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Gapless superfluidity in neutron stars: Normal-fluid fraction
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Our previous investigation within the time-dependent nuclear energy-density functional theory showed that
the nuclear superfluids contained inside cold neutron stars could become gapless under certain circumstances.
The absence of a gap in the energy spectrum of quasiparticle excitations leads to a specific heat that is comparable
to that in the normal phase in sharp contrast with the exponential suppression in the BCS phase of type
1S0 pairing. Here, we further study gapless superfluidity within the same microscopic framework focusing
on hydrodynamic properties. In particular, we calculate the mass fraction transported by the normal fluid of
quasiparticle excitations, and we find that it can be finite even at zero temperature. We derive an approximate
analytical formula for arbitrary neutron-proton superfluid mixtures. We also present numerical results for neutron
stars. Our study suggests that the dynamics of neutron stars may be much more complicated than previously
thought. The realization of gapless superfluidity in neutron stars and its implications are discussed.
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I. INTRODUCTION

Superfluid helium exhibits hydrodynamical phenomena,
such as the fountain effect [1], not seen in ordinary fluids.
These phenomena are the manifestations of the interpenetra-
tion of two distinct dynamical components: a normal viscous
fluid with mass density ρN and a superfluid with mass density
ρS = ρ − ρN, where ρ is the mass density of helium. Both
components transport mass but with different velocities. Un-
like the normal fluid, the superfluid carries no entropy and
flows without resistance. This two-fluid picture was originally
proposed by Tisza [2] based on the concept of Bose-Einstein
condensation put forward by London [3,4]; the normal com-
ponent was then identified with noncondensed atoms. This
model was later reformulated by Landau in terms of quasi-
particle excitations in quantum fluids [5] (see also Ref. [6]).
Since no excitation is present in the ground state, the normal
fluid only exists at finite temperature T . The mass fraction
ρN/ρ increases with T as more and more quasiparticles are
excited, and reaches unity at the critical temperature for which
superfluidity is destroyed.

Soon after Bardeen-Cooper-Schrieffer (BCS) demon-
strated in the context of superconductivity that fermions could
also condense by forming pairs [7], it was realized that the
interior of neutron stars, the compact remnants of gravitational
core-collapse supernova explosions, could be superfluid [8,9].
This prediction found strong support from the first pulsar
observations [10]. Similarly to superfluid helium, cold neutron
stars are generally described as a two-fluid mixture consisting
of a neutron superfluid and a proton superconductor; the con-
glomerate of rigidly coupled charged particles (nuclei in the
crust plus leptons in the core) are essentially co-moving with
the latter (see, e.g., Ref. [11] for a recent review). Relative
flows between these two fluids arising from the acceleration
or deceleration of charged particles due to accretion from
a stellar companion or electromagnetic braking, can be sus-

tained by the pinning of neutron quantized vortices. Global
readjustments in the rotational motions of the two fluids in-
duced by the unpinning of vortices are expected to be at
the origin of the largest observed pulsar frequency glitches
(see, e.g., Refs. [12,13] for recent reviews). The multifluid
dynamics in superfluid neutron stars can leave its imprint on
various other astrophysical phenomena, such as oscillations
and gravitational-wave emission [14].

Despite the absence of viscous drag, the two fluids are
still weakly coupled by nondissipative mutual entrainment
effects caused by nuclear interactions [15], of the same kind
as the ones discussed earlier by Andreev and Bashkin [16]
in the context of superfluid 4He - 3He mixtures. The mag-
netization of neutron vortices induced by the circulation of
entrained protons could also give rise to some effective fric-
tion between the two fluids [17]. The entrainment couplings
are therefore key microscopic parameters for hydrodynamical
simulations of superfluid neutron stars, and can be expressed
in terms of generalized superfluid densities. In a series of
papers [18–20], we have explicitly calculated these densities
in the outer core of a neutron star (where nucleons form
1S0 type of Cooper pairs) for arbitrary temperatures and
currents within the time-dependent nuclear energy-density
functional theory (see, e.g., Ref. [21]) by solving exactly
the self-consistent time-dependent Hartree-Fock-Bogoliubov
(TDHFB) equations. These densities were previously cal-
culated within the Fermi liquid theory (see Ref. [22] and
references therein). Results were also obtained using relativis-
tic mean-field models, though not for arbitrary currents and
temperatures (see Ref. [23] and references therein). Discus-
sions about earlier calculations can be found in Refs. [18,19].

More recently, we have shown that the nuclear energy-
density functional theory (therefore also the Fermi liquid
theory since it can be derived as an approximation in the limit
of small temperatures and small velocities compared to their
Fermi counterparts; see Section 2.5 of Ref. [20]) leads to the
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existence of a nucleon superfluid state in which the energy
spectrum of quasiparticle excitations becomes gapless under
certain circumstances [24]. In our previous paper, we focused
on the associated thermal properties. Here, we investigate
more closely the hydrodynamic properties of neutron-proton
superfluid mixtures in this gapless regime. In particular, we
calculate in Sec. II the mass density associated with the nor-
mal fluid of quasiparticle excitations for cold homogeneous
neutron-proton superfluid mixtures. Applications to neutron
stars are presented and discussed in Sec. III. The realization of
gapless superfluidity in neutron stars is discussed in Sec. IV.

II. DYNAMICS OF COLD HOMOGENEOUS
NEUTRON-PROTON SUPERFLUID MIXTURES

Throughout this paper we consider 1S0 superfluidity only,
as predicted to occur in the inner crust and in the outer core
of neutron stars. Neutrons may form 3PF 2 pairs at higher
densities with critical temperatures Tcn of order 0.1 MeV or
less (see, e.g., Ref. [25] for a review), however, the existence
of such a superfluid phase in neutron stars remains uncertain
[26]. It has been recently found that neutrons could pair in the
3P0 channel instead [27,28].

A. Quasiparticle excitations and gapless superfluid phase

Within the nuclear energy-density functional theory based
on Skyrme effective interactions [29] and extended versions
allowing for terms that are both momentum- and density-
dependent [30], the energy of a quasiparticle excitation with
momentum h̄kkk (h̄ is the Planck-Dirac constant) in an homoge-
neous neutron-proton superfluid mixture with stationary flows
in the normal fluid rest frame at temperature T is given by [19]
(q = n, p for neutrons and protons, respectively)

E(q)
kkk = h̄kkk · VqVqVq +

√
ε

(q)2
kkk + �2

q (1)

with

ε
(q)
kkk = h̄2k2

2m⊕
q

− μq, (2)

and we have introduced the effective “superfluid velocity”

VqVqVq ≡ mq

m⊕
q

VqVqVq + IqIqIq

h̄
, (3)

where VqVqVq is the usual superfluid velocity. Here, mq denotes the
relevant nucleon mass, μq is the reduced chemical potential,
m⊕

q is the effective mass, IqIqIq the vector mean-field potential.
The quantity �q is related to the complex order parameter of
the superfluid phase given by

�q(rrr) = �q

vπq
exp

(
2imqVqVqVq · rrr

h̄

)
. (4)

It is obtained from the self-consistent equation

�q(T,VqVqVq) = − 1

2V
vπq
∑

kkk

�q(T,VqVqVq)√
ε

(q)2
kkk + �q(T,VqVqVq)2

× tanh

(
β

2
E(q)

kkk

)
, (5)

where V is the normalization volume, β = (kBT )−1 (kB being
the Boltzmann constant), and vπq < 0 denotes the pairing
strength. It is understood that the summation must be regular-
ized to remove ultraviolet divergences (see, e.g., Refs. [21,31]
for discussions). Equation (5) must be solved together with
the particle number conservation

nq = 1

V

∑
kkk

⎡
⎢⎣1 − ε

(q)
kkk√

ε
(q)2
kkk + �2

q

tanh

(
β

2
E(q)

kkk

)⎤⎥⎦ (6)

with nq being the nucleon number density. See Ref. [19] for
more details.

In the absence of superflow (Vq = 0), �q characterizes
the gap in the quasiparticle energy spectrum. However, we
have recently shown that this is no longer the case for finite
Vq at zero temperature: the quasiparticle energy gap shrinks
with increasing Vq and vanishes at Landau’s velocity VLq

[see Eq. (47) below] while �q remains unchanged. For higher
effective superfluid velocities, �q decreases and drops to zero
at some critical velocity V (0)

cq beyond which superfluidity dis-
appears. In the gapless regime VLq < Vq < V (0)

cq , a normal
fluid made of quasiparticle excitations therefore coexists with
the superfluids even though T = 0 [24]. According to the third
law of thermodynamics, the normal fluid at T = 0 cannot
carry any entropy. This can also be seen from the well-known
expression for the entropy density at arbitrary temperature T ,
obtained within the HFB approach (see, e.g., Ref. [32])

sq = −2kB

V

∑
kkk

[
f (q)
kkk log f (q)

kkk + (1 − f (q)
kkk

)
log
(
1 − f (q)

kkk

)]
,

(7)

where f (q)
kkk denotes the quasiparticle distribution function at

temperature T , given by

f (q)
kkk = [1 + exp

(
βE(q)

kkk

)]−1 = 1

2

[
1 − tanh

(
β

2
E(q)

kkk

)]
. (8)

In the limit T → 0, f (q)
kkk vanishes if Vq < VLq since

E(q)
kkk > 0 for all wave vectors kkk. For effective superfluid ve-

locities VLq < Vq < V (0)
cq , there exist quasiparticle states such

that E(q)
kkk < 0 implying f (q)

kkk = 1. In the gapless regime, f (q)
kkk is

therefore equal to either 0 or 1. It follows from Eq. (7) that
sq = 0 still holds, as expected.

B. Normal-fluid fraction at zero temperature

Although the normal fluid at T = 0 does not carry entropy,
it does carry mass and momentum. Let us recall that at any
temperature the mass current ρqρqρq of one nucleon species is gen-
erally expressible as a combination of the superfluid velocities
VqVqVq of both species and of the normal-fluid velocity vNvNvN, as [33]

ρnρnρn = ρ (N)
n vNvNvN + ρnnVnVnVn + ρnpVpVpVp, (9)

ρpρpρp = ρ (N)
p vNvNvN + ρpnVnVnVn + ρppVpVpVp, (10)
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where the (symmetric) entrainment matrix ρqq′ (q, q′ = n, p)
characterizes the strength of the entrainment coupling and
is the generalization of the concept of superfluid density to
mixtures. The normal nucleon densities (i.e., the mass density
carried by the excitations of nucleon species q) are related to
the entrainment matrix through the following relations [33]:

ρ (N)
n = ρn − ρnn − ρnp, (11)

ρ (N)
p = ρp − ρpp − ρpn, (12)

ρq = mqnq denoting the mass density of nucleon of charge
type q. Therefore the total mass density carried by the normal
fluid is given by

ρN = ρ (N)
n + ρ (N)

p = ρ − ρnn − ρpp − 2ρnp, (13)

and we have introduced the total mass density ρ = ρp + ρn.
It can be immediately seen that at T = 0 the normal fluid
does not exist (ρ (N)

q = 0) if Vq < VLq since in this case the
following identities hold (see, e.g. Ref. [18]):

ρnn + ρnp = ρn, (14)

ρpp + ρpn = ρp. (15)

It is only in the gapless phase VLq < Vq < V (0)
cq that we have

ρ (N)
q �= 0 at T = 0.

As discussed in Refs. [19,20], the superfluid velocities VqVqVq

are actually not true velocities but characterize momenta per
nucleon. It thus follows from Galilean invariance that the
normal fluid carries a momentum density defined by

�N�N�N ≡ ρnρnρn + ρpρpρp − ρnVnVnVn − ρpVpVpVp. (16)

Using Eqs. (9), (10), and (13), this momentum density is
given by

�N�N�N = ρNvNvNvN − ρ (N)
n VnVnVn − ρ (N)

p VpVpVp. (17)

The exact expressions of the entrainment matrix for arbitrary
temperatures and effective superfluid velocities within the
TDHFB theory have been obtained in Refs. [18,19] and read

ρqq′ = ρq(1 − Yq)

(
mq

m⊕
q

δqq′ + Iqq′

h̄

)
(18)

with

Inn = 2

h̄
ρn(1 − Yn)


[
Cτ

1

(
8

h̄2 Cτ
0 m⊕

p npYp − 1

)
− Cτ

0

]
,

(19)

Ipp = 2

h̄
ρp(1 − Yp)


[
Cτ

1

(
8

h̄2 Cτ
0 m⊕

n nnYn − 1

)
− Cτ

0

]
,

(20)

Inp = 2

h̄
ρp(1 − Yp)


(
Cτ

1 − Cτ
0

)
, (21)

Ipn = 2

h̄
ρn(1 − Yn)


(
Cτ

1 − Cτ
0

)
, (22)


 ≡
[

1 − 2

h̄2

(
Cτ

0 + Cτ
1

)(
m⊕

n nnYn + m⊕
p npYp

)

+
(

4

h̄2

)2

Cτ
0 Cτ

1 m⊕
n nnm⊕

p npYnYp

]−1

. (23)

Here, Cτ
0 and Cτ

1 are coupling coefficients associated with
isoscalar and isovector dynamical terms in the nuclear energy-
density functional (see Appendix B of Ref. [18]). They are
related to the effective masses through the following equation:

mq

m⊕
q

= 1 + 2ρ

h̄2

(
Cτ

0 − Cτ
1

)+ 4ρq

h̄2 Cτ
1 . (24)

The function Yq, defined by

Yq(T,VqVqVq) ≡ h̄

m⊕
q nqV 2

q

1

V

∑
kkk

kkk · VqVqVq tanh

(
β

2
E(q)

kkk

)
, (25)

has a simple physical interpretation in cases for which the
effective masses coincide with the bare masses:1 it can then
be identified with the normal-fluid fraction associated with
quasiparticle excitations of the nucleon species q. Indeed,
setting m⊕

n = mn and m⊕
p = mp, the normal-fluid densities,

which can be obtained from the definitions (11), (12), and (13)
using Eqs. (18)–(23), reduce to

ρ (N)
n = ρnYn, ρ (N)

p = ρpYp, (26)

ρN = ρnYn + ρpYp. (27)

In general, however, the normal-fluid densities take a much
more complicated form and the physical interpretation of the
function Yq is less straightforward.

In the limit of pure neutron matter, the normal-fluid frac-
tion is expressible as

ρ (N)
n

ρn
= m⊕

n

mn

Yn

1 +
(

m⊕
n

mn
− 1
)
Yn

. (28)

This expression is valid for arbitrary temperature and neutron
effective superfluid velocity. In the absence of current, this
expression reduces to that obtained by Leggett [34] within
his extension of Landau’s theory to what he called “super-
fluid Fermi liquids” in the weak-coupling approximation (see
Appendix).

For arbitrary composition, the normal-fluid densities can
be expressed in terms of ρn, ρp, m⊕

n , m⊕
p , Yn, and Yp. Their

variations with respect to the effective superfluid velocity VqVqVq

and the temperature T are therefore entirely contained in the
functions Yq(T,VqVqVq). An explicit expression of this function at
T = 0 in the gapless superfluid phase is derived in the next
subsection.

1According to Eq. (24), m⊕
n = mn and m⊕

p = mp for nuclear energy-
density functionals such that Cτ

0 = 0 = Cτ
1 .
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C. Analytic expression of the function Yq in the gapless
superfluid phase

We take the continuum limit of Eq. (25), i.e., we replace
discrete summations over wave vectors by integrations as
follows:

1

V

∑
kkk

· · · →
∫

d3kkk

(2π )3
· · · =

∫
d�kkk

4π

∫
dεDq(ε) · · · (29)

with �kkk the solid angle in kkk-space, Dq(ε) the density of single-
particle states per spin given by

Dq(ε) ≡
∫

d3kkk

(2π )3
δ(ε − ε

(q)
kkk ) = m⊕

q

2π2h̄3

√
2m⊕

q (ε + μq),

(30)

and we have made use of Eq. (2). Introducing the dimension-
less ratios

T̄q = T

TFq
, μ̄q = μq

εFq
, �̄q = �q

εFq
, V̄q = Vq

VFq
(31)

with the Fermi energy εFq = h̄2k2
Fq/(2m⊕

q ), the Fermi
temperature TFq = εFq/kB, and the Fermi velocity
VFq = h̄kFq/m⊕

q (recalling that the
Fermi wave-number is given by
kFq = (3π2nq)1/3), changing variables and integrating over
solid angles (in kkk-space) yield [20]

Yq(T, Vq) =3

8

T̄q

V̄ 2
q

∫ +∞

0
dx

√
x log
{[

1 + e−(E(q)
x −2V̄q

√
x)/T̄q
]

× [1 + e−(E(q)
x +2V̄q

√
x)/T̄q
]}

+ 3

16

T̄ 2
q

V̄ 3
q

∫ +∞

0
dx
{

Li2
[− e−(E(q)

x −2V̄q
√

x)/T̄q
]

− Li2
[− e−(E(q)

x +2V̄q
√

x)/T̄q
]}

. (32)

Here, Li2 denotes the dilogarithm and

E(q)
x ≡

√
(x − μ̄q)2 + �̄2

q. (33)

If the superfluid velocity is small enough such that
E(q)

x > 2V̄q
√

x for all x, i.e., if Vq < VLq as shown in our
previous paper, Yq = 0 at T = 0 independently of Vq:

Yq(T = 0, Vq < VLq) = 0. (34)

If Vq > VLq we have seen that E(q)
x < 2V̄q

√
x for

x− < x < x+ with

x± = μ̄q + 2V̄ 2
q ± 2

√
μ̄qV̄ 2

q + V̄ 4
q − 1

4
�̄2

q. (35)

Taking the limit T → 0 and using the expansion

Li2(u) ≈ −1

2

[
log(−u)2 + π2

3

]
(36)

in the limit u → −∞, Eq. (32) can be integrated analytically2

leading to

Yq(T = 0, Vq > VLq) = 3

16V̄q
(x2

+ − x2
−)− 1

32V̄ 3
q

[
(x+ − μ̄q)3

− (x− − μ̄q)3
]− 3�̄2

q

32V̄ 3
q

(x+ − x−).

(37)

Substituting Eq. (35) and after some simplifications, we fi-
nally obtain

Yq(T = 0, VLq � Vq � V (0)
cq ) =

(
μ̄q + V̄ 2

q − 1

4

�̄2
q

V̄ 2
q

)3/2

.

(38)

D. Order parameter and chemical potential

In Eq. (38), μ̄q and �̄q depend on Vq, as well as on the
nucleon densities nn and np. They are determined by the
solutions of Eqs. (5) and (6), which in the continuum limit
become, respectively [20],

1 = − 1

2

(
kFqm⊕

q

2π2h̄2

)
vπq T̄q

2V̄q

∫ μ̄q+ε̄

0

dx

E(q)
x

× log

[
cosh

(
E(q)

x

2T̄q
+ V̄q

T̄q

√
x

)
sech

(
E(q)

x

2T̄q
− V̄q

T̄q

√
x

)]
,

(39)

4

3
=
∫ +∞

0
dx

{
√

x − T̄q

V̄q

x − μ̄q

2E(q)
x

× log

[
cosh

(
E(q)

x

2T̄q
+ V̄q

T̄q

√
x

)
sech

(
E(q)

x

2T̄q
− V̄q

T̄q

√
x

)]}
.

(40)

At low temperatures T̄q 
 1, the logarithm in the integrals can
admit two asymptotic limits depending on the x values. For
E(q)

x < 2V̄q
√

x (equivalent to x− < x < x+),

log

[
cosh

(
E(q)

x

2T̄q
+ V̄q

T̄q

√
x

)
sech

(
E(q)

x

2T̄q
− V̄q

T̄q

√
x

)]
≈ E(q)

x

T̄q
.

(41)

The other case E(q)
x > 2V̄q

√
x, corresponding to x values be-

low x− or above x+, leads to

log

[
cosh

(
E(q)

x

2T̄q
+ V̄q

T̄q

√
x

)
sech

(
E(q)

x

2T̄q
− V̄q

T̄q

√
x

)]

≈ 2
V̄q

T̄q
E(q)

x . (42)

2Note that the contribution to the integrals in the right-hand side
of Eq. (32) from x values outside the [x−; x+] interval vanishes
identically.
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Using these asymptotic forms and taking the limit T̄q → 0,
Eq. (39) reduces to

1 = − 1

2

(
kFqm⊕

q

2π2h̄2

)
vπq

[ ∫ x−

0
dx

√
x

E(q)
x

+
∫ +∞

x+
dx

√
x

E(q)
x

− 1

2V̄q
(x+ − x−)

]
, (43)

while Eq. (40) becomes

4

3
=
∫ x−

0
dx

√
x

(
1 − x − μ̄q

E(q)
x

)
+
∫ +∞

x+
dx

√
x

(
1−x − μ̄q

E(q)
x

)

+ 2

3
(x3/2

+ − x3/2
− ) + 1

2V̄q

[
x+
(
μ̄q − x+

2

)

− x−
(
μ̄q − x−

2

)]
. (44)

Let us recall that x+ and x− depend on �̄q and μ̄q, and
are given by Eq. (35). Solving Eqs. (43) and (44) yields
�q(T = 0, Vq � VLq) and μq(T = 0, Vq � VLq).

Note that for Vq � VLq, we have E(q)
x � 2V̄q

√
x for all x.

In such case, the logarithm can be approximated by Eq. (42)
so that Eqs. (39) and (40) do not depend on Vq. It follows that

�q(T = 0, Vq � VLq) = �q(T = 0, Vq = 0) ≡ �(0)
q (45)

and

μq(T = 0, Vq � VLq) = μq(T = 0, Vq = 0) ≡ μ(0)
q , (46)

as shown in Sec. III B. in our previous article [24].

E. Effective superfluid velocities delimiting the gapless phase

Landau’s effective superfluid velocity is explicitly given
by [24]

VLq = VFq

√√√√√ μ̄
(0)
q

2

[√√√√1 +
(

�̄
(0)
q

μ̄
(0)
q

)2

− 1

]
. (47)

Let us recall that μ̄(0)
q ≡ μ̄q(T = 0, Vq � VLq) and

�̄(0)
q ≡ �̄q(T = 0, Vq � VLq) are independent of Vq for

Vq � VLq, and can be calculated here in the absence of
superflows.

The critical velocity V (0)
cq is determined by the solution of

the following equation:

Iq

[
μq(T = 0, Vq=0); �q(T =0, Vq=0)

]
= 2
√

1 + V̄ (0)2
cq

− 2
√

xc− + 2 arctanh
√

xc− + 2(
√

1 + ε̄ −√xc+)

+ 2(arcoth
√

xc+ − arcoth
√

1 + ε̄), (48)

where

Iq[μq(T, Vq); �q(T, Vq)] =
∫ μ̄q+ε̄

0
dx

√
x

(x − μ̄q)2 + �̄2
q

(49)

and ε̄ is the energy cutoff in units of the Fermi energy that
must be introduced to regularize Eq. (6). Equation (48) must
be solved together with Eq. (44), where �̄q = 0, μ̄q = μ̄cq,
and x± = xc

± are evaluated at V (0)
cq :

xc
± = μ̄cq + 2V̄ (0)

cq

(
V̄ (0)

cq ±
√

μ̄cq + V̄ (0)2
cq

)
. (50)

Equation (44) thus becomes

1 = 1

2

(
xc 2/3
+ + xc 2/3

−
)+ 3

8V̄ (0)
cq

[
xc
+

(
μ̄cq − xc

+
2

)

− xc
−

(
μ̄cq − xc

−
2

)]
. (51)

F. Weak-coupling approximation

Let us emphasize that no approximation has been made so
far. In the weak-coupling regime μ̄q ≈ 1 and V̄q 
 1, Eq. (38)
can be expressed as

Yq
(
T = 0, VLq � Vq � V (0)

cq

) ≈
⎡
⎣1 −

(
�q

�
(0)
q

VLq

Vq

)2
⎤
⎦

3/2

.

(52)

The Landau’s velocity (47) and the critical velocity (48) re-
duce to the familiar expressions

VLq ≈ �(0)
q

h̄kFq
(53)

and

V (0)
cq ≈ e

2
VLq ≈ 1.35914VLq, (54)

respectively. Here, e ≈ 2.71828 is Euler’s number.
Equation (52) is the generalization to superfluid mixtures

of the expression derived by Vollhardt and Maki [35] in the
context of superfluid 3He (the function Yq was denoted by φ

and was given by their Eq. (18’); their s and � parameters
correspond to h̄kFqVq and �q, respectively). As shown in
Ref. [20], the ratio �q/�

(0)
q (at T = 0) is a universal function

of Vq/VLq or equivalently of Vq/V (0)
cq in this weak-coupling

approximation, and it is well fitted by the following formula:

�q

�
(0)
q

= 0.5081

√
1 − Vq

V (0)
cq

(
3.312

Vq

V (0)
cq

− 3.811

√
V (0)

cq

Vq
+ 5.842

)
. (55)

It follows from Eqs. (52) and (55) that Yq is also a universal
function of Vq/V (0)

cq at T = 0, independently of the nucleon
species under consideration, the matter composition, and the
adopted nuclear energy-density functional. This function is
displayed in Fig. 1.
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FIG. 1. Function Yq as a function of the effective superfluid ve-
locity Vq (in units of Landau’s velocity VLq) in the gapless superfluid
phase of nucleon species q at zero temperature. This function is equal
to unity at the critical velocity V (0)

cq .

G. Mass transport and effective superfluid velocity

We have recently shown that the mass current (9) can be
written, in the normal-fluid frame (vN = 0), as [19,20]

ρqρqρq ≡ ρqvqvqvq = ρq(1 − Yq)VqVqVq. (56)

From this expression, we can deduce the “true”velocity vqvqvq

(i.e., the velocity with which nucleons are transported) as a
nonlinear function of the effective superfluid velocity:

vqvqvq = (1 − Yq)VqVqVq. (57)

In the weak-coupling approximation, it can be easily seen
from Eq. (52) that at zero temperature vq/VLq is a univer-
sal function of Vq/V (0)

cq . For Vq < VLq, we have previously
shown that Yq = 0 so that vqvqvq coincides with VqVqVq. In the gapless
superfluid phase characterized by VLq � Vq < V (0)

cq , it can be
shown using Eqs. (52) and (55) that 1 − Yq decreases with
increasing Vq and so does vq until the effective superfluid ve-
locity reaches the critical value V (0)

cq . At this point and beyond,
superfluidity is destroyed, Yq = 1 and vq = 0: all nucleons are
co-moving with the normal fluid. The variations of vq with Vq

are plotted in Fig. 2.
The maximum value v(Max)

q of the velocity vq (in the nor-
mal frame) is reached for some effective superfluid velocity
V (Max)

q , which is the solution of the following equation:

∂vq

∂Vq

∣∣∣∣
Vq=V (Max)

q

= 1 − Yq − Vq
∂Yq

∂Vq

∣∣∣∣
Vq=V (Max)

q

= 0. (58)

Solving this equation numerically using Eqs. (52) and (55),
yields v(Max)

q � 1.0111VLq for V (Max)
q � 1.0283VLq. In the

limiting case of a single constituent, our results coincide with

FIG. 2. True nucleon velocity vq (associated with transport of
nucleon species q) as a function of the effective superfluid velocity
Vq. Both velocities are expressed in units of Landau’s velocity VLq.
The red star indicates the maximum value v(Max)

q of vq. The shaded
area represents the gapless superfluid phase.

those obtained in the BCS theory of electron superconductiv-
ity [36] and those derived for 3He superfluidity [35].

III. APPLICATIONS TO NEUTRON STARS

For numerical applications to neutron stars, we have
adopted the Brussels-Montreal functional BSk24 [37], which
was constructed from extended Skyrme effective interactions
with additional terms that are both density and momentum
dependent together with a microscopically deduced pairing
interaction. The parameters were precision-fitted to essen-
tially all experimental data on nuclear masses and charge radii
while ensuring realistic properties of homogeneous nuclear
matter such as the incompressibility, the symmetry energy,
effective masses, and, more importantly for the present study,
1S0 pairing gaps. Unified and thermodynamically consistent
equations of state spanning all regions of a neutron star
(including the mantle of nuclear pastas) have been already
calculated for this functional [38–41] allowing for the pres-
ence of strong magnetic fields [42]. The predictions for the
global structure of neutron stars and their tidal deformability
are in excellent agreement with astrophysical observations
[43] (higher order gravitoelectric and gravitomagnetic tidal
deformability parameters have been also computed for this
functional in Ref. [44]).

A. Normal-fluid densities in the outer core: Approximate
formulas

In the outer core of a neutron star consisting of npeμ
matter in full equilibrium, the normal-fluid fractions ρ (N)

q /ρq

can deviate from the functions Yq. However, approximate
expressions can be derived remarking that the proton fraction
Yp = ρp/ρ does not exceed 10% in the region where nucleons
are superfluid. Expanding in a power series of Yp, we find
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to first order

ρ (N)
n

ρn
≈ m⊕

n

mn

Yn

1 +
(

m⊕
n

mn
− 1
)
Yn

+ Yp

(
m⊕

p

mp
− 1
)

(Yn − 1)
[m⊕

p

mp
Yp(Yn − 1) + m⊕

n
mn

Yn(1 − Yp)
]

m⊕
p

mp

[
1 + (m⊕

n
mn

− 1
)Yn
]2 , (59)

ρ (N)
p

ρp
≈

m⊕
p

mp
(1 − Yn)Yp + m⊕

n
mn

Yn

(
m⊕

p

mp
+ Yp − 1

)
m⊕

p

mp
+
(

m⊕
n

mn
− 1
)

m⊕
p

mp
Yn

− Yp

{(
m⊕

n
mn

)2(
1 − 2

m⊕
p

mp

)
Yn +

(
m⊕

p

mp

)2[
1 − Yn + m⊕

n
mn

(2Yn − 1)
]}

m⊕
n

mn

(
m⊕

p

mp

)2[
1 +
(

m⊕
n

mn
− 1
)
Yn

]2 (Yp − 1)

[
m⊕

p

mp
(Yn − 1)Yp + m⊕

n

mn
Yn(1 − Yp)

]
, (60)

ρN

ρ
≈ Yn

1 −
(

mn
m⊕

n
− 1
)

(Yn − 1)
+ Yp

⎧⎨
⎩
(

m⊕
n

mn
− m⊕

p

mp

)
(Yn − 1)Yn

[
m⊕

p

mp
(1 − Yn) + m⊕

n

mn
Yn

]

−
(

m⊕
p

mp
(1 − Yn) + m⊕

n

mn
Yn

)2

(Yn − Yp)

⎫⎬
⎭
{

m⊕
p

mp

[
1 +
(

m⊕
n

mn
− 1

)
Yn

]2
}−1

. (61)

In the canonical model of superfluid neutron stars [11], protons are co-moving with leptons and quasiparticle excitations;
therefore vp = 0 in the normal-fluid frame. It immediately follows from Eq. (57) that Vp = 0 and Yp = 0. The normal-fluid
fractions (59) and (60) can be further simplified as follows:

ρ (N)
n

ρn
≈ m⊕

n

mn

Yn

1 +
(

m⊕
n

mn
− 1
)
Yn

+ Yp

(
m⊕

p

mp
− 1
)

(Yn − 1) m⊕
n

mn
Yn

m⊕
p

mp

[
1 +
(

m⊕
n

mn
− 1
)
Yn

]2 , (62)

ρ (N)
p

ρp
≈

m⊕
n

mn
Yn

(
m⊕

p

mp
− 1
)

m⊕
p

mp

[
1 +
(

m⊕
n

mn
− 1
)
Yn

] + Yp

Yn

{(
m⊕

n
mn

)2(
1 − 2

m⊕
p

mp

)
Yn +

(
m⊕

p

mp

)2[
1 − Yn + m⊕

n
mn

(2Yn − 1)
]}

(
m⊕

p

mp

)2[
1 +
(

m⊕
n

mn
− 1
)
Yn

]2 . (63)

B. Normal-fluid densities in the outer core: Numerical results

We have computed the normal-fluid fractions using
Eqs. (11)–(13) and Eqs. (18)–(23) together with Eq. (38),
where �̄q and μ̄q are obtained from the numerical solutions
of Eqs. (43) and (44). Landau’s velocities VLq are calculated
using Eq. (47) and the critical velocities V (0)

cq are determined
by solving Eqs. (48)–(51). These velocities are plotted in
Fig. 3.

The normal-fluid fraction ρ (N)
n /ρn associated with

neutrons in the gapless phase is shown in Fig. 4 for baryon
densities ranging from the crust-core transition density
ncc � 0.081 fm−3 ≈ n0/2 (n0 � 0.1578 fm−3 is the saturation
density of symmetric nuclear matter) up to the point where
neutron superfluidity is destroyed at density n ≈ 1.3n0.
As expected from the approximate formula (62), ρ (N)

n /ρn is
weakly dependent on the density, and is mainly determined by
Yn. The normal-fluid fraction, which vanishes for Vn � VLn,
increases monotonically with the neutron effective superfluid
velocity as more and more quasiparticles are being excited
until the maximum is reached at the critical velocity V (0)

cn .
As shown in Fig. 5, the normal-fluid fraction ρ (N)

p /ρp as-
sociated with protons is found to be negative. This result may
seem surprising at first sight, but one has to remember that the

normal and superfluid densities are current-current response
functions (see, e.g., Ref. [45]), and therefore are not the
densities of anything, as stressed by Feynman [46] in the con-
text of superfluid helium. Landau himself emphasized in his
seminal paper about the two-fluid model [5] that “there is no
division of the real particles of the liquid into ‘superfluid’ and
‘normal’ ones”. The negative values of ρ (N)

p can be understood
from the approximate formula (63), recalling that Yp 
 1 and
noticing that m⊕

p < mp.
The total mass density ρN carried by the quasiparticle

excitations and defined by Eq. (13) is plotted in Fig. 6.
Note that for neutron superfluid velocities Vn > V (0)

cn , the
total normal-fluid fraction remains lower than one and de-
creases with increasing density. Although neutrons are in the
normal phase (ρ (N)

n = ρn), protons remain superfluid since
Vp = 0. Setting Yn = 1 in Eq. (63), the total normal-fluid frac-
tion ρN/ρ = (1 − Yp)ρ (N)

n /ρn + Ypρ
(N)
p /ρp is approximately

given by

ρN

ρ
≈ 1 − Yp

mp

m⊕
p

. (64)

For comparison, we have estimated the normal-fluid densi-
ties using the expansions (62) and (63) together with the
approximate universal formulas for Yq and �q/�

(0)
q given
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FIG. 3. Landau’s and critical effective superfluid velocities for
neutrons and protons (in units of cm s−1) as a function of the baryon
number density n (in units of the saturation density n0) for npeμ
matter in full equilibrium in the outer core of a cold neutron star.

by Eqs. (52) and (55), respectively. We have evaluated the
dimensionless ratio Vn/VLn using the exact expression (47)
for Landau’s velocity rather than the approximate formula
for a more direct comparison. However, we have found that
the approximate formula (53) for neutrons deviates from the
exact result by ≈0.06% at the crust-core transition and the
error decreases with increasing density. Let us recall that
Eq. (55) tacitly assumes that the critical velocity is given by
Eq. (54). The errors on V (0)

cn amount to ≈0.1% at most. The
ratio V (0)

cn /VLn is given by e/2 within ≈0.088%. As shown in
Figs. 7 and 8, the deviations δρ (N)

q /ρq between the exact and
the approximate results do not exceed 5 × 10−3 for neutrons
and 10−2 for protons.

FIG. 4. Normal-fluid fraction associated with neutron quasipar-
ticles as a function of the neutron effective superfluid velocity Vn (in
units of Landau’s velocity VLn) for npeμ matter in full equilibrium
in the outer core of a cold neutron star for different baryon number
densities n and for effective proton superfluid velocity Vp = 0.

FIG. 5. Same as Fig. 4 but for protons.

FIG. 6. Same as Fig. 4 but for the total normal-fluid fraction.

FIG. 7. Deviations between the normal-fluid fraction for
neutrons plotted in Fig. 4 and the approximate formula (62) com-
bined with Eqs. (52) and (55), as a function of the neutron effective
superfluid velocity Vn (in units of Landau’s velocity VLn).
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FIG. 8. Same as Fig. 7 for protons.

IV. CONCLUSIONS

With the possibility of gapless nuclear superfluidity, the
hydrodynamics of cold neutron stars may be much more
complicated than previously thought. In particular, a normal
fluid consisting of quasiparticle excitations could be present
inside the star even at zero temperature if the effective su-
perfluid velocity Vq exceeds Landau’s velocity VLq while
lying below the critical velocity V (0)

cq . To show this, we have
calculated explicitly the normal-fluid densities ρ (N)

n and ρ (N)
p

for arbitrary neutron-proton superfluid mixtures within the
time-dependent nuclear energy-density functional theory. We
have thus confirmed that these densities become nonzero in
the gapless phase and their dependencies on Vq are entirely
contained in the functions Yq, for which we have obtained an
exact analytical expression, namely Eq. (38), in terms of the
reduced chemical potential μ̄q and the pairing parameter �̄q.
In the weak-coupling approximation, Yq becomes a universal
function of the dimensionless ratio Vq/VLq, independently of
the composition, the total mass density ρ, and the adopted
nuclear energy-density functional. Whereas in the subcritical
regime VqVqVq coincides with the “true” velocity vqvqvq with which
nucleons are actually transported, these two kinds of velocities
differ in the gapless phase. These velocities are also different
from the superfluid velocity VqVqVq, which is fundamentally the
momentum per unit mass carried by the superfluid, as dis-
cussed in Section 2.4 of Ref. [20].

For applications to neutron stars, we have derived approx-
imate analytical expressions of the normal-fluid fractions to
first order in the proton fraction Yp = ρp/ρ. We have also
evaluated ρ (N)

n /ρn, ρ (N)
p /ρp, and ρN/ρ numerically by solving

the full TDHFB equations (including the equations for μ̄q

and �̄q) using the functional BSk24 [37] for which the com-
position of a neutron star has been already calculated in all
regions [38].

Together with the unified equation of state and the su-
perfluid properties published in Refs. [20,38] and available
in the CompOSE database [47], the results presented here
provide the microscopic inputs for modeling the dynamics
of cold neutron stars. Our study suggests that the neutron

superfluid reservoir in the outer core may be substantially
reduced in the gapless phase, thus challenging even further
the interpretation of pulsar glitches [48,49]. The question that
arises is whether the neutron and proton superfluids can reach
the gapless phase. Already in 1998, Sedrakian and Cordes [50]
considered the possibility that neutron superfluid velocities
induced by the rotational evolution of pulsars could exceed
Landau’s velocity (53). But they implicitly assumed that su-
perfluidity would be destroyed. In the two-fluid picture of
superfluid neutron stars, protons and leptons are co-moving
with the normal fluid of quasiparticle excitations so that the
proton effective superfluid velocity Vp = 0 in the normal-fluid
rest frame. Therefore, protons are not expected to be in the
gapless phase. The normal fluid slows down due to electro-
magnetic braking but can also accelerate due to accretion from
a stellar companion in a binary system. On the other hand, the
evolution of the neutron superfluid is dictated by the dynamics
of neutron quantized vortices. In a fixed external frame in
which the star is rotating with the velocity vNvNvN, the neutron
superfluid velocity V ′

nV ′
nV ′
n = VnVnVn + vNvNvN remains unchanged for as

long as neutron vortices are pinned. Indeed, the quantization
of the neutron superflow imposes∮

C
V ′

nV ′
nV ′
n · d�d�d� = N

h

2mn
(65)

along any contour C enclosing N vortices. In the normal-fluid
frame, Vn, which is roughly equal to Vn (see Section 3.6 of
Ref. [20]), therefore increases with time. The lag between the
neutron superfluid and the rest of the star induces a Magnus
force acting on the vortices. The maximum neutron superfluid
velocity is therefore limited by the critical lag Vcr for which
the Magnus force equals the pinning force.

The pinning force remains very uncertain and even its
nature (attractive or repulsive) is a matter of debate. Estimates
differ by several orders of magnitude. In their seminal paper,
Anderson and Itoh [51] estimated the force per unit length
as fp ≈ 1020 p dyn/cm, where p ≈ 0.01–0.1 is the pinning
probability. Two years later, Alpar [52] refined this estimate
by taking into account realistic pairing gaps and crust pro-
files and found that the force varies depending on the layer
and is of order 1018 dyn/cm. The pinning force depends on
the quantum structure of a vortex as well as the interactions
between the constituent neutrons and the dense medium. The
first quantum calculations were carried out by Avogadro and
collaborators [53], who determined the energy gain due to the
pinning of a vortex segment on a cluster in a Wigner-Seitz cell
(see Ref. [54] for more recent calculations). However, calcu-
lations of energy differences can be very delicate and sensitive
to boundary conditions. The results obtained with this ap-
proach were questioned by Pizzochero and collaborators [55],
who had calculated earlier the energies using a semiclassical
treatment [56–58] (see also Ref. [59]). Alternatively, a more
reliable approach is to calculate the force dynamically, as pro-
posed in Ref. [60]. Fully microscopic dynamical simulations
of the interactions between a single vortex and a nucleus have
only been recently tackled, see, e.g., Ref. [61]. Systematic
calculations still remain to be performed. On top of that,
another challenge is to understand the large-scale dynamics of
each vortex in the presence of a lattice of pinning sites [62,63].
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Depending on how strong the vortex tension is and how nuclei
are distributed, a vortex line could bent so as to maximize
the number of pinned nuclei resulting in much stronger mean
pinning forces than simple estimates considering a straight
vortex, see, e.g., Ref. [64] and references therein. More impor-
tantly, neutron vortices could also be pinned to proton fluxoids
in the deep crust [65] (where some protons can be unbound)
and in the outer core [15,66–69], assuming protons form a
type II superconductor [10] ( see also Refs. [70–72]). Recent
timing observations of the Crab and Vela pulsars during the
rise of a glitch bring some support to these additional pinning
sites [73].

The critical lag for vortex unpinning is even more uncertain
and model dependent. Indeed, the “local” angular velocities
are determined by averaging over a matter element contain-
ing a large collection of individual vortices. According to
the snow plow model of Ref. [74] in which straight parallel
vortices can pin to the crust, the maximum superfluid velocity
can be estimated as Vcr ≈ 107( fp/1018 dyn/cm) cm/s. For
comparison, VLn takes its maximum value at the crust-core
transition but rapidly decreases with increasing density, as
can be seen in Fig. 3. At density ≈0.65n0, VLn drops by
about an order of magnitude down to ≈107 cm/s. Therefore,
the existence of gapless superfluidity in neutron-star cores is
not implausible and its astrophysical implications should be
further studied.
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APPENDIX: NORMAL-FLUID FRACTION IN THE
ABSENCE OF CURRENTS

In the limit of small currents such that β h̄kkk · VqVqVq → 0, the
function (25) reduces to

Yq(T ) = β h̄2

2m⊕
q nq

1

V

∑
kkk

k2 cos2θkkksech2

(
β

2

√
ε

(q)2
kkk + �2

q

)
,

(A1)

where θkkk denotes the angle between kkk and VqVqVq. Taking the con-
tinuum limit (29) and integrating over solid angle in kkk-space
yield

Yq(T ) = 1

6

β h̄2

m⊕
q nq

∫ +∞

−μq

dεDq(ε)k2sech2

(
β

2

√
ε2 + �2

q

)
,

(A2)

recalling that k is related to ε through Eq. (2).
In the spirit of Leggett’s theory of superfluid Fermi liquids

[34] assuming that Tcq 
 TFq, we introduce the following
approximations to simplify Eq. (A2):

(i) the density of single-particle states per spin D(ε)
is replaced by its value on the Fermi surface,
D(ε) ≈ m⊕

q kFq/(2π2h̄2) using Eq. (30);
(ii) instead of solving Eq. (6), the reduced chemi-

cal potential is approximated by the Fermi energy,
μq ≈ h̄2k2

Fq/(2m⊕
q ) with kFq = (3π2nq)1/3;

(iii) the factor k2 is replaced by k2
Fq.

With these approximations, the function Yq becomes

Yq(T ) ≈ β

4

∫ +∞

−μq

dε sech2

(
β

2

√
ε2 + �2

q

)
. (A3)

Introducing the variable y ≡ ε/(kBTcq), we find

Yq(T ) = Tcq

4T

∫ +∞

−TFq/Tcq

dy sech2

⎡
⎣Tcq

2T

√
y2 +

(
�q

kBTcq

)2
⎤
⎦.

(A4)

Assuming Tcq 
 TFq and noticing that the integrand falls
rapidly to zero for increasing |y|, we can thus replace the lower
bound of the integral by −∞. Since the integrand remains
invariant under the change of y by −y, we finally obtain

Yq(T ) ≈ Tcq

2T

∫ +∞

0
dy sech2

⎡
⎣Tcq

2T

√
y2 +

(
�q

kBTcq

)2
⎤
⎦. (A5)

This expression coincides with the Yosida function [75] de-
noted by f (T ) in Ref. [34]. In the limit of a static superfluid,
it can thus be seen that the normal-fluid fraction (28) reduces
to Eq. (72) of Ref. [34].

[1] J. F. Allen and H. Jones, Nature (London) 141, 243 (1938).
[2] L. Tisza, Nature (London) 141, 913 (1938).
[3] F. London, Nature (London) 141, 643 (1938).
[4] F. London, Phys. Rev. 54, 947 (1938).
[5] L. Landau, Phys. Rev. 60, 356 (1941).
[6] I. M. Khalatnikov, An Introduction to the Theory of Superfluidity

(Mass: Advanced Book Program, Perseus Pub., Cambridge,
2000).

[7] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108,
1175 (1957).

[8] A. B. Migdal, Nucl. Phys. 13, 655 (1959).
[9] V. L. Ginzburg and D. A. Kirzhnits, Sov. Phys. JETP 20, 1346

(1965).

[10] G. Baym, C. Pethick, and D. Pines, Nature (London) 224, 673
(1969).

[11] N. Andersson, Universe 7, 17 (2021).
[12] D. Antonopoulou, B. Haskell, and C. M. Espinoza, Rep. Prog.

Phys. 85, 126901 (2022).
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