the following parameters:

C2
σ = g2

σ

m2
σ

, C2
ω = g2

ω

m2
ω

, C2
ρ = g2

ρ

m2
ρ

, C2
δ = g2

δ

m2
δ

,

and 	σδ = gσδ

g2
σ g2

δ

, 	ωδ = gωδ

g2
ωg2

δ

. (10)

Together with the two constants b and c appearing in the
σ self-interaction potential, U (σ ) = 1

3 bm(gσ σ )3 + 1
4 c(gσ σ )4,

our model possesses eight free parameters: four in the
isoscalar sector, C2

σ ,C2
ω, b, c, and four in the isovector sector,

C2
ρ,C2

δ ,	σδ,	ωδ . These constants cannot be uniquely fitted to
the saturation point properties and hence we have some free-
dom to control the properties of the EoS. One free parameter
from the isoscalar sector, C2

σ , is used to control the stiffness of
the EoS and a second from the isovector sector, C2

δ , controls
the symmetry energy behavior.

The isoscalar constants are fitted to the three features: the
binding energy per nucleon E0 = −16.0 MeV of symmet-
ric matter at n0 = 0.16 fm−3 and its compressibility K0 =
230 MeV. The fourth one, C2

σ , being a free parameter, takes
a value between 12 and 14 fm2 and ensures that the stiffness
of the EoS is sufficient to produce a stellar mass in agreement
with observational limits. According to recent observations,
the maximum neutron star mass must be above 2.1M�, and
the adopted values of C2

σ allow for such stellar masses.
At the isovector sector, the four constants have to be de-

termined, but only the two saturation point properties are
available: the symmetry energy Esym(n0) and its slope L(n0) =
3n0

dEsym

dn . In the work [8], the σ -δ meson crossing term was
introduced and it was shown that it leads to the desired soft
symmetry energy. The effects of this term on the neutron star
properties were further analyzed in [10]. The model with a
σ -δ meson crossing term was also extended to the other meson
crossing term, as was done in [11]. However, the effect of 	σδ

on the Esym softening occurs only in the vicinity of the n0 as
the σ meson mean field contributes less to the total energy
when the density increases. At higher densities, the vector
meson fields are those that contribute more to the total energy.
That was our motivation to additionally couple the scalar
meson δ to the vector meson ω and test whether such coupling
is in agreement with dense matter properties and astrophysical
observations. Then the expression for the symmetry energy is

Esym(n) = 1

8
C2

ρn + k2
0

3EF,0
− C2

δ

m2
0n

2E2
F,0

(
1 − 3C2

δ

(
n

EF,0
− ns

m0

) − C2
δ 	σδ (m − m0)2 − C2

ω	ωδn2
) , (11)

where EF,0, m0, and ns = ns
p + ns

n are the Fermi energy, ef-
fective nucleon mass, and scalar density in symmetric matter.

By the presence of the two constants 	σδ and 	ωδ in the de-
nominator, one may reduce the slope of the symmetry energy
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for a wider range of densities. It would be natural to explore
different values of the ω-δ coupling. However, it appears that
the model is very sensitive to the value of 	ωδ . This was
already observed in the case of the σ -δ term [8]—tiny changes
in the coupling of σ -δ introduced pathologically large changes
in the symmetry energy behavior or even lack of solution
for equations of motion Eqs. (3)–(6). So, our strategy is to
keep the coupling for crossing terms fixed: 	σδ = 0.032,1

	ωδ = 0.02 and the remaining isovector constants C2
ρ,C2

δ are
used to obtain the required values of Esym(n0) and L.

The symmetry energy value at saturation point Esym(n0)
oscillates between 30 and 32 MeV according to recent anal-
ysis [7]. There is a correlation between Esym(n0) and L—the
higher Esym(n0) the higher value of L [7]. As shown in the next
section, the lower values of L are preferable, so we adopt the
lower Esym(n0) = 30 MeV.

The discrepancies concerning the symmetry energy slope
L are much greater. Different nuclear experiments give values
spread across a wide range. Those based on the spectral pion
ratio suggested 47 < L < 117 MeV [13]. The most promis-
ing experiments based on the measurement of neutron skin,
which is correlated with the slope value, give different results.
Analysis from PREX-2 (208Pb nucleus) [14,15] suggested
L = 106 ± 37 MeV. Including the correlation with parity-
violating asymmetry for 208Pb gives L = 54 ± 8 MeV [16].
Experiments with a lighter nucleus, 48Ca, give even smaller
values for L. The authors of [17] presented a combined
analysis of 208Pb and 48Ca and, in the framework of DFT
functionals, were not able to reconcile this discrepancy. They
suggested that L is in the range from 15 to 83 MeV. In the
work [18], the authors point out that the different results for
L come from the fact that different experiments probe the
symmetry energy at different densities. Recently, Lattimer [7]
extensively discussed the sources of observed discrepancies
in the slope measurement and suggested that the most likely
value is between 40 and 50 MeV. In view of the above diffi-
culties, we suggest adopting values of L from the range from
40 to 80 MeV.

To sum up, we set up a two-parameter family of nuclear
models, described by the C2

σ coupling and the value of the
slope L. The values of all relevant coupling constants are given
in Table I.

III. RESULTS

The introduced RMF model was used to derive the proper-
ties of a spherically symmetric configuration of a neutron star.
The β equilibrium applied to dense matter with leptons allows
finding the equation of state in the core region, whereas for
the crust we applied the Sly4 model [19,20]. For the model
with the lowest L = 40 MeV, the phase transition occurs
and the Maxwell construction was used to describe the phase
coexistence. The mass-radius diagram for compact stars is
shown in Fig. 1, where the upper panel shows the curves for

1The value of 	σδ = 0.032 corresponds to the gσδ = −0.004,
which was used in [8], in this work we are using a more common
convention for names and signs of coupling constants like in [11,12].

TABLE I. Coupling constants for nine CCT models numbered by
the values of C2

σ and L.

C2
σ C2

ω b c L C2
ρ C2

δ

fm2 fm2 - - MeV fm2 fm2

40 15.2938 2.63799
12 6.9769 0.004733 −0.0052878 60 13.1107 2.24899

80 9.93091 1.61518
40 13.9852 2.33674

13 7.9531 0.003695 −0.0045224 60 12.1548 2.02896
80 9.60636 1.54906
40 12.9888 2.11461

14 8.9055 0.003005 −0.0039370 60 11.4361 1.86945
80 9.36054 1.50265

the full parameter space, characterized by the coupling con-
stant Cσ and the L parameter, which are depicted by various
line styles and colors, respectively. The lower panel includes
the three chosen curves with L = 40 MeV and different C2

σ

values, and also stellar sequences from other EoSs. Additional
EoSs in the lower panel include APR [21], DD2, DD2F [22],
BSK20 [23], FSUGarnet, IUFSU, and BigApple [24]. The
latter three are similar RMF models to the one we have in-
troduced in this work. In the lower panel, the present compact
star measurements and constraints derived from astrophysical
observations are shown. Compact star measurements include
the observation of the object labelled as HESS J1731-347
that suggests a very compact object of low mass. The blue
elliptical regions correspond to NICER measurements of the
objects PSR 7040 + 6620 [3] and PSR J0030 + 0451 [4]. The
violet dots with associated error bars correspond to the derived
radius value from an updated analysis of these objects [3],
whereas the orange dot with error bars at 1.4 M� is the result
of a Bayesian analysis performed while taking into consid-
eration several compact star measurements [25]. The green
and gray regions correspond to the two estimated masses
of the components of the binary system that merged and
produced gravitational waves in the event GW170817. The
upper dashed lines mark a lower-bound interval for the lower
component of the event GW190814 under the assumption
that it was a rapidly spinning neutron star [26]. Red regions
correspond to estimated excluded regions from the analysis of
the GW170817 event [27,28].

Figures 2 and 3 show tidal deformability values 	 for com-
pact star sequences. They are derived following the approach
introduced in [29]; see [30] for a discussion on the implica-
tions for the compact star EoS. Figure 2 shows the dependence
of the deformability 	 on the stellar mass M, which obeys the
relation 2

3 k2
R5

M5 , where k2 is the stellar Love number. The mea-
surement point with associated error bar in the vicinity of the
1.4 M� star is the stellar value estimated from the gravitational
wave signal of the neutron star merger GW170817, under the
assumption that the neutron stars were slowly spinning [31]. A
second estimate from an analysis of the GW190814 event that
includes the information from GW170817 [32] is also shown.
Figure 3 displays tidal deformability relations for the two stars
participating in GW170817. The green regions correspond to
the 90% and 50% confidence levels derived from the Bayesian
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FIG. 1. Mass-radius diagrams of compact stars. The upper panel
presents the results for the CCT RMF models introduced in this
work, with the Z-like curves obtained for the lowest values of L. The
lower panel presents the models with the lowest L = 40 MeV and
three C2

σ values. The curves from other EoS approaches are included.
Observational constraints are shown as colored regions and points
with error bars; see the text for details.

analysis performed by the LIGO-Virgo collaboration [31].
The general tendency is that more compact stars (which have a
lower symmetry energy slope L) agree with this measurement
better than larger ones.

IV. CONCLUSIONS AND OUTLOOK

The detection of the compact star associated with the
HESS J1731-347 observation has provided a candidate for an

FIG. 2. The tidal deformability as function of neutron star mass.
Points with error bars correspond to the star with mass 1.4 M� for
the two merger events.

ultracompact object of low mass. This measurement repre-
sents both a challenge and a strong constraint on EoSs for
compact stars. It has already been shown in the reporting
article [1] that a set of EoSs derived from chiral pertur-
bation theory as well as strange star models [33] are able
to describe such an ultracompact star while simultaneously
fulfilling state-of-the-art compact star constraints from other
observations.

The article [1] induced hot discussion about dense matter
models being able to explain the very compact object. Recent
works derived from RMF with density-dependent couplings
and tensor forces are barely compatible with HESS J1731-
347 [34]. The strange star models proposed in [33,35] and
stars with hyperon content [36] are better in describing this
measurement. The RMF models with standard couplings seem
to be not able to explain lightweight compact star unless

FIG. 3. Tidal deformabilities for two binary components derived
from GW170817. RMF models with lower L better fit to the indi-
cated confidence levels.
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equipped with exotic component like in [37] where the quark
matter core was introduced.

In contrast, in this work we have introduced a purely
hadronic RMF with crossing terms among isovector and
isoscalar mesons that is able to describe HESS J1731-347
while also reproducing laboratory data such as the saturation
properties of nuclear matter. We have found that low values of
the symmetry energy slope L, around 40 MeV, for each of the
chosen values of the coupling C2

σ are best able to reproduce the
compact object in HESS J1731-347. The C2

σ coupling mainly
controls the stiffness of the EoS for more massive stars and the
highest value C2

σ = 14 fm2 seems to be the most preferable
in view of the lower bound for maximum mass from precise
Shapiro delay measurements for PSR J0740 + 6620.

The higher stiffness of the EoS and the higher C2
σ are

also supported by the GW events. As can be seen from the
measurement shown as a violet dot with associated error bar

for the 1.4 M� star in Fig. 1, the coupling Cσ = 14 fm2 (red
line) is the best value to fulfill this constraint. Furthermore,
from the 	 vs. M relation shown in Fig. 2, we can see that the
same Cσ value would best fulfill the shared region of 	 for
events GW170817 and GW190814, provided the lower mass
component in GW190814 is indeed a compact star.

Other properties, such as the cooling features (analyzed
in [38]) and rotational configurations of compact stars under
the CCT RMF approach presented in this work, are left for a
follow-up study.
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