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Interpretation of near-threshold peaks using the method of independent S-matrix poles
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We propose a model-independent analysis of near-threshold enhancements using independent S-matrix poles.
In this formulation, we constructed a Jost function with controllable zeros to ensure that no poles are generated
on the physical Riemann sheet. We show that there is a possibility of misinterpreting the observed near-threshold
signals if one utilized a limited parametrization and restricted the analysis to only one element of the S matrix.
Specifically, there is a possibility of the emergence of an ambiguous pair of poles which are singularities of the
full S matrix but may not manifest in one of its elements. For a more concrete discussion, we focused on an
effective two-channel scattering where the full S matrix is a 2×2 matrix. We apply our method to the coupled
two-channel analysis of the PN

ψ (4312)+ and found that the compact pentaquark interpretation cannot be ruled
out yet.
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I. INTRODUCTION

One of the active areas of investigation in hadron spec-
troscopy is the interpretation of near-threshold phenomena
[1–6]. In 2019, an updated analysis of the �0

b → J/ψ pK−
decays based on Runs 1 and 2 of the LHCb collaboration was
presented in Ref. [7]. They observed the narrow pentaquark
state PN

ψ (4312)+ [then called the Pc(4312)+] together with
the two-peak structure of the Pc(4450)+ resonance which
was not present in their initial analysis in Ref. [8]. These
newly observed resonances have narrow decay widths and are
below the �cD̄ or �cD̄∗, a typical signature of molecules.
Reference [7] had concluded that PN

ψ (4312)+ is a virtual state
with the �+

c D̄0 threshold being within its extent. A similar
parametrization study [9] and a deep learning approach [10]
had the same conclusion for the PN

ψ (4312)+ signal.
Other interpretations are possible and were done in dif-

ferent studies. For example, in Ref. [11] the PN
ψ (4312)+

resonance is favored to have a molecular structure using the
quantum chromodynamics (QCD) sum rules formalism. It
was found to be the [�++

c D̄−] bound state with JP = 1/2−.
The molecular picture with the same quantum number is
favored as well in Ref. [12] where they studied the mass
and decay properties of PN

ψ (4312)+ using isospin breaking
effects and rearrangement decay properties. Reference [13]
used a coupled-channel formalism and ends up with the same
conclusion.
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In Ref. [14], it was argued that if range corrections can be
neglected, virtual states are molecular in nature and hence the
studies cited above pose no contradiction. As can be observed,
the molecular picture is favored by most studies. However,
we still cannot dismiss the compact pentaquark picture since
information about quantum numbers and decay properties
is lacking experimentally. In fact, a model based approach
in Ref. [15], the resonance was studied under the compact
diquark model as a hidden-charm diquark-diquark-antiquark
baryon with JP = 3/2+.

Until we settle the quantum numbers and decay proper-
ties of the Pc resonances of the �0

b → J/ψ pK−, we cannot
completely rule out the compact nature of the PN

ψ (4312)+. A
good way to investigate this resonance with some of its prop-
erties still being ambiguous is by using a minimally biased
bottom-up approach study [6]. The S matrix is a good tool to
use in a bottom-up approach study as it can be constructed
without any details of the interacting potential. We only need
to impose analyticity, unitarity, and hermiticity below the
lowest threshold. Given these three mathematical restrictions,
we can reproduce the scattering amplitude from experiment
by identifying the optimal placement and number of poles in
the scattering process. Finally, we can look for a theoretical
model that can reproduce the same analytic properties of the
constructed S matrix.

In this paper, we show that some arrangements of
poles may not be accommodated by the usual amplitude
parametrizations such as the effective range expansion.
Specifically, there are combinations of poles which will not
manifest in the line shape of the elastic scattering ampli-
tude. This, in turn, opens up the possibility of having a pole
structure that caters the compact nature of PN

ψ (4312)+. The
difficulty of capturing these subtle pole configurations may
arise due to the contamination of coupled channel effects. For
example, weakly interacting final state hadrons (higher mass
channel) may have a virtual state pole that can be displaced
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away from the real energy axis due to coupling with the lower
mass channel. If there is a resonance that is strongly coupled
to the lower mass channel, then the displaced virtual state pole
and the shadow pole of the resonance may have a cancellation
effect in the elastic transition amplitude. One can invoke the
pole-counting method to interpret a near-threshold pole with
an accompanying shadow pole as nonmolecular [16–18]. In
this work, we propose to use the independent S-matrix poles
to accommodate all possible interpretations of the observed
near-threshold enhancements.

The content of this paper is organized as follows. In Sec. II,
we review the formalism of the S matrix and show how one
can construct an S matrix using independent poles via the uni-
formization scheme introduced in Refs. [19–23]. In Sec. III,
we discuss how identical line shapes arise. We show that the
ambiguity can be resolved by adding the contribution of the
off diagonal T21 channel. As an application, we investigate the
PN

ψ (4312)+ signal and show that its T11 line shape can take a
one-pole configuration or three-pole configuration. In Sec. IV,
we give our conclusion and outlook for future works.

II. FORMALISM

The S matrix is an operator that describes the interaction of
a scattering process. In momentum space, one could decom-
pose the S matrix in terms of the noninteracting terms and
interacting terms as [24]

〈p′|S|p〉 = δ3(p′ − p) + i

2πm
δ(Ep′ − Ep) f (p′ ← p), (1)

where f (p′ ← p) is the scattering amplitude from momentum
p to p′ and the factors of the interacting term may vary de-
pending on the literature. The scattering amplitude f (p′ ← p)
is related to the cross section via

dσ

d�
(p ← p0) = | f (p ← p0)|2. (2)

In principle, we could use Eqs. (1) and (2) to construct
a parametrized S matrix to fit it in the measured cross
section data from experiments. The peaks from such data
are characterized by the pole singularities of the S ma-
trix and it is indicative of the nature of the intermediate
particles.

In practice, the usual treatment of peaks in the scattering
cross section is to utilize the Breit-Wigner parametrization to
extract the mass and width of the resonance. This approach
works very well if the peaks are far from any threshold and
the widths are narrow. However, most of the recently observed
peaks occur very close to some two-hadron threshold, where
the peaks are no longer a reliable information to quote the
mass of the observed state. Moreover, coupled-channel effects
can no longer be ignored if the peaks are close to the thresh-
olds. Unlike the complex energy plane of a single-channel
system, one has to probe deeper into the multiple Riemann
sheets of the energy complex plane of a multichannel scat-
tering. Specifically, the peaks observed may correspond to
different pole arrangements in different Riemann sheets.

TABLE I. Riemann sheet notation. In this work, we will follow
Pearce and Gibson’s notation. The index correspond to the channel
number and t (b) denotes top(bottom) sheet.

Frazer Pearce Topology in
and Hendry and Gibson complex E

I [tt] θ1 ∈ (0, 2π ); θ2 ∈ (0, 2π )
II [bt] θ1 ∈ (2π, 4π ); θ2 ∈ (0, 2π )
III [bb] θ1 ∈ (2π, 4π ); θ2 ∈ (2π, 4π )
IV [tb] θ1 ∈ (0, 2π ); θ2 ∈ (2π, 4π )

In a one-channel scattering, we are interested in singular-
ities of the amplitude in the complex momentum p plane.
The poles on its positive imaginary axis correspond to bound
states and the poles below its real axis may correspond to
resonances. With the relativistic energy-momentum relation
pμ pμ = E2 − 	p · 	p = m2 or the nonrelativistic relation p2 =
2μ(E − ε), the complex momentum p plane transforms into
two Riemann sheets of the complex energy E . The first Rie-
mann sheet (top sheet) of E , which we call the physical sheet,
corresponds to the upper half-plane of p. The importance
of physical sheet is that the scattering region lies on this
complex energy plane. The scattering region corresponds to
the energy axis used in plotting scattering observables. The
second Riemann sheet (bottom sheet) of E , which we call the
unphysical sheet, corresponds to the lower half-plane of p.
Due to causality, no other singularities should be present in
the physical energy sheet aside from bound state poles and a
branch point at the threshold [25,26].

Accordingly, in a two-channel scattering, we get four Rie-
mann sheets (see [27] for an in-depth discussion). Only poles
closest to the scattering region are relevant in the description
of scattering data. In this paper, we used the notation of Pearce
and Gibson in [28] in labeling our Riemann sheets. We label
the sheets as [XY ] where the string can be t or b to denote a
top sheet or bottom sheet and the order of character denotes
the channel. For example, the sheet [bt] corresponds to the
bottom sheet of the first channel and top sheet of the second
channel. The correspondence of Pearce and Gibson’s notation
with the more commonly used notation of Frazer and Hendry
[29] is listed in Table I.

We show in Fig. 1(a) an illustration of the four Riemann
sheets in a two-channel scattering. The scattering region is
represented by the red ray with two dots (branch points) lying
on the physical sheet [tt]. It is directly connected with the
lower halves of the [bt] and [bb] sheets. Crossing the branch
cut between the first energy threshold ε1 and second energy
threshold ε2 will send us to the [bt] sheet. On the other hand,
if we cross the branch cut above ε2, we end up in the [bb]
sheet. Energy poles found on these two sheets are quoted
with negative imaginary parts. Consequently, these poles fit
the description of unstable quantum states since their negative
imaginary parts can reproduce the expected exponential decay
of unstable states. On the other hand, energy poles on the [tb]
sheet are quoted with positive imaginary parts since only the
upper half-plane of the [tb] sheet affect the scattering region.
This gives rise to an exponential increase in time which does
not correspond to any quantum state.
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FIG. 1. The relevant regions of the four Riemann sheets in a two-channel scattering. (a) The energy complex plane. (b) The uniformized
variable ω plane mapped from the complex energy E plane using uniformization.

A. Analytic structure of a two-channel S matrix

Without loss of generality, we can focus on an effective
two-channel scattering. The full two-channel transition is de-
scribed by a 2×2 S matrix whose elements are given by

S11(p1, p2) = D(−p1, p2)

D(p1, p2)
, S22(p1, p2) = D(p1,−p2)

D(p1, p2)
,

(3)
and

S2
12 = S11S22 − detS, (4)

where D(p1, p2) is the two-channel Jost function [30–33]. The
subscripts correspond to the channel index with 1 representing
the lower mass channel, and 2 for the higher mass. Causal-
ity requires that the S matrix be analytic up to the branch
points and poles [25,26]. These singularities are related to the
details of scattering. Branch cuts are dictated by kinematics
while the poles are dynamical in nature. Depending on the
location of the pole on the Riemann sheet, it may in general
correspond to a bound state, virtual state, or resonance [34].
The zeros of the Jost function D(p1, p2) correspond to the
poles of the S matrix. Analyticity is imposed on Eq. (3) by
requiring lim|p1|,|p2|→∞ D(p1, p2) = 1 for Im pn � 0 [19,31].
The Schwarz reflection principle and the hermiticity of the
S matrix below the lowest threshold ensures that for every
momentum pole p̄i, there is another pole given by −p̄i

∗. All
of these must be considered in the construction of the Jost
function.

From Eq. (3), we see that the S matrix is a ratio of two Jost
functions. One of the most straightforward ways to construct
an analytic, unitary, and symmetric S matrix is by using a Jost
function, of the form D ∝ p−N

∑N
n αn pn, where p = {p1, p2}.

The extra factor p−N is needed to ensure that as |p| → ∞
we get D → 1. The polynomial part, when written in fac-
tored form, allows us to form a set of independent zeros of
D(p1, p2).

B. Independent poles via uniformization scheme

We propose the use of independent poles in the analy-
sis of near-threshold signals for two reasons. First, this is
to ensure that the treatment is model-independent. In other
parametrizations, such as the Flatté or effective range expan-
sion, fixing one of the poles will necessarily alter the position
of the other pole. These parametrizations may be constructed

without reference to any models but one can always find an
effective coupled-channel potential that can reproduce such
pole trajectory [28,29,35,36]. Second, a parametrization that
allows independence of poles can cover a wider model space
without violating the expected properties of the S matrix un-
like in other parametrization. This limitation is observed in
[29] where a specific coupled-channel effective range approx-
imation can only produce poles in either [bt] or [tb] sheet but
not in [bb]. An S matrix with independent poles can cover a
wider model space without compromising any of the expected
properties of S matrix.

It is also important that the amplitude model to be used
gives the correct threshold behavior associated with branch
point singularity of the two-hadron scattering. The uni-
formization method introduced in [19,20] and utilized in
[21,22] is an appropriate scheme for our present objective.
The kth channel’s momentum in the two-hadron center of
mass frame is given by

p2
k =

(
s − ε2

k

)
[s − εk (εk − 4μk )]

4s
, (5)

where εk is the threshold energy and μk is the reduced mass
of the system. The invariant Mandelstam variable s can be
written as

s = ε2
k + εk

μk
| 	pk|2

[
1 + O

( | 	pk|2
ε2

k

)]
= ε2

k + qk, (6)

where we introduced the new momentum variable qk for con-
venience of scaling.

Instead of constructing the S matrix using the momenta q1

and q2, we introduce the uniformized variable ω defined by
the transformation

ω = q1 + q2√
ε2

2 − ε2
1

,
1

ω
= q1 − q2√

ε2
2 − ε2

1

. (7)

The linear dependence of the ω with (q1, q2) removes the
issue of branch point singularity associated with the thresh-
old. In other words, uniformization reduces the number of
complex planes from four energy planes to only one ω plane.
Figure 1(b) shows the ω plane and a detailed description of
such mapping can be seen in [20,23]. All the relevant halves
of the complex energy planes in Fig. 1(a) are on the first and
fourth quadrants of the ω plane in Fig. 1(b).
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Referring to Eqs. (3) and (4), we can use a rational Jost
function D(ω) such that the pole of the S matrix is easily
determined by its zeros. The simplest Jost function takes the
form

D(ω) = 1

ω2
(ω − ωpole)(ω + ω∗

pole)(ω − ωreg)(ω + ω∗
reg),

(8)

where we had introduced several factors. The negative conju-
gate terms are a consequence of the hermiticity of the S matrix
below the lowest threshold [21,24]. The extra pole ωreg, called
the regulator, is added to ensure that the kth diagonal elements
of the S matrix behave as Skk (ω) → 1 as ω → ∞ [19,20].
In the short-ranged potential scattering theory, we expect the
phase shift to vanish at large energies to be consistent with the
Levinson’s theorem. This expectation can be met when we
impose |ωregωpole| = 1. This means that we have another pole
which depend on ωpole. To ensure that ωpole is the only relevant
pole that can affect the interpretation of enhancement, we set
the regulator to be far from the scattering region. Referring
to the uniformized ω plane in Fig. 1(b), one can minimize
the influence of the regulator by placing it either on the [bb]
or the [tb] sheet. Note that a regulator pole on the [bt] sheet
will result into a structure between the two thresholds, which
significantly affects the interpretation of the line shape, hence
it is in our best interest to avoid putting a regulator in this
region. The simplest regulator we could use following these
requirements is ωreg = e−iπ/2/|ωpole|, where the phase factor
ensures that the regulator falls on either the [tb] or [bb] sheet
below the lowest threshold.

We reiterate the importance of regulator not affecting the
physics of the S matrix. In [21], the uniformized truncated
Mittag-Leffler parametrization neglected the ωreg regulator.
Such formulation assumes that the conjugate pole ω∗

pole is
much closer to the scattering region than the ωreg. The absence
of other background poles, especially ωreg, makes the contri-
bution of ω∗

pole relevant in the interpretation of the �(1405),
which resulted into a broad line shape in the π� mass distri-
bution. This is the reason why the authors of [21] concluded
that the �(1405) requires only one pole in the second Rie-
mann sheet in contrast with the current consensus of two-pole
structure interpretation [37–40]. Care must be taken in the
construction of amplitudes. Removing the contribution of
ωreg, or any possible background poles, as emphasized in [20],
might lead into misinterpretation of line shapes.

In other parametrizations, such as the K-matrix model (see,
for example, [41]), the equation for the poles are typically
quartic in the channel momenta. One may set the Riemann
sheet of the desired relevant pole by adjusting the coupling
parameters but there is always a tendency that a shadow pole
will appear on the physical sheet [42,43]. The linear depen-
dence of the uniformized variable ω on the channel momenta
in Eq. (7) guarantees that no shadow pole is produced using
the Jost function in Eq. (8). The regulator pole, which can
be controlled in our formulation, ensured that the S matrix
will not violate causality. In a situation where there is an
actual shadow pole, an independent pole can be added to

the Jost function with no direct relation to the main pole.
That is, one can freely place the pole and its shadow in any
position without being restricted by some coupling param-
eter. With all of these considerations, the full Jost function
with different combinations of N independent poles takes
the form

D(ω) = 1

ω2N

∏N
{pole, reg}(ω − ωpole)(ω + ω∗

pole)

×(ω − ωreg)(ω + ω∗
reg). (9)

Using the independent-pole form of the Jost function in
Eq. (9), the two-channel S-matrix elements satisfying uni-
tarity, analyticity, and hermiticity below the lowest threshold
take the form

S11(ω) = D(−1/ω)

D(ω)
, S22(ω) = D(1/ω)

D(ω)
,

det(S) = D(−ω)

D(ω)
. (10)

The scattering amplitude Tj,k (ω) can be obtained
from the relation Sj,k = δ j,k − 2iTj,k where δ j,k is the
Kronecker δ.

III. AMBIGUOUS LINE SHAPES

The independent poles of the full S matrix are determined
by the zeros of the D(ω). It is possible that the zero of the
denominator cancels the zero of the numerator for one of the
S-matrix elements, say S11. This means that such pole will not
manifest in the line shape as if it did not exist at all. This subtle
features of the S matrix is important as we can potentially miss
out other possible pole configurations if we probe only one
element of the full S matrix. In this section, we first present
how this ambiguity arises. We emphasize that this ambiguity
is dependent on the parametrization of the S matrix. In par-
ticular, the ambiguity of the formalism we use arises from the
parametrization of the regulator. As an application, we discuss
the implication of the ambiguous line shapes in the context of
the PN

ψ (4312)+ signal. We propose that such ambiguity can be
removed by probing the off diagonal term of the S matrix. We
close the section by discussing the importance of probing the
off diagonal S-matrix terms and the limitation of the effective
range expansion.

A. Emergence of ambiguity

Here, we point out that there exists a pole configuration
that has no effect on one of the elements of the full S matrix.
We start by looking at the pole configuration of one of the
S-matrix element that is equal to unity. We focus on the
ambiguity of the S11 channel. Recall that we construct the
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S11(ω) element as

S11(ω) = D(−1/ω)

D(ω)

= ω4N

∏N
{zero,reg}(−1/ω − ωzero)(−1/ω − ωreg)(−1/ω + ω∗

zero)(−1/ω + ω∗
reg)∏N

{pole,reg}(ω − ωpole)(ω − ωreg)(ω + ω∗
pole)(ω + ω∗

reg)

= ω4N

∏N
{zero,reg}(−1/ω − ωzero) × (reg.) × (−c.c)∏N

{pole,reg}(ω − ωpole) × (reg.) × (−c.c)
, (11)

where the notation in the last line is introduced for con-
venience. The terms reg. and c.c. denote the regulator and
complex conjugate of the zeros (or poles) of the preceding
terms, respectively. With some foresight, we consider the pair
of poles ωpole 1 = a and ωpole 2 = −1/a. From Eq. (11), the
S11(ω) matrix element reads as

S11(ω) = ω8 ·
(− 1

ω
− a

)
(ω − a)

·
(− 1

ω
+ 1

a

)
(
ω + 1

a

) · (reg) · (−c.c.)

= ω8 ×
(

− 1

ω2

)
×

(
− 1

ω2

)
×

(
1

ω4

)

= 1. (12)

The pair of poles ωpole 1 = a and ωpole 2 = −1/a entails a
unitary S matrix. We will call such a combination of poles
that lead to a unitary S-matrix element as “ambiguous pair
poles.” In terms of momentum, recalling Eq. (7), the pair poles
ωpole 1 = a and ωpole 2 = −1/a translates into

q(2)
1 + q(2)

2√
ε2

2 − ε2
1

= q(1)
2 − q(1)

1√
ε2

2 − ε2
1

, (13)

where q(m)
n denotes the momentum of the nth channel of the

mth pole. It follows from Eq. (13) that q(2)
1 + q(1)

1 = 0 for
the equation to hold; the takeaway is that the imaginary part
of the q1 pair must be opposite. This implies that the pair
poles should either be found separately on the [tt] and [bt]
sheet or on the [bb] and [tb] sheets. The former instance
is prohibited since it will violate analyticity and causality.
Hence, we consider two poles in which one is located at the
[tb] sheet and the other at the [bb] sheet an ambiguous pair
pole if ωpole[tb]ωpole[bb] = −1. Moreover, their regulators are
given by ωreg of [bb] pole = −ia and ωreg of [tb] pole = i/a, located
on the [tb] and [bb] sheets, respectively.

The condition for the ambiguous pair poles states no spe-
cific magnitude for it to occur, only that they must depend on
each other as ωpole[tb]ωpole[bb] = −1. Despite these ambiguous
pair poles having no effective contribution in the T11 line
shape, they cannot be ignored especially when they are near
the threshold. If we probe either the T12 or T22 channel, we
will observe a difference between the two configurations.
We then assert that one must be rigorous in using certain
approximations. For example, without proper justification, the
prescription dN/d

√
s ∝ |T11|2 might potentially miss out pole

configurations with ambiguous pair poles.

Through a similar argument, we could assert that the same
conclusion holds for the S22 channel. The ambiguous pair
for the S22 channel should lie on the [bb] and [bt] sheet and
satisfies ωpole[bt]ωpole[bb] = 1. However, this will only be pos-
sible if we reassign the regulator of the pole at the [bt] sheet
as ωreg of [bt] = eiπ/2/|ωpole in [bt]|, i.e., the regulator should be
placed on the [tt] sheet instead of the [bb] sheet. We consider
for a moment this pole on the [bt] sheet and its regulator.
Recalling Eqs. (9) and (10), we have

S22 = ω4 · (1/ω − ω[bt] )(1/ω + ω∗
[bt] )

(ω − ω[bt] )(ω + ω∗
[bt] )

× (1/ω − ω[tt] )(1/ω + ω∗
[tt] )

(ω − ω[tt] )(ω + ω∗
[tt] )

, (14)

where the second fraction are the regulator terms and its
complex conjugates. Since ωtt is located at the imaginary axis,
the denominator of the second fraction is equal to (ω − ω[tt] )2,
which makes the singularity a double pole. We have to recall
that state correspondence is always a simple pole [19,24] and
hence, our regulator assignment on the [tt] sheet does not
invalidate causality. Moreover, this second order [tt] pole is
faraway from the threshold, and hence its presence is not
relevant in the interpretation of amplitude line shape.

B. Implication of the ambiguous line shapes

To demonstrate the ambiguous line shape and its con-
sequences, we look into the LHCb PN

ψ (4312)+ signal. We
reconstruct its scattering amplitude using the data and best fit
found in [9]. To facilitate the discussion of this section, we
will be using the pole counting method by Morgan [16] to
analyze the resulting scattering amplitudes. The idea hinges
on the fact that nonpotential resonances occurring very close
to an s-wave threshold are associated with poles on the [bt]
and [bb] sheets of the energy plane [17,18]. Simply put,
the pole counting method states that a single pole on the
[bt] sheet indicates a predominantly molecular bound state
whereas poles appearing on the [bt] and [bb] sheets both close
to the threshold indicates a state dominated by its compact
component.

First, we consider a one-pole configuration with a back-
ground pole. We placed the main pole on the [bt] with real part
m = 4319.8 MeV and width  = 9.2 MeV. The background
pole is added on the [tb] sheet, below the first channel thresh-
old 3184.9 MeV with width  = 1000 MeV. Figure 2 shows
the T -matrix elements of this one-pole configuration.
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FIG. 2. Elements of the T matrix with a pole on the [bt] sheet, signifying a molecular nature based on pole counting method.

By looking only at the T11 matrix element, its sharp peak
near the �cD̄ threshold hints a signature of a molecular state.
We can back this up by appealing to the pole counting method
which, for an isolated pole in [bt] sheet, suggests a molecular
nature of the observed signal. On the other hand, both the
bottom-top approach done in [9] and [10] which utilized the
form

dN

d
√

s
= ρ(s)[|P(s)T (s)|2 + B(s)], (15)

where P(s) and B(s) are smooth functions, ρ(s) is the three-
body phase space, and T (s) being the T11 matrix element had
concluded that the signal is likely due to a virtual state. As
mentioned earlier, near-threshold virtual states are molecular
in nature as long as range corrections can be neglected [14],
and hence the agreement with the pole counting method and
the conclusions in [9] and [10]. However, it is worth mention-
ing that the recent investigation of the same signal using deep
learning in [44] favors the compact interpretation. We move
on to the next configuration. We use the same isolated pole in
[bt] sheet from the previous configuration plus an additional
ambiguous pair poles on the [bb] and [tb] sheets. The values
of the added poles are set to produce an ambiguous pair of
poles as described in the previous subsection. Specifically, we
set the pair poles such that their real parts are 4317.73 MeV
and 12.5 MeV for its widths. The three-pole configuration and
its T -matrix elements are shown in Fig. 3.

The interpretation of three-pole configuration is now out-
side the direct applicability of the pole counting argument.
We are confronted with different possible scenarios for the
occurrences of such pole structures. One naive interpretation
is that the [bt] sheet pole is a molecular state of the �cD̄ chan-
nel with the added [bb] and [tb] poles as some nonmolecular
state that is strongly coupled to �cD̄ channel. However, such
interpretation is unlikely since the real parts of the [bb] and
[tb] poles are exactly placed at the second threshold. This
means that there is no available phase space for the unstable
state to decay into the second channel.

A more plausible interpretation is that the [tb] sheet pole
is a virtual state of the �cD̄ channel and the remaining [bt]
and [bb] poles correspond to a compact state that is strongly
coupled to the J/ψ p channel. Unlike the first interpretation,
there is enough phase space for such a compact resonance to
decay into J/ψ p channel. Interestingly, this scenario matches
the hybrid model proposed in [45,46]. Comparing the T11 line
shape in Fig. 2, which admits a purely molecular interpreta-
tion, and T11 in Fig. 3, one can interpret that a compact state
combined with a virtual state can lead to a purely molecular-
like interpretation. That is, the compact state enhances the
attraction of the hadrons in the higher mass channel.

Certainly, there is an obvious ambiguity in the interpreta-
tion of T11 line shape with the one-pole and the three-pole
structures. Their distinction will only become evident when
we probe either the off-diagonal T21 element or the elastic T22

amplitude. Considering that the available data came from the
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FIG. 3. Elements of the T matrix with an isolated pole on the [bt], [bb], and [tb] sheets. This configuration can be interpreted having a
non-molecular nature based on pole counting method.

decay �b → K−J/ψ p, it is appropriate to include the contri-
bution of T21 transition when computing for the invariant mass
distribution of J/ψ p to determine the presence of ambiguous
pair of poles.

C. On the necessity of probing the T21 amplitude

The condition for the existence of ambiguous pair poles,
i.e. poles in different Riemann sheets but with exactly the
same position, is highly fine tuned. More realistic situation
may have poles in different Riemann sheets but not neces-
sarily with the same position due to possible contamination
of coupled channel effects. That is, there maybe a slight dif-
ference in the line shape of T11 for different pole structures.
However, when the error bars of the experimental data are
large then any distinction among the T11s with different pole
structures will no longer be useful. The inclusion of |T21|2
might help since the one-pole structure has slightly larger
|T21|2 in comparison with the three-pole structure.

To further demonstrate the importance of |T21|2, we con-
sider the PN

ψ (4312)+ in the invariant mass spectrum of J/ψ p.
We construct an S matrix similar to that of the three-pole
configuration example above. Afterwards, we displace either
the real or the imaginary part of one of the pair poles while
fixing in place the other. In this way, the ambiguous pair poles
are less fine tuned. The respective T11 amplitude line shapes
are then plotted in Fig. 4. Notice that the tail of line shape is
sensitive to the presence of ambiguous poles. However, the

peak structure for all cases are almost similar despite their
differences in their tail. This might entail a problem if the
error bars obscured the distinction of ambiguous line shapes
near the threshold. It is also possible that the line shape of
the slightly displaced ambiguous pair poles might be absorbed
by the background parametrizations if the amplitude ansatz
is limited to produce one isolated pole near the threshold. It
was shown in [29] that the effective range expansion cannot
produce a pole on the [bb] sheet due to the impossibility
of making the real and imaginary parts of the amplitude’s
denominator simultaneously equal to zero. Such restriction
limits the model space of a given line shape to molecular-like
bound or virtual states and immediately rules out compact
state interpretation.

IV. CONCLUSION AND OUTLOOK

The method of independent S-matrix poles is a useful
tool in analyzing near-threshold phenomena in a model-
independent way. We have shown that in our formulation, it
is possible that some of the commonly used analyses missed
out important physics in probing the nature of near-threshold
enhancements. The parametrized background may absorb the
relevant physics if the parametrization used can only cover
a limited model space. Other elements of the full S matrix
can be useful in providing more rigorous interpretations of
the observed signals.
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FIG. 4. Displacing one of the pair poles and fixing the other. The darker color represents the displacement below the original Re (Im) and
the lighter hues represent the displacement above the original Re (Im) values. Quantitatively, there is little to no difference near the threshold.

We used the independent S-matrix poles formulation to
study the PN

ψ (4312)+ in the invariant mass spectrum of J/ψ p.
It turned out that, by focusing only on the contribution of T11

in the overall line shape of the distribution, one cannot rule out
yet the compact pentaquark interpretation. Our result gives
credence to the deep learning analysis made in [44] and the
improved data in [47] together with its corresponding analysis
in [48]. It is also worth noting that a three-channel analysis
upholding the principles of S matrix in [49] shows evidence of
poles near the scattering region, emphasizing the importance
of strong coupling with higher channels. Indeed, sophisticated
methods catering all possibilities must be considered to obtain
a definitive interpretation of the pentaquark signals.

Moving forward, we plan to use the present formalism
to improve the deep learning extraction of pole configura-
tions started in [42,50,51]. The independence of the poles
used in generating the line shape ensures that no specific
trajectory is preferred to reach a particular pole configuration.
Together with the vast parameters that a deep neural network
can provide and its ability to generalize beyond the training
dataset, one can then extract a nonbiased interpretation of
near-threshold enhancements.

ACKNOWLEDGMENT

This work was funded by the UP System Enhanced Cre-
ative Work and Research Grant (ECWRG-2021-2-12R).

[1] S. L. Olsen, T. Skwarnicki, and D. Zieminska, Rev. Mod. Phys.
90, 015003 (2018).

[2] F.-K. Guo, C. Hanhart, Ulf-G. Meißner, Q. Wang, Q. Zhao, and
B.-S. Zou, Rev. Mod. Phys. 90, 015004 (2018).

[3] J. A. Oller, Prog. Part. Nucl. Phys. 110, 103728 (2020).
[4] F.-K. Guo, X.-H. Liu, and S. Sakai, Prog. Part. Nucl. Phys. 112,

103757 (2020).
[5] M. Mai, U.-G. Meißner, and C. Urbach, Phys. Rep. 1001, 1

(2023).
[6] M. Albaladejo et al., Prog. Part. Nucl. Phys. 127, 103981

(2022).
[7] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 122,

222001 (2019).

[8] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 115,
072001 (2015).

[9] C. Fernández-Ramírez, A. Pilloni, M. Albaladejo, A. Jackura,
V. Mathieu, M. Mikhasenko, J. A. Silva-Castro, and A. P.
Szczepaniak (JPAC Collaboration), Phys. Rev. Lett. 123,
092001 (2019).

[10] L. Ng, L. Bibrzycki, J. Nys, C. Fernández-Ramírez, A. Pilloni,
V. Mathieu, A. J. Rasmusson, and A. P. Szczepaniak (Joint
Physics Analysis Center Collaboration), Phys. Rev. D 105,
L091501 (2022).

[11] H.-X. Chen, W. Chen, and S.-L. Zhu, Phys. Rev. D 100,
051501(R) (2019).

[12] J.-B. Cheng and Y.-R. Liu, Phys. Rev. D 100, 054002 (2019).

045204-8

https://doi.org/10.1103/RevModPhys.90.015003
https://doi.org/10.1103/RevModPhys.90.015004
https://doi.org/10.1016/j.ppnp.2019.103728
https://doi.org/10.1016/j.ppnp.2020.103757
https://doi.org/10.1016/j.physrep.2022.11.005
https://doi.org/10.1016/j.ppnp.2022.103981
https://doi.org/10.1103/PhysRevLett.122.222001
https://doi.org/10.1103/PhysRevLett.115.072001
https://doi.org/10.1103/PhysRevLett.123.092001
https://doi.org/10.1103/PhysRevD.105.L091501
https://doi.org/10.1103/PhysRevD.100.051501
https://doi.org/10.1103/PhysRevD.100.054002


INTERPRETATION OF NEAR-THRESHOLD PEAKS USING … PHYSICAL REVIEW C 108, 045204 (2023)

[13] M.-L. Du, V. Baru, F.-K. Guo, C. Hanhart, Ulf-G. Meißner, J. A.
Oller, and Q. Wang, Phys. Rev. Lett. 124, 072001 (2020).

[14] I. Matuschek, V. Baru, F.-K. Guo, and C. Hanhart, Eur. Phys. J.
A 57, 101 (2021).

[15] A. Ali and A. Y. Parkhomenko, Phys. Lett. B 793, 365 (2019).
[16] D. Morgan, Nucl. Phys. A 543, 632 (1992).
[17] D. Morgan and M. Pennington, Phys. Lett. B 258, 444 (1991).
[18] D. Morgan and M. R. Pennington, Phys. Rev. D 48, 5422

(1993).
[19] R. G. Newton, Scattering Theory of Waves and Particles,

Theoretical and Mathematical Physics (Springer-Verlag,
Berlin/Heidelberg, 1982).

[20] M. Kato, Ann. Phys. 31, 130 (1965).
[21] W. Yamada and O. Morimatsu, Phys. Rev. C 102, 055201

(2020).
[22] W. A. Yamada and O. Morimatsu, Phys. Rev. C 103, 045201

(2021).
[23] W. A. Yamada, O. Morimatsu, T. Sato, and K. Yazaki,

Phys. Rev. D 105, 014034 (2022).
[24] J. Taylor, Scattering Theory: Quantum Theory on Nonrelativis-

tic Collisions (Wiley, New York, 1972).
[25] N. G. van Kampen, Phys. Rev. 91, 1267 (1953).
[26] N. G. van Kampen, Phys. Rev. 89, 1072 (1953).
[27] S. A. Rakityansky, in Jost Functions in Quantum Mechanics:

A Unified Approach to Scattering, Bound, and Resonant State
Problems (Springer International Publishing, Cham, 2022),
pp. 407–423.

[28] B. C. Pearce and B. F. Gibson, Phys. Rev. C 40, 902 (1989).
[29] W. R. Frazer and A. W. Hendry, Phys. Rev. 134, B1307 (1964).
[30] K. J. L. Couteur, Proc. R. Soc. London A 256, 115 (1960).
[31] R. G. Newton, J. Math. Phys. 2, 188 (1961).
[32] R. G. Newton, J. Math. Phys. 3, 75 (1962).
[33] M. L. Kharakhan and Y. M. Shirokov, Theor. Math. Phys. 3,

374 (1971).

[34] A. M. Badalyan, L. P. Kok, M. I. Polikarpov, and Y. A.
Simonov, Phys. Rep. 82, 31 (1982).

[35] C. Hanhart, J. R. Pelaez, and G. Rios, Phys. Lett. B 739, 375
(2014).

[36] T. Hyodo, Phys. Rev. C 90, 055208 (2014).
[37] R. L. Workman et al. (Particle Data Group), Prog. Theor. Exp.

Phys. 2022, 083C01 (2022).
[38] Z.-Y. Wang, H. A. Ahmed, and C. W. Xiao, Eur. Phys. J. C 81,

833 (2021).
[39] U.-G. Meißner, Symmetry 12, 981 (2020).
[40] T. Hyodo and D. Jido, Prog. Part. Nucl. Phys. 67, 55 (2012).
[41] S.-Q. Kuang, L.-Yun Dai, X.-W.Kang and D.-L. Yao,

Eur. Phys. J. C 80, 433 (2020).
[42] D. L. B. Sombillo, Y. Ikeda, T. Sato, and A. Hosaka, Phys. Rev.

D 104, 036001 (2021).
[43] R. J. Eden and J. R. Taylor, Phys. Rev. 133, B1575 (1964).
[44] Z. Zhang, J. Liu, J. Hu, Q. Wang, and U.-G. Meißner, Sci. Bull.

68, 981 (2023).
[45] Y. Yamaguchi, A. Giachino, A. Hosaka, E. Santopinto, S.

Takeuchi, and M. Takizawa, Phys. Rev. D 96, 114031
(2017).

[46] Y. Yamaguchi, A. Hosaka, S. Takeuchi, and M. Takizawa,
J. Phys. G: Nucl. Part. Phys. 47, 053001 (2020).

[47] S. Adhikari et al. (GlueX Collaboration), Phys. Rev. C 108,
025201 (2023).

[48] I. Strakovsky, W. J. Briscoe, E. Chudakov, I. Larin, L. Pentchev,
A. Schmidt, and R. L. Workman, Phys. Rev. C 108, 015202
(2023).

[49] D. Winney et al. (Joint Physics Analysis Center Collaboration),
Phys. Rev. D 108, 054018 (2023).

[50] D. L. B. Sombillo, Y. Ikeda, T. Sato, and A. Hosaka, Phys. Rev.
D 102, 016024 (2020).

[51] D. L. B. Sombillo, Y. Ikeda, T. Sato, and A. Hosaka, Few-Body
Syst. 62, 52 (2021).

045204-9

https://doi.org/10.1103/PhysRevLett.124.072001
https://doi.org/10.1140/epja/s10050-021-00413-y
https://doi.org/10.1016/j.physletb.2019.05.002
https://doi.org/10.1016/0375-9474(92)90550-4
https://doi.org/10.1016/0370-2693(91)91115-C
https://doi.org/10.1103/PhysRevD.48.5422
https://doi.org/10.1016/0003-4916(65)90235-6
https://doi.org/10.1103/PhysRevC.102.055201
https://doi.org/10.1103/PhysRevC.103.045201
https://doi.org/10.1103/PhysRevD.105.014034
https://doi.org/10.1103/PhysRev.91.1267
https://doi.org/10.1103/PhysRev.89.1072
https://doi.org/10.1103/PhysRevC.40.902
https://doi.org/10.1103/PhysRev.134.B1307
https://doi.org/10.1098/rspa.1960.0096
https://doi.org/10.1063/1.1703698
https://doi.org/10.1063/1.1703790
https://doi.org/10.1007/BF01031591
https://doi.org/10.1016/0370-1573(82)90014-X
https://doi.org/10.1016/j.physletb.2014.11.011
https://doi.org/10.1103/PhysRevC.90.055208
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1140/epjc/s10052-021-09633-4
https://doi.org/10.3390/sym12060981
https://doi.org/10.1016/j.ppnp.2011.07.002
https://doi.org/10.1140/epjc/s10052-020-8008-5
https://doi.org/10.1103/PhysRevD.104.036001
https://doi.org/10.1103/PhysRev.133.B1575
https://doi.org/10.1016/j.scib.2023.04.018
https://doi.org/10.1103/PhysRevD.96.114031
https://doi.org/10.1088/1361-6471/ab72b0
https://doi.org/10.1103/PhysRevC.108.025201
https://doi.org/10.1103/PhysRevC.108.015202
https://doi.org/10.1103/PhysRevD.108.054018
https://doi.org/10.1103/PhysRevD.102.016024
https://doi.org/10.1007/s00601-021-01642-z

