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We investigate neutrinoless double-beta decay (0νββ) in the minimal extension of the standard model of
particle physics, the νSM, where gauge-singlet right-handed neutrinos give rise to Dirac and Majorana neutrino
mass terms. We focus on the associated sterile neutrinos and argue that the usual evaluation of their contributions
to 0νββ, based on mass-dependent nuclear matrix elements, is missing important contributions from neutrinos
with ultrasoft and hard momenta. We identify the hadronic and nuclear matrix elements that enter the new
contributions, and calculate all relevant nuclear matrix elements for 136Xe using the nuclear shell model. Finally,
we illustrate the impact on 0νββ rates in specific neutrino mass models and show that the new contributions
significantly alter the 0νββ rate in most parts of the νSM parameter space.
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I. INTRODUCTION

The standard model (SM) of particle physics in its original
form [1–3] predicts massless neutrinos and is convincingly
ruled out by neutrino oscillation experiments [4]. A minimal
extension of the SM, called the νSM, adds two or more
right-handed neutrinos, νR, which are singlets under the SM
gauge groups and therefore called sterile neutrinos or, if their
masses satisfy M � O(eV), heavy neutral leptons [5]. At
the renormalizable level, apart from a kinetic term, sterile
neutrinos have a Majorana and a Dirac mass term connecting
them to the SM left-handed lepton doublet and the Higgs
field. Besides accommodating neutrino masses, this simple
νSM has several intriguing features [6–11]. First of all, since
a sterile neutrino Majorana mass term is not forbidden by
symmetries, neutrinos generally become Majorana particles,
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leading to the violation of lepton number (LNV). Secondly, in
the νSM it is possible to account for the baryon asymmetry of
the universe [12]. Finally, a very light sterile neutrino can be
a dark matter candidate [10,13–15].

Different experiments are sensitive to sterile neutrinos de-
pending on their mass M. For all mass ranges, however,
neutrinoless double-beta decay (0νββ) plays a prominent
role. 0νββ is the most sensitive probe of LNV [16], with
current limits on 0νββ half-lives exceeding 1026 yr [17,18]
and prospects for improvements by two orders of magnitude
in the next decade [19–25]. For M � O(GeV), 0νββ decay is
mainly driven by the exchange of light active neutrinos, and is
proportional to the so-called effective neutrino mass mββ . For
lighter M there can be additional nonstandard contributions
from the exchange of sterile neutrinos that can enhance or sup-
press the 0νββ rates. Contributions from sterile neutrinos to
0νββ have been studied extensively in the literature [26–36].
These works include the effect of the mass of the exchanged
neutrinos by replacing the usual denominator of the massless
neutrino propagator, 1/k 2, by a massive one, 1/(k 2 + M2),
in the LNV potential used in nuclear many-body calculations.
Here, we argue that this only captures one part of the M
dependence in 0νββ amplitudes and that consistent compu-
tations should include additional terms that can significantly
alter 0νββ rate predictions.

The paper is organized as follows. In Sec. II we establish
the formalism for the calculation of the 0νββ half-life in the
presence of active and sterile neutrinos, organizing different
contributions according to the virtuality of the neutrinos that

2469-9985/2023/108(4)/045501(9) 045501-1 Published by the American Physical Society

https://orcid.org/0000-0001-5037-5108
https://orcid.org/0000-0002-8623-5796
https://orcid.org/0000-0002-1355-4147
https://orcid.org/0000-0002-3353-3175
https://orcid.org/0000-0003-1496-206X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.108.045501&domain=pdf&date_stamp=2023-10-09
https://doi.org/10.1103/PhysRevC.108.045501
https://creativecommons.org/licenses/by/4.0/


WOUTER DEKENS et al. PHYSICAL REVIEW C 108, 045501 (2023)

mediate the 0νββ transition. In Sec. III we discuss the depen-
dence of nuclear and hadronic matrix elements on the neutrino
mass M and present a shell model calculation of the relevant
nuclear matrix elements. In Sec. IV we analyze the impact
of the new contributions identified in this paper on sterile
neutrino phenomenology, before concluding in Sec. V.

II. NEUTRINOLESS DOUBLE β DECAY WITH ACTIVE
AND STERILE NEUTRINOS

We consider a general setup with the SM Lagrangian
supplemented by renormalizable interactions with n gauge-
singlet neutrino fields

L = LSM −
[

1

2
ν̄c

R MRνR + L̄H̃YννR + H.c.

]
, (1)

in terms of the lepton doublet L = (νL, eL )T , while H̃ =
iτ2H∗ with H the Higgs doublet in the unitary gauge. νR is
a column vector of n right-handed sterile neutrinos, Yν is a
3 × n matrix of Yukawa couplings, and MR is a symmetric
n × n matrix. A Majorana mass term ML for the left-handed
neutrinos is forbidden by the gauge symmetry of the SM
and it can only appear via nonrenormalizable operators of
dimension greater than 4 [37].

After electroweak symmetry breaking, the neutrino mass
term can be written as

Lm = −1

2
N̄cMνN + H.c., Mν =

(
0 M∗

D

M†
D M†

R

)
, (2)

where N = (νL, νc
R)T and MD = v√

2
Y †

ν , with v � 246 GeV.
Mν is a symmetric matrix diagonalized through

U T MνU = diag(m1, . . . , m3+n), N = UNm. (3)

U is the unitary neutrino mixing matrix, mi are real and
positive, and ν = Nm + Nc

m = νc. The active neutrino masses
are light: m1,2,3 � 1 eV [38]. Because of the absence of ML in
Eq. (2), in the νSM

n+3∑
i=1

U 2
eimi = (Mν )∗ee = 0, (4)

which plays an important role for 0νββ [26,39].
Recent years have seen the development of a chiral effec-

tive field theory (χEFT) derivation of the so-called neutrino
potential that induces nn → pp + ee transitions. χEFT pro-
vides an expansion in p/�χ where the scales are given by
the pion mass or nuclear Fermi momentum, p ∼ mπ ∼ kF =
O(100 MeV), and the breakdown scale, �χ ∼ 4πFπ ∼ mN =
O(1 GeV), in terms of the pion decay constant and the nu-
cleon mass. χEFT was first applied to the construction of
the 0νββ transition operators induced by higher-dimensional
LNV operators in the standard model effective field theory
(SMEFT) [40–43], assuming the standard “Weinberg’s power
counting” [44,45]. This approach was subsequently extended
to the case of the exchange of light active Majorana neutrinos
[46] and beyond Weinberg’s counting [47,48]. Finally, the
sterile-neutrino extension of the SMEFT (νSMEFT) was first
addressed in Ref. [49].

In χEFT with active and sterile light neutrinos, the 0νββ

rate receives contributions from exchanges of neutrinos,
which can be systematically organized according to the scal-
ing of the neutrino energy and momentum. In the case of
light active Majorana-neutrino exchange, the leading order
in the chiral expansion then arises from potential neutrinos,
with momenta scaling as k0 	 |
k| ∼ kF , and hard neutri-
nos, scaling as k0 ∼ |
k| ∼ �χ [47,48]. Neutrinos with soft
and ultrasoft momentum scalings come into play at next-
to-next-to-leading order. The soft neutrinos, with momenta
k0 ∼ |
k| ∼ mπ , contribute through loop diagrams, while the
momenta of ultrasoft neutrinos scale as k0 ∼ |
k| ∼ k2

F /mN .
The effects of all momentum regions can be described by a
quantum mechanical Hamiltonian, see Eq. (10) of Ref. [46].
This Hamiltonian captures the effects of the potential, hard,
and soft neutrinos in, generally nonlocal, LNV potentials,
while the theory still contains ultrasoft modes as degrees of
freedom.

In this section, we will extend this framework by consid-
ering minimal extensions of the SM in which the cancellation
mechanism of Eq. (4) is active. This cancellation causes a sup-
pression of the usually leading potential- and hard-neutrino
exchange, which, depending on M, can lead to a relative
enhancement of the contributions from soft or ultrasoft neu-
trinos. As described below, this results in a rearrangement of
the power-counting discussed in Ref. [49], which continues
to hold for sterile neutrinos with nonminimal interactions.
Before discussing the νSM, we review the construction of
the 0νββ operator in the case of active Majorana-neutrino
exchange in Sec. II A, following closely the derivation of
Refs. [46–48]. In Sec. II B, we then discuss the contribution of
sterile neutrinos with arbitrary mass, but minimal interactions.

A. The 0νββ transition operator with active neutrinos

The exchange of light virtual Majorana neutrinos gives
rise to a leading-order (LO) contribution from neutrinos with
momenta |k| ∼ kF and k0 ∼ |k|2/�χ , defined as potential
contributions. The order-by-order renormalizability of the
0νββ amplitude requires the promotion of an nn → pp + ee
contact term to LO. This term captures contributions from
hard neutrinos with momenta k0 ∼ |k| ∼ �χ [47,48] and has
been recently included in many-body computations [50–53].
The LO 0νββ half-life reads

(
T 0ν

1/2

)−1 = G01 g4
A

∣∣∣∣∣
3∑

i=1

V 2
ud

U 2
eimi

me
Aν

∣∣∣∣∣
2

, (5)

and is factorized in a leptonic piece, the phase-space factor
G01 (G01 = 1.4 × 10−14 y−1 for 136Xe [54,55]), and a nuclear
amplitude Aν ,

Aν = MF

g2
A

− MGT − MT − 2gNN
ν m2

π

MF,sd

g2
A

, (6)

where gA � 1.27 is the nucleon axial charge, Vud � 0.97 is
the u-d element of the Cabibbo-Kobayashi-Maskawa (CKM)
quark mixing matrix, MF , MGT , and MT are the nuclear ma-
trix elements (NMEs) of the Fermi, Gamow-Teller, and tensor
long- and pion-range neutrino potentials, while MF,sd is the
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matrix element of the short-range contact term (see Ref. [16]
for an overview). gNN

ν is a low-energy constant (LEC) as-
sociated with hard-neutrino exchange that in principle can
be calculated with lattice quantum chromodynamics (QCD)
[56–59], but so far only phenomenological determinations are
available [60–62].

Other contributions appear at next-to-next-to-leading order
(N2LO). Here, we highlight a correction that plays an impor-
tant role for sterile neutrinos. It arises from ultrasoft neutrinos
with momentum scaling k0 ∼ |k| ∼ k2

F /mN [46]. The ultrasoft
amplitude is given by

A(usoft)
ν (mi ) = 8πRA

g2
A

∑
n

〈0+
f |Jμ|n〉〈n|J μ|0+

i 〉

×
∫

dd−1k

(2π )d−1

1

Eν[Eν + �E1 − iε]

+ (�E1 → �E2), (7)

where Eν =
√

k2 + m2
i � |k|, �E1,2 = E1,2 + En − Ei, with

Ei and En denoting the energies of the initial and interme-
diate states, and E1,2 stand for electron energies and RA �
1.2 A1/3 fm. Jμ is the single nucleon charged current evalu-
ated between the initial |0+

i 〉, final |0+
f 〉, and a complete set of

intermediate states |n〉.

B. The 0νββ transition operator with sterile neutrinos

Previous works in the literature just combine the neutrino
potential for light active neutrinos with a mass-dependent one
for sterile neutrinos:

3∑
i=1

U 2
eimi

k2
→

3∑
i=1

U 2
eimi

k2
+

n+3∑
i=4

U 2
eimi

k2 + m2
i

(8)

for all values of mi. In practice, this is done by computing
M(mi ) = −(MF /g2

A − MGT − MT )(mi ) for a range of mi

and then fitting to the functional form [30,36,63–65]

M(mi ) = M(0)
〈p2〉

〈p2〉 + m2
i

, (9)

where the exact value of 〈p2〉 ∼ k2
F depends on the isotope

and the applied nuclear many-body method. However, this ap-
proach does not include any other contributions, which leads
to several shortcomings:

(i) NMEs become ill-defined for mi � �χ because the
χEFT expansion does not converge for mi/�χ �
1. These sterile neutrinos must be integrated out at
the quark level leading to local dimension-9 opera-
tors which, after evolution to low-energy scales, can
be matched to χEFT [49]. The resulting LECs and
NMEs cannot be obtained from Eq. (9) because the
dimension-9 operator does not factorize.

(ii) For mi � �χ , Eq. (9) misses the LO contribution from
hard neutrinos captured by the mass-dependent LEC,
gNN

ν (mi ).
(iii) If for all sterile neutrinos mi 	 kF , the 0νββ rate is

suppressed because of Eq. (4) [26,39]. In this limit,

Eq. (9) predicts

(
T 0ν

1/2

)−1 = G01 g4
A

∣∣∣∣∣
n+3∑
i=1

V 2
ud

U 2
eim

3
i

me〈p2〉M(0)

∣∣∣∣∣
2

, (10)

which is suppressed by (m2
i /〈p2〉)2 ∼ m4

i /k4
F . How-

ever, ultrasoft contributions suffer a milder suppres-

sion of m2
i /k2

F and ( m2
i

4π�E kF
ln mi

�E )2, where �E ∼
k2

F /mN is a nuclear excitation energy. These effects
lead to much faster decay rates.

We now discuss an improved description of the 0νββ am-
plitude for different regions of mi.

1. Heavy masses: mi � �χ

Heavy sterile neutrinos can be integrated out at the quark
level, giving rise to local operators containing four quarks and
two electrons

L(9) = CL(μ0)ūLγ μdLūLγμdLēLec
L (11)

with CL(μ0) = −η(μ0, mi )
4V 2

ud G2
F

mi
U 2

ei. η(μ0, mi ) takes into ac-
count the QCD renormalization-group evolution from the
scale mi to μ0 = 2 GeV at which we match to χEFT. This
evolution is mild and we include it into our results but we
discuss it no further here. The matching to χEFT leads to
hadronic LNV vertices [41,42,66] and a resulting amplitude

A(9)
ν = −2η(μ0, mi )

m2
π

m2
i

[
5

6
gππ

1

(MPP
GT,sd + MPP

T,sd

)

+ gπN
1

2
(MAP

GT,sd + MAP
T,sd ) − 2gNN

1

g2
A

MF,sd

]
, (12)

where gππ
1 , gNπ

1 , and gNN
1 are hadronic LECs. The Mi denote

NMEs [66], which have been calculated for several nuclei
[67–69]. In turn, gππ

1 is currently the only LEC determined by
lattice QCD [70–72]. Using the calculation of Ref. [70], we
get gππ

1 = 0.36(2) at the scale μ = 2 GeV. The naive limit of
Eq. (6) would yield the same expression as Eq. (12), but with
gππ

1 = 3/5, gπN
1 = 1, and gNN

1 = (1 + 3g2
A)/4. QCD effects

thus cause gππ
1 to differ by about a factor of 2 compared to

the naive factorization approach. We expect similar deviations
in gπN

1 and gNN
1 , stressing the importance of controlling the

hadronic input.

2. Intermediate masses: kF < mi < �χ

In this mass region, sterile neutrinos appear as explicit
degrees of freedom in χEFT [49]. The potential contributions
arise from Eq. (8), combined with the hard effects they give

Aν (mi ) = −M(mi ) − 2gNN
ν (mi )m

2
π

MF,sd

g2
A

, (13)

which requires knowledge of the mi dependence of both the
NMEs (from many-body calculations) and the LEC gNN

ν (from
nonperturbative QCD). In addition, there are contributions
from loops involving soft sterile neutrinos, which for light
neutrinos would contribute at N2LO but here can give rise
to terms scaling as m2

i /�
2
χ . These effects lead to a break-

down of the χEFT expansion when mi ∼ 1 GeV. There are
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no contributions from ultrasoft sterile neutrinos because the
integral in Eq. (7) vanishes in dimensional regularization once
the integrand is expanded in k/mi.

3. Light masses: mi < kF

Here, the potential and hard regimes are similar as for
active neutrinos. A new effect appears due to ultrasoft sterile

neutrinos. When kF > mi, we can perform the integrals of
Eq. (7),

A(usoft)
ν = − RA

2π

∑
n

〈0+|τ+σ|n〉〈n|τ+σ|0+〉

× [ f (mi,�E1) + f (mi,�E2)]. (14)

The function f (m, E ) can be computed analytically, giving

f (m, E ) =

⎧⎪⎪⎨
⎪⎪⎩

−2

[
E

(
1 + ln μus

m

) + √
m2 − E2 ×

(
π
2 − tan−1 E√

m2−E2

)]
m > E

−2

[
E

(
1 + ln μus

m

) − √
E2 − m2 ln E+√

E2−m2

m

]
m < E .

(15)

For mi � �E , f becomes independent of the energy split-
tings and approaches f ∼ −πmi, while, for mi 	 �E , f ∼
− m2

i
�E ( 1

2 + ln 2�E
mi

). In both regions, the scaling with the sterile
neutrino mass is more favorable than Eq. (10). In the region
mi < �E , a similar logarithmic dependence was also found
in Refs. [46,73]. The dependence on the ultrasoft renormal-
ization scale, μus, cancels in the amplitude when taking into
account soft loop corrections to the potential [46]. We there-
fore set μus = mπ , which captures the log-enhanced part of
the soft loops, and stress that the exact choice of μus does not
impact the main result which is the modified mi dependence
of the amplitude.

III. NUCLEAR AND HADRON MATRIX ELEMENTS

The correct description of the 0νββ amplitude depends
on several new NMEs and LECs. We calculate all necessary
NMEs using the nuclear shell model, one of the leading many-
body methods used for ββ decay [16,74]. We focus here
on 136Xe but our conclusions apply to other experimentally
relevant isotopes, such as 76Ge, as well. We use the GCN5082
effective Hamiltonian [75] in a configuration space compris-
ing the 0g7/2, 1d5/2, 2s1/2, 1d3/2, and 0h11/2 single-particle
orbitals for protons and neutrons. We obtain our results with
the shell-model code NATHAN [76].

For potential contributions, we evaluate the explicit mi

dependence of the NME Mν (mi ) = −(MF /g2
A − MGT −

MT )(mi ) of Eq. (6) in the range 5 MeV < mi < 2 GeV. The
numerical values are listed in Table I. A fit to Eq. (9) gives
〈p2〉 � (175 MeV)2. However, we use the functional form

M(mi ) = M(0)
1

1 + mi/ma + (mi/mb)2
, (16)

where M(0) = 2.7, ma = 157 MeV, and mb = 221 MeV fit
the calculated NMEs within a few-percent accuracy. Equa-
tion (16) contains a linear term in mi different from the usually
used functional form in Eq. (9). The data, together with the
interpolation formula of Eq. (16), are shown in Fig. 1.

The ultrasoft contributions require the intermediate-state
energies of 136Cs, En, in addition to matrix elements in-
volving also the 136Xe and 136Ba ground states. We use the
Lanczos strength function method [76], which after several
tens of iterations gives converged results for A(usoft)

ν . Typical

energy differences are En − Ei ∼ 1–10 MeV, while the elec-
tron energies are E1 � E2 � Qββ/2 + me with Qββ � 2.5
MeV for 136Xe, up to percent-level corrections of order
O((E2 − E1)2/(�E1,2)2). All computed NMEs, for 60 calcu-
lated intermediate states, are given in the Appendix.

The hard contributions depend on a hadronic and a nuclear
matrix element: MF,sd × gNN

ν (mi ) which only in combina-
tion with M(mi ) is independent of the regulators used in
nuclear computations [47]. The value of gNN

ν (mi) thus de-
pends on the nuclear many-body method used. We follow
Refs. [48,62,77] and connect gNN

ν (0) to charge-independence-
breaking nucleon-nucleon interactions, in good agreement

TABLE I. Shell-model 0νββ NMEs for 136Xe as a function of
the neutrino mass.

mi (MeV) M(mi )

5 2.6
6 2.6
7 2.6
8 2.6
9 2.6
10 2.5
20 2.4
30 2.3
40 2.1
50 2.0
60 1.9
70 1.8
80 1.7
90 1.6
100 1.5
200 0.94
300 0.61
400 0.42
500 0.32
600 0.23
700 0.18
800 0.14
900 0.11
1000 0.094
2000 0.025
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FIG. 1. NMEs in Eq. (6) for 136Xe as a function of the neutrino
mass (in blue), as well as the difference M(0) − M(mi ) (in red).
Circles indicate the numerical results of the shell-model calculations,
while the solid lines depict the interpolation formula of Eq. (16).

with model estimates [60,61]. From the nuclear shell model
we get MF,sd = −1.94 for gNN

ν (0) = −1.01 fm2 [77]. The
mi dependence is harder to pin down. Around mi ∼ �χ the
sum of the potential and hard contributions should match to
Eq. (12) which requires gNN

ν (mi ∼ �χ ) ∼ m−2
i . In the op-

posite limit, mi 	 kF , we have gNN
ν (mi ) � gNN

ν (0) + gNN
ν,2 m2

i

with gNN
ν,2 = O( f −2

π �−2
χ ) from χEFT power counting. These

scalings are obeyed by the functional form

gNN
ν (mi ) = gNN

ν (0)
1 + (mi/mc)2

1 + (mi/mc)2(mi/md )2
, (17)

where mc = O(�χ ). Setting mc = 1 GeV for concreteness we
fix md by matching to Eq. (12) at mi = μ0. To get a reasonable
estimate we saturate A(9)

ν with the gππ
1 and gNN

1 contributions
and set gNN

1 � (1 + 3g2
A)/4, the factorization estimate, and

gππ
1 = 0.36 [70]. This recipe gives md � 146 MeV and pro-

vides the most uncertain part of our analysis, which mostly
affect the mass range mπ − �χ . For example, varying gNN

1 up
and down by 50%, which affects md on a similar level, alters
the total amplitude at mi = 500 MeV by about 60%, while the
effect below mi � mπ is negligible. The uncertainties in this
description can be reduced by lattice QCD computations of all
LECs in Eq. (12).

Finally, we connect the improved amplitude for different
regions of mi in the following way:

Aν (mi ) =

⎧⎪⎨
⎪⎩

A(<)
ν + A(usoft)

ν , mi < 100 MeV
Aν, 0.1 GeV � mi < 2 GeV

A(9)
ν , 2 GeV � mi

,

(18)

where A(<)
ν = Aν + mi

d
dmi

M(mi ). In the region mi < kF ,
Eq. (16) contains a linear term (after expanding) in mi, not
included in the standard functional form of Eq. (9). This linear
term is dominated by ultrasoft contributions and, to avoid
double counting between Eqs. (16) and (14), we remove it
in the definition of A(<)

ν . The appearance of this linear term
in A(usoft)

ν and M allows for a consistency check, which we
discuss in more detail in future work.

IV. PHENOMENOLOGY AND SPECIFIC MODELS

To illustrate the important effects of our findings, we con-
sider two toy models that capture the essential features of
realistic seesaw models with light sterile neutrinos.

A. The 3 + 1 scenario

We begin with the 3 + 1 scenario with three light active
neutrinos and one sterile neutrino. The 4 × 4 mass matrix has
the following form:

Mν =
(

0 M∗
D,i

M∗
D,i |MR|eiαR

)
, (19)

and we set MD,1 = MD,2 = MD,3 ≡ |MD|eiαD for simplicity.
The model leads to two massless neutrinos and is thus ruled
out but illustrates the importance of ultrasoft corrections. Di-
agonalizing the mass matrix leads to one active neutrino mass,
m3, the sterile mass, m4, and the mixing angles

U 2
e3 = −m4

m3
U 2

e4 = −1

3

m4

m3 + m4
ei(2αD+αR ), (20)

where αD,R drop out in the 0νββ rate.
We set m3 � 0.05 eV and show the resulting half-life of

136Xe in Fig. 2. In the light m4 regime, the lifetimes obtained
from our approach (solid black) are much shorter than those
obtained from Eq. (9) (roughly three orders of magnitude for
m4 = 10 MeV) because of the ultrasoft contributions. The
enhancement for m4 > 100 MeV is smaller, about a fac-
tor of 2, and mainly caused by hard-neutrino contributions.
Such an enhancement is also found for light active neutrinos
[47,50,77].

B. The pseudo-Dirac scenario

The masses of active neutrinos discussed above are in-
versely proportional to the Majorana mass of the sterile
neutrino. This causes small mixing angles and thus very
long lifetimes, in particular in the regime where m4 < 100
MeV. Much larger mixing angles are possible in inverse
seesaw models [78–80] in which the active and sterile Majo-
rana masses become proportional to a small LNV parameter,
leading to pseudo-Dirac sterile neutrinos. Variants of these
models appear in scenarios of low-scale leptogenesis which
have been intensively developed in recent years, see, e.g.,
Refs. [8,81,82]. While a full model contains many param-
eters and requires a dedicated scan, here, we focus on a
simplified case that captures the salient features of the inverse
seesaw model. We show that with our new contributions,
next-generation 0νββ experiments can set the most stringent
limits, or make the first detection, in a large part of the sterile
neutrino mass range.

We consider the inverse seesaw 1 + 2 scenario [78–80]
with one active and two sterile neutrinos. The 3 × 3 mass
matrix has the form

Mν =
⎛
⎝ 0 mD 0

mD μX mS

0 mS μS

⎞
⎠. (21)
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FIG. 2. 0νββ half-life of 136Xe as a function of m4 in the 3 + 1 model, obtained with the NMEs in Eqs. (9) (dashed red) and (18) (black).
The right panel focuses on the results for larger m4 values.

Together with the assumption mS � mD, μX,S , the mass of
the lightest neutrino satisfies mν � −(m2

DμS )/m2
S and is pro-

portional to the small LNV parameter, μS . We set mν = 2.6 ×
10−3 eV (as a typical value of mββ in the normal hierarchy)
and write M1,2 for the masses of the heavier neutrinos. We
focus on a scenario where the heavier states act as a pseudo-
Dirac pair with a small mass splitting. The mass matrix in this
model can be diagonalized by

U =
⎛
⎝1 0 0

0 c12 s12

0 −s12 c12

⎞
⎠ ·

⎛
⎝ ce2 0 se2e−iδ

0 1 0
−se2eiδ 0 ce2

⎞
⎠

·
⎛
⎝ ce1 se1 0

−se1 ce1 0
0 0 1

⎞
⎠ ·

⎛
⎝1 0 0

0 eiα1 0
0 0 ei(α2+δ)

⎞
⎠, (22)

where si j = sin θi j and ci j = cos θi j . Setting α1 = 0 and α2 =
π/2 allows the sterile neutrinos to act as a pseudo-Dirac pair.
This choice, together with the constraint (Mν )11 = 0, then
allows one to write the 0νββ rate in terms of the neutrino
masses and |UeN1 |2 + |UeN2 |2.

The current limit on the half-life of 136Xe [17] constrains
the effective active-sterile mixing angle |UeN1 |2 + |UeN2 |2
[note that |UeN1 |2 ≈ |UeN2 |2 up to O(�/M2) corrections where
� = M2 − M1]. Figure 3 shows these limits as a function
of M2 for �/M2 = 1%. Limits for smaller (larger) splittings
weaken (strengthen) as �−1. The black line denotes limits ob-
tained by using the results of this work which are compared to
literature approaches [through Eq. (9)] shown in red. Finally,
the gray region depicts parts of the parameter space where
3|�| � |(Mν )22|, in tension with the pseudo-Dirac assump-
tion, μX ∼ �.This gray region can be obtained by using the
constraint (Mν )13 = 0.

As in the 3 + 1 model, the ultrasoft terms lead to signifi-
cantly tighter constraints on the mixing angles for M2 < 100
MeV. The 0νββ constraints are suppressed by the small mass
splitting but nevertheless are competitive with other limits
(indicated in purple and obtained from Refs. [63,83]) for
masses lighter than a few hundred MeV. In particular, for

this choice of parameters, the tonne-scale experiments will
yield very competitive, if not the most stringent, bounds for
masses between 1 and 100 MeV. In this region, currently the
best limits come from pion decay, π → eν [84], and from
the production of a sterile neutrino in the decay of 8B, mea-
sured by Borexino [85]. Even with the proposed PIONEER
experiment [86], which will improve the bounds from pion
decay by a factor of ten on approximately the same timescale
as the next generation tonne-scale experiments, 0νββ will
remain very competitive in the 10–100 MeV regions. With the
decommissioning of Borexino, we are not aware of upcoming
improvements in the 1–10 MeV region. For heavier masses,
the hard neutrino-exchange contributions again lead to

FIG. 3. Limit on the mixing angles, |UeN1 |2 + |UeN2 |2, as a func-
tion of M2 in the pseudo-Dirac scenario for a mass splitting M2−M1

M2
=

10−2. The black line corresponds to the 0νββ rate obtained in this
work, whereas the red dashed line is based on Eq. (9). The thick
and thin lines correspond to the current limit [17] and projected
constraints at the level of T 0ν

1/2 < 1028 yr, respectively. The blue
background depicts other experiments [63,83], while the gray region
indicates parameter space inconsistent within the assumptions of the
model.
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TABLE II. One-body matrix elements relevant for ultrasoft neu-
trino contributions to the 0νββ of 136Xe.

En−Ei
MeV 〈n|στ+|0+

i 〉 〈0+
f |στ+|n〉

0.17 1.0 0.13
0.63 −0.19 −0.0063
0.89 −0.25 −0.016
1.02 0.30 0.036
1.05 0.23 0.025
1.1 −0.13 −0.00076
1.2 0.12 −0.0052
1.3 0.16 −0.0028
1.4 −0.23 −0.0098
1.5 0.20 −0.012
1.6 −0.36 0.0084
1.7 −0.24 0.00058
1.9 0.22 0.011
2.0 0.34 0.0070
2.2 0.35 0.0060
2.3 −0.49 −0.0086
2.6 0.62 0.021
2.7 −0.91 −0.024
2.9 0.37 0.0064
3.1 0.30 0.0013
3.3 0.39 −0.0013
3.6 0.39 0.0021
3.8 0.45 −0.013
4.0 −0.44 −0.0032
4.3 −0.35 −0.0038
4.6 −0.36 −0.0067
4.8 0.44 0.0083
5.1 0.44 0.0066
5.4 −0.55 −0.0093
5.7 0.63 0.012
6.1 0.85 0.013
6.3 −1.2 −0.016
6.7 −1.3 −0.014
7.0 −1.9 −0.016
7.3 3.1 0.023
7.5 −4.0 −0.028
7.7 2.6 0.017
8.1 1.4 0.0091
8.4 −1.0 −0.0057
8.8 −0.93 −0.0064
9.1 0.80 0.0038
9.4 0.59 0.0014
9.8 −0.50 0.0027
10.1 0.35 −0.0027
10.5 0.26 −0.00053
10.9 −0.22 −0.00021
11.3 0.17 −0.00037
11.7 −0.16 −0.00054
12.0 −0.16 −0.0010
12.4 0.14 0.00092
12.8 0.12 −0.00014
13.1 0.092 −0.00040
13.5 −0.079 −0.00019
13.9 0.071 −0.00026
14.2 −0.070 0.000031
14.6 −0.035 0.00021
15.1 −0.051 −0.00015

TABLE II. (Continued.)

En−Ei
MeV 〈n|στ+|0+

i 〉 〈0+
f |στ+|n〉

16.2 −0.039 0.00011
17.3 −0.043 −0.000091
17.7 0.11 −0.000029

somewhat tighter limits (a factor 2.5 for mi � 400 MeV) than
obtained from Eq. (9) and are significantly stronger than other
constraints despite the small mass splitting. Next-generation
0νββ experiments will probe uncharted parameter space over
a large fraction of the mass range, even in the MeV range
because of the ultrasoft contributions identified in this work.

V. CONCLUSIONS AND OUTLOOK

We have performed a systematic EFT derivation of the
0νββ rate in the neutrino-extended standard model, allowing
us to identify and calculate novel contributions to 0νββ. The
largest correction can enhance the decay rate by orders of
magnitude and arises from the exchange of light, ultrasoft
neutrinos which induce a sterile neutrino mass dependence
of the 0νββ amplitude that differs from previous studies in
the literature. We also find new contributions associated with
the exchange of light, hard neutrinos, which can lead to dif-
ferences compared to known expressions by a factor of a few.
Thus, these new effects can significantly enhance the 0νββ

rates in neutrino-mass models of interest.
Looking to the future, our expressions can be made more

accurate by first-principle determinations of various QCD
matrix elements associated with virtual Majorana neutrino ex-
change. Lattice QCD calculations of such matrix elements are
already underway for active (and thus essentially massless)
neutrino exchange [57] and can be extended to massive neu-
trino exchange as well [87]. The expressions obtained in this
work can be directly used to determine 0νββ rates in realistic
minimal neutrino extensions that can resolve shortcomings of
the SM such as the neutrino-mass mechanism, leptogenesis,
and dark matter.
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APPENDIX: NUCLEAR MATRIX ELEMENTS

Table I lists the numerical values of the NME, Mν (mi ) =
−(MF /g2

A − MGT − MT )(mi ) of Eq. (6), as a function of
the neutrino mass. The data, together with the interpolation

formula of Eq. (16), are shown in Fig. 1. Table II provides
the difference between initial and intermediate states and the
Gamow-Teller matrix elements needed for the evaluation of
the ultrasoft contribution.
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