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Strange molecular partners of Pc states in the γ p → φp reaction
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Based on the high-statistics data of the CLAS Collaboration on the γ p → φp reaction in the center-of-mass
energy range of 2.2 GeV to 2.8 GeV, we investigate the possible existence of strange molecular partners of Pc

states, i.e., N∗(2080) and N∗(2270) as K∗� and K∗�∗ molecular states. In addition to the t-channel Pomeron
exchange, t-channel meson exchange including pseudoscalar meson (π, η), scalar meson [σ, a0(980), f0(980)],
axial-vector meson f1(1285), tensor meson f2(1270), as well as s- and u-channel proton exchange, the inclusion
of the s-channel N∗(2080) and N∗(2270) states can fit the data very well. The fitted coupling constants of these
N∗ molecular states to pφ and γ p are consistent with the results calculated directly from the relevant hadronic
triangle diagrams of the hadronic molecular picture.
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I. INTRODUCTION

The observation of three narrow Pc states decaying to J/ψ p
by the LHCb experiment [1,2] has triggered great interests
and a lot of efforts to understand their nature [3–5]. In fact,
the observed three narrow Pc states, i.e., Pc(4312), Pc(4440),
and Pc(4457), are consistent with earlier predictions [6–9]
of one narrow D̄�c bound state with spin-parity JP = 1

2
−

and two nearly degenerate narrow D̄∗�c bound states with
JP = 1

2
−

& 3
2

−
. From heavy quark spin symmetry, one D̄�∗

c

bound state with JP = 3
2

−
and three D̄∗�∗

c bound states with

JP = 1
2

−
, 3

2
−

& 5
2

−
are also expected to exist [10–12]. Evi-

dence of a Pc(4380) was claimed by Refs. [1,12], with its mass
consistent with the expectation of the D̄�∗

c bound state. Since
these hidden-charm Pc states can be successfully and naturally
described within the hadronic molecular picture, their strange
partners are also expected to exist [13–16]. As the Pc states
were observed through their J/ψ p decay mode, for those of
their strange partners above φp threshold, they are expected to
show up in the corresponding φp decay mode. This prompts
us to look for the K∗� and K∗�∗ bound states in γ p → φp
reaction.

In 2014, the CLAS Collaboration at Jefferson Laboratory
reported high-statistics measurements of differential cross
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sections for the reaction γ p → φp [17,18]. The experimental
results show that there may be some structures near the center-
of-mass energies W = 2.1 GeV and 2.3 GeV. And there is a
bump structure at the forward angle around W = 2.1 GeV.

Before the results of this experiment were released, there
were many studies on this process [19–26]. Due to the insuffi-
cient statistics of the previous experimental data, the previous
models need to be improved accordingly when describing the
latest experimental results.

Then based on the latest CLAS data, Yu et al. [27]
used Reggeized parametrized meson (π, σ, f2) exchange and
Pomeron exchange to explain this forward angle behavior.

Kim and his collaborators [28,29] considered t-channel
Pomeron exchanges, t-channel meson exchanges includ-
ing [π, η, a0, f0, f1(1285)], s-channel and u-channel proton
exchange, and s-channel nucleon resonances exchange in-
cluding [N∗(2000, 5/2+), N∗(2300, 1/2+)] by the Particle
Data Group (PDG) [30]. In later work [31], they also
considered the φN → φN final state interaction includ-
ing the gluon-exchange interaction, the direct φN coupling
term, and coupled-channel effects arising from the one-
meson-exchange mechanisms in φN → K	, K�,πN, ρN
processes, and found that the effect of the final state inter-
action of γ p → φp is very small.

In the W = 2.1−2.3 GeV energy region for the γ p →
φp reaction, there may be two hadronic molecular states:
S-wave K∗� molecule N∗(2080) and S-wave K∗�∗ molecule
N∗(2270), we examine whether the data can be fitted by using
N∗(2080) and N∗(2270) instead of previous N∗(2000, 5/2+)
and N∗(2300, 1/2+) for the s-channel N∗ exchange together
with the above-mentioned background terms.

The article is organized as follows. In Sec. II, we present
the theoretical framework of our calculation. Our results as
well as discussions and a brief summary are shown in Sec. III.
The Appendix is presented last.
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II. THEORETICAL FRAMEWORK

For the reaction of φ photoproduction: γ (k1) + p(p1) →
φ(k2) + p(p2) in the center-of-mass system, the four-
momenta of these particles can be defined as

k1 = (k, �k), (1)

p1 = (Ep(k),−�k), (2)

k2 = (Eφ (k′), �k′), (3)

p2 = (Ep(k′),−�k′), (4)

P = k1 + p1 = k2 + p2 = (W, �0), (5)

where k(k′) is the magnitude of three-momenta �k(�k′), Ea(k) =√
M2

a + k2 is the energy of a particle with mass Ma, and W is
the invariant mass of the system.

Then the differential cross section can be expressed as
follows:

dσ

d�
= 1

64π2W 2

k′

k

1

4

∑
all spins

|Mλ1,s2,λ2,s2 (k1, p1, k2, p2)|2, (6)

where the invariant amplitude M can be written as

Mλ1,s2,λ2,s2 (k1, p1, k2, p2)

= ε∗
ν (k2, λ2)ū(p2, s2)Mμν (k1, p1, k2, p2)

× u(p1, s1)εμ(k1, λ1), (7)

where εμ(k1, λ1) and ε∗
ν (k2, λ2) are the polarization vector of

photon γ and meson φ, respectively, u(p1, s1) and ū(p2, s2)
are the spinor of the incoming and outgoing baryon, respec-
tively, with the normalization ū(p, s)u(p, s′) = 2Mpδs,s′ .

As shown in Fig. 1, the full amplitude in our model
consists of t-channel Pomeron exchange, t-channel meson
exchange including pseudoscalar meson (π, η), scalar meson
[σ, a0(980), f0(980)], axial-vector meson [ f1(1285)], tensor
meson [ f2(1270)], s- and u-channel proton exchange, and
s-channel N∗ molecule exchange. Then, Mμν can be written
as

Mμν = Mμν

t−ch,P + Mμν

t−ch,M + Mμν
N + Mμν

s−ch,N∗ . (8)

In the following parts, these amplitudes are presented in
details.

A. Pomeron exchange

The Pomeron exchange, based on the Regge phenomenol-
ogy, stands out as one of the most successful frameworks for
describing high-energy elastic scattering. In the study of Don-
nachie and Landshoff [32], Pomeron is often approximated
as a particle with I (JC ) = 0(1+), which primarily couples to
the quarks in hadrons. This is shown schematically in Fig. 2.
And the Pomeron couples to quarks with γμ type, similar to a
photon.

After considering some approximations [19,33,34], the
amplitude for Pomeron exchange can be expressed as follows:

Mμν

t−ch,P (k1, p1, k2, p2) = GP (s, t )T μν

P (k1, p1, k2, p2) (9)

with s = P2 = W 2, t = (p1 − p2)2 = (k1 − k2)2,

T μν

P (k1, p1, k2, p2)

= i12
eM2

φ

fφ
βsFφ (t )βu/d F1(t )

(
/k1gμν − kν

1γ μ
)
, (10)

where the decay constant fφ = 13.48 can be calculated from
the decay width of φ → e+e− in the vector meson dominance
(VMD) model [9]. And βs (βu/d ) is the coupling constant of
the Pomeron with the quarks s (u or d) in the vector meson
φ (proton p). The Fφ (t ) and F1(t ) are the form factors for the
Pomeron-vector meson vertex and the isoscalar electromag-
netic form factor of the nucleon, respectively, which can be
expressed as follows:

Fφ (t ) = 1

M2
φ − t

(
2μ2

0

2μ2
0 + M2

φ − t

)
, (11)

F1(t ) = 4M2
p − 2.8t

(4M2
p − t )(1 − t/0.71 GeV2)2

, (12)

where μ0 is a cutoff of the form factor related to the Pomeron-
vector meson vertex.

The GP in Eq. (9) is the Regge propagator of the Pomeron,
and it is written as follows:

GP =
(

s

s0

)αP (t )−1

exp

{
− iπ

2
[αP(t ) − 1]

}
(13)

with Regge trajectory αP(t ) = α0 + α′
Pt .

The parameters μ2
0, βu/d , βs, s0, α0, α

′
P can be determined

by fitting the total cross section of ρ0, ω, and φ photoproduc-
tion at high energies [35]. Here, we use the same values as in
Refs. [9,31]:

μ2
0 = 1.1 GeV2, βu/d = 2.07 GeV−1, βs = 1.386 GeV−1,

α0 = 1.08, α′
P = 1/s0 = 0.25 GeV−2.

B. Meson exchange

In the low-energy region, we also consider t-channel com-
mon meson exchanges, including pseudoscalar meson ϕ =
{π, η}, scalar meson S = {σ, a0(980), f0(980)}, axial-vector
meson f1(1285), and tensor meson f2(1270). The correspond-
ing effective Lagrangians are given as in Refs. [28,31]:

Lγ ϕφ = egγ ϕφ

Mφ

εμναβ∂μAν∂αVβ, (14)

Lγ Sφ = egγ Sφ

Mφ

FμνφμνS, (15)

Lγ f1φ = gγ f1φεμναβ∂μAνφα f1β, (16)

Lγ f2φ = gγ f2φ

m0
Fμαgαβφβν f μν

2 , (17)

LϕNN = −igϕNN N̄γ5Nϕ, (18)

LSNN = gSNN N̄NS, (19)

L f1NN = −g f1NN N̄γν f μ
1 γ5N, (20)

L f2NN = 2g f2NN

MN
[N̄γμ, ∂ν]N f μν

2 , (21)
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where ϕ = {π, η}, S = {σ, a0, f0}, Fμν = ∂μAν − ∂νAμ,
φμν = ∂μφν − ∂νφμ.

The amplitudes can be calculated from the above effective
Lagrangians:

Mμν

t−ch,ϕ
= i

egϕ

Mφ

εμναβk1αk2βγ5
Fϕ (t )

t − M2
ϕ

, (22)

Mμν

t−ch,S = 2
egS

Mφ

(
k1 · k2gμν − kν

1 kμ
2

) FS (t )

t − M2
S

, (23)

Mμν

t−ch, f1
= ig f1ε

μναβ

[
−gαλ + qtαqtλ

M2
f1

]
γ λγ5k1β

Ff1 (t )

t − M2
f1

,

(24)

Mμν

t−ch, f2
= �

μνβρ

γ f2φ
G2

βρ;λσ (qt )�
λσ
f2NN

Ff2 (t )

t − M2
f2

(25)

with ga = gγ aφgaNN (a = {ϕ, S, f1}),

�
μνβρ

γ f2φ
(k1, k2) = gγ f2φ

m0

(
kβ

1 kρ
2 gμν + k1 · k2gνβgμρ

−kν
1 kρ

2 gμβ − kρ
1 kμ

2 gνβ
)
, (26)

G2
βρ;λσ (q) = 1

2 (g̃βλg̃ρσ + g̃βσ g̃λρ ) − 1
3 g̃βρ g̃λσ , (27)

�λσ
f2NN (p1, p2) = 2g f2NN

MN
(p1 + p2)λγ σ (28)

with m0 = 1.0 GeV, g̃βρ = −gβρ + qβqρ/m2
f2

. Fϕ (t ), FS (t ),
Ff1 (t ), and Ff2 (t ) are off-shell form factors taken as

Fϕ,S (t ) = eiβϕ,S
	4

ϕ,S

	4
ϕ,S + (

t − M2
ϕ,S

)2 , (29)

Ff1, f2 (t ) = eiβ f1 , f2

⎛
⎝ 	4

f1, f2

	4
f1, f2

+ (
t − M2

f1, f2

)2

⎞
⎠

2

. (30)

In order to better describe the experiment, we use Regge
theory to deal with the σ exchange, the f1 exchange, and the
f2 exchange, which can be referred to Refs. [27,28]. Then we
replace the Feynman propagator 1/(t − m2

σ ), 1/(t − m2
f1

), and
1/(t − m2

f2
) with Regge propagator:

1

t − m2
σ

→ Pσ (s, t )

= πα′
σ × Dσ (t )

�[ασ (t ) + 1] sin [πασ (t )]
×

(
s

sσ

)ασ (t )

, (31)

1

t − m2
f1

→ P f1 (s, t )

= πα′
f1

× D f1 (t )

�[α f1 (t )] sin [πα f1 (t )]
×

(
s

s f1

)α f1 (t )−1

, (32)

1

t − m2
f2

→ P f2 (s, t )

= πα′
f2

× D f2 (t )

�[α f2 (t ) − 1] sin [πα f2 (t )]
×

(
s

s f2

)α f2 (t )−2

(33)

with sσ = s f1 = s f2 = 1.0 GeV2. The Regge trajectories
[ασ (t ), α f1 (t ), α f2 (t )] and phases [Dσ (t ), D f1 (t ), D f2 (t )] take
the following form:

ασ (t ) = α0
σ + α′

σ t = −0.175 + 0.7 t, (34)

α f1 (t ) = α0
f1

+ α′
f1

t = 0.95 + 0.028 t, (35)

α f2 (t ) = α0
f2

+ α′
f2

t = 0.537 + 0.9 t, (36)

Dσ (t ) = e−iπασ (t ) + 1

2
, (37)

D f1 (t ) = e−iπα f1 (t ) − 1

2
, (38)

D f2 (t ) = e−iπα f2 (t ) + 1

2
. (39)

The coupling constants in Eqs. (14), (15), (16) can be
determined by the radiative decays of φ and f1. Using the
branching ratios data in PDG [30],

Brφ→π0γ = (1.32 ± 0.05)×10−3,

Brφ→ηγ = (1.301 ± 0.025)×10−2,

Brφ→a0γ = (7.6 ± 0.6)×10−5,

Brφ→ f0γ = (3.22 ± 0.19)×10−4,

Br f1→γφ = (7.4 ± 2.6)×10−4,

we can get the relevant coupling constants

gγπφ = −0.14,

gγ ηφ = −0.71,

gγ a0φ = −0.77,

gγ f0φ = −2.44,

gγ f1φ = 0.17.

The coupling constants in Eqs. (18), (19) can be deter-
mined by the Nijmegen potential as

gπNN = 13.0,

gηNN = 6.34,

ga0NN = 4.95,

g f0NN = −0.51.

The other coupling constants are considered as fitting pa-
rameters within some given ranges. For the σ exchange, the
value of gσ = gγ σφgσNN falls within the range of 0.5–1.5.
The selection of the range can be found in Ref. [27]. For the
f1 exchange, the value of g f1NN can be taken from 2.0 [36]
to 5.8 [37]. So, the value of g f1 = gγ f1φg f1NN is within the
range of 0.3–1.0. For the f2 exchange, we take the value of
g f2 = gγ f2φg f2NN to be within the range of 0.1–1.0.

The cutoff parameters (	ϕ,	S,	σ ,	 f1 ,	 f2 ) and the am-
plitude phases (βϕ, βS, βσ , β f1 , β f2 ) are the fitting parameters.

C. Proton exchange

Considering proton exchange in the s and u channels, from
the perspective of gauge invariance, the two amplitudes must
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FIG. 1. Relevant Feynman diagrams for γ p → φp.

be taken together. The associated effective Lagrangians can be
written as

Lγ NN = −eN̄

(
γμ − κN

2MN
σμν∂

ν

)
NAμ, (40)

LφNN = −gφNN N̄

(
γμ − κφNN

2MN
σμν∂

ν

)
Nφμ. (41)

And the amplitudes can be written as

Mμν
N (p1, k1, p2, k2) = (

Mμν

s−ch,p + Mμν

u−ch,p

)
Fp(s, u),

(42)

Mμν

s−ch,p(p1, k1, p2, k2) = egφNN

s − M2
N

(
γ ν − i

κφNN

2MN
σ ναk2α

)

× (/qs+MN )

(
γ μ+i

κp

2MN
σμβk1β

)
,

Mμν

u−ch,p(p1, k1, p2, k2) = egφNN

u − M2
N

(
γ μ + i

κp

2MN
σμαk1α

)

× (/qu+MN )

(
γ ν −i

κφNN

2MN
σ νβk2β

)
,

(43)

where qs = k1 + p1, qu = p1 − k2, u = q2
u. Fp(s, u) is a form

factor, taken from Ref. [31]:

Fp(s, u) = eiβp[Fp(s) + Fp(u) − Fp(s)Fp(u)]2, (44)

Fp(s) = 	4
p

	4
p + (

s − M2
p

)2 ,

Fp(u) = 	4
p

	4
p + (

u − M2
p

)2 . (45)

FIG. 2. The Pomeron exchange mechanism of γ p → φp in
quark level.
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TABLE I. The model parameters.

Phases Cutoffs (GeV) Other constants

βps 2.699 ± 0.027 	ps 0.36 ± 0.07 gσ 0.540 ± 0.029 �N∗
2

(GeV) 0.23 ± 0.04
βs 3.255 ± 0.033 	s 0.751 ± 0.028 gf1 0.86 ± 0.17 g′

1 2.5 ± 0.5
βp 5.76 ± 0.06 	p 0.766 ± 0.021 gf2 0.25 ± 0.04 g′

2 −2.0 ± 0.6
βσ 2.830 ± 0.028 	σ 2.00 ± 0.02 �N∗

1
(GeV) 0.099 ± 0.011 g′

3 2.5 ± 0.6
β f1 0.419 ± 0.004 	 f1 1.47 ± 0.06 g1 0.0395 ± 0.0024 h′

2 −0.90 ± 0.05
β f2 3.027 ± 0.030 	 f2 1.96 ± 0.15 g2 0.095 ± 0.007
βN∗

1
2.733 ± 0.027 	N∗

1
1.432 ± 0.022 g3 0.1937 ± 0.0034

βN∗
2

1.001 ± 0.010 	N∗
2

0.752 ± 0.028 h2 −9.5 ± 0.5

In this part, the coupling constant κN is the anomalous
magnetic moment of the nucleon. For the proton, κp = 1.79.
And gφNN , κφNN can be determined by the Nijmegen potential
model [38,39]. There, we take gφNN = −1.47, κφNN = −1.65
[31]. The cutoff 	p and relative phase βp are fitting parame-
ters.

D. N∗ molecule exchange

As the Pc states observed by the LHCb collaboration can be
well described by the S-wave D̄�c, D̄�∗

c , and D̄∗�c molec-
ular states [6,7,40,41] with three D̄∗�∗

c bound states with
JP = 1

2
−
, 3

2
−
, and 5

2
−

expected to exist from heavy quark
spin symmetry [10–12], their hidden strange partners are
also expected to exist [13,15]. For the process of γ p → φp,
the CLAS data [17,18] observed two peaks around K∗�
and K∗�∗ thresholds, respectively. We expect these peaks
to be due to K∗� and K∗�∗ molecular states, denoted
as N∗(2080) and N∗(2270), respectively. Since the energy
range is not far away from the pφ threshold, the S wave
is dominant. We consider only N∗(2080)(3/2−) [30] and
N∗(2270)(1/2−or 3/2−). For the process N∗ → K∗�(∗) →
γ (φ)N , it can be represented by a triangle diagram, as ex-
plained in the Appendix in detail. For simplicity, we describe
these two processes with tree-level diagrams. The correspond-
ing coupling constants are treated as fitting parameters, which
are going to be compared with the results of triangle diagram
calculations.

The corresponding effective Lagrangians can be written as
[42]

LRNγ

(
1
2

±)
= e f1

2MN
N̄�(∓)σμν∂

νAμR, (46)

LRNγ

(
3
2

±)
= − ie f1

2MN
N̄�(±)

ν FμνRμ

− e f2

(2MN )2
∂νN̄�(±)FμνRμ, (47)

LRNV

(
1
2

±)
= R̄

[
± g1M2

V

2MN (MR ∓ MN )
�(∓)

μ N

+ g2

2MN
�(∓)σμνN∂ν

]
V μ,

LRNV

(
3
2

±)
= R̄μ

[
ig1

2MN
�(±)

ν N ± g2

(2MN )2
�(±)∂νN

∓ g3

(2MN )2
�(±)N∂ν

]
V μν, (48)

where R and Rμ are the fields for the spin-1/2 and 3/2 reso-
nances, respectively. V and N are the spin-1 vector meson and
baryon, respectively. And V μν = ∂μV ν − ∂νV μ with �(±)

μ =(
γμγ5

γμ

)
, �(±) =

(
γ5

1

)
.

Then the N∗ exchange amplitudes can be written as

Mμν

s−ch,N∗ (1/2−) = FR(s)

(
g1M2

V

2MN (MR ∓ MN )
γνγ5 + g2

2MN
iσναkα

2 γ5

)
G

1
2 (qs)

e f1

2MN
γ5(−i)σμβkβ

1 , (49)

Mμν

s−ch,N∗ (3/2−) = FR(s)

(
g1

2MN
γρ + (g2 p2 − g3k2)ρ

4M2
N

)(
kα

2 gρμ − kρ
2 gαμ

)
G

3
2
αβ (qs)

(
e f1

2MN
γσ + e f2

4M2
N

(p1)σ

)(
kβ

1 gσμ − kσ
1 gβμ

)
,

(50)

where

G
1
2 (p) = i(/p + MR)

s − M2
R + iMR�R

, (51)

G
3
2
μν (p) = i(/p + MR)

s − M2
R + iMR�R

(
−gμν + 1

3
γμγν + 2

3

pμ pν

M2
R

+ 1

3MR
(γμ pν − γν pν )

)
. (52)
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FIG. 3. Differential cross sections dσ/d cos θ (μb) as a function of W (GeV) at different cos θ . The blue solid line stands for the total
contribution. The red dotted line, green dashed line, gray dash-dotted line, purple dotted line, and brown dotted line correspond to the
contributions from Pomeron exchange, pseudoscalar and scalar mesons (π, η, a0, f0 ) exchange, s- and u-channel proton exchange, Reggeized
mesons (σ, f1, f2) exchange, and two N∗ molecules exchange, respectively. The magenta dashed line represents the full contribution without the
N∗ exchange. The experimental data are taken from Ref. [17], where the red triangles and blue circles represent the charged- and neutral-mode,
respectively.

The form factor FR(s) takes the following form:

FR(s) = eiβR e
− (s−m2

R )2

	4
R . (53)

For N∗(2080), JP = 3/2−, these parameters need to be fitted:

h2( f2/ f1), g1, g2, g3, βN∗
1
, 	N∗

1
, �N∗

1
.

For N∗(2270), JP = 3/2−(1/2−), the fitted parameters are

h′
2( f ′

2/ f ′
1), g′

1, g′
2, g′

3, βN∗
2
, 	N∗

2
, �N∗

2
,

(g′
1/ f ′

1, g′
2/ f ′

1, βN∗
2
, 	N∗

2
, �N∗

2
).

III. RESULTS AND DISCUSSIONS

According to the KK̄ decay mode of the φ, the
CLAS Collaboration divided the results of γ p → φp
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FIG. 4. Differential cross sections dσ/d cos θ (μb) as a function of cos θ at different W (GeV). The marks are the same as in Fig. 3.
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FIG. 5. Mesons contribution to the differential cross sections dσ/d cos θ (μb) as a function of W (GeV) at different cos θ .

into charged-(φ → K+K−) and neutral-(φ → K0
S K0

L ) modes.
Considering the contamination of the process γ p →
K+	(1520)/	(1800) → pK+K− on the charged mode, al-
though relevant cuts have been done in the experiment, we
only use the neutral mode to fit.

By using the MINUIT algorithm [43–45] to minimize the
χ2 function, we fit the experimental data of the differential
cross section dσ/d cos θ in Eq. (6) and obtain the best fitting
result χ2/dof = 0.87. Since with JP[N∗(2270)] = 1/2−, we
cannot get good fitting results, so we only show JP = 3/2−
results. The corresponding parameters and results are shown
in Table I and Figs. 3–7.

Based on the fitting results, the following observations can
be made:

(i) Proton exchange: The contribution of proton ex-
change can be negligible in all regions.

(ii) Pomeron exchange: The contribution of Pomeron
exchange is relatively small in the backward angle
region. However, as cos θ increases, its contribution
starts to increase. It becomes the main contributor to
the differential cross section when cos θ ∼ 1, and its
contribution increases with the center-of-mass energy
in this region. In other angles, the contribution of
Pomeron exchange tends to increase initially and then
decrease.

(iii) Meson (π, η, a0, f0) exchange: The overall contri-
bution of meson exchange to the differential cross
section is relatively small. It also increases initially

045201-8



STRANGE MOLECULAR PARTNERS OF Pc STATES IN … PHYSICAL REVIEW C 108, 045201 (2023)

FIG. 6. Reggeized mesons contribution to the differential cross sections dσ/d cos θ (μb) as a function of W (GeV) at different cos θ .

and then decreases with the center-of-mass energy.
Among the mesons, the contribution of pseudoscalar
mesons is much smaller than that of scalar mesons,
and the contributions of η and f0 are much smaller
than those of π and a0, respectively.

(iv) Reggeized parametrized mesons (σ, f1, f2) exchange:
The contribution of Reggeized parametrized mesons
to the differential cross section is minimal in the back-
ward angle region, except near the threshold. Their
contribution becomes larger as the angle increases.
The change trend with the center-of-mass energy is
similar to that of meson exchange with a peak whose
position and height increase with the angle.

(v) N∗ molecules exchange: The contribution of N∗
molecules exchange is most dominant in the back-
ward angle region and smaller in other regions.

Considering the behavior of the total cross section, in the
high-energy region, besides the largest contribution from the
Pomeron, only the Reggeized parametrized mesons contribute
significantly. Due to their relative phase, the exchange of
Reggeized mesons has little effect on the total cross section.

From the fitting results about N∗ molecules exchange:

�N∗
1

= 0.099 ± 0.011 GeV, �N∗
2

= 0.23 ± 0.04 GeV,

g1 = 0.0395 ± 0.0024, g2 = 0.095 ± 0.007,

g3 = 0.1937 ± 0.0034, f2/ f1 = −9.5 ± 0.5,

g′
1 = 2.5 ± 0.5, g′

2 = −2.0 ± 0.6,

g′
3 = 2.5 ± 0.6, f ′

2/ f ′
1 = −0.90 ± 0.05,
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FIG. 7. Total cross section σ (μb) as a function of the photon
energy in the laboratory frame E lab

γ (GeV). Experimental data come
from Refs. [46–49].

we can calculate the properties

A3/2/A1/2 = 1.60 ± 0.13,

A′
3/2/A′

1/2 = −1.12 ± 0.25,

�N∗
1 →pφ × �N∗

1 →γ p = (8.2 ± 2.6)×10−4 MeV2,

�N∗
2 →pφ × �N∗

2 →γ p = (6 ± 6)×10−3 MeV2.

The above results are roughly consistent with the calculation
from the molecular state triangle diagram in the Appendix
at small cutoffs 	0 = 0.6−0.8 GeV and 	1 = 0.8−1.0 GeV.
Then, we discuss other mechanisms that may affect this pro-
cess.

First, for the charged mode, we need to consider the
final state of the three-body decay. The corresponding
process is γ p → φp, K+	(1520), K+	(1800) → pK+K−.
After adding the corresponding hard cuts of MpK− according
to the experimental analysis, we can simultaneously fit both
the charged-mode data and the neutral-mode data.

Second, the thresholds of K+	(1520) and pφ are very
close. So there may be coupled-channel effects [26]. Then
we can fit the experiment data of both K+	(1520) and pφ
together.

In summary, through fitting the experimental data of CLAS
in 2014, we carefully analyzed the process of γ p→φp.
It is found that the data can be fitted well by using
N∗(2080) and N∗(2270) instead of previous N∗(2000, 5/2+)

FIG. 8. The triangle diagram for the two-body decays of the
exotic N∗s in the K∗�∗ and K∗� molecular pictures, where C1,
C2 denote the constituent particles of the composite system K∗�∗

or K∗�, F1, F2 denote the final states, EP denotes the exchanged
particles.

TABLE II. Used decay channels of N∗.

Initial state Final states Exchanged particles

pφ K , K∗
N∗(2270)(K∗�∗)

γ p K
pφ K , K∗

N∗(2080)(K∗�)
γ p K

and N∗(2300, 1/2+) for the s-channel N∗ exchange together
with other background terms. The fitted coupling constants of
these N∗ molecular states to pφ and γ p are consistent with the
results calculated directly from the relevant hadronic triangle
diagrams of the molecular picture. The new solution gives
a natural explanation of the two N∗ peaks in the process of
γ p → φp, a further support of the existence of the strange
molecular partners of Pc states.

ACKNOWLEDGMENTS

We thank useful discussions and valuable comments from
Feng-Kun Guo and Jia-Jun Wu. This work is supported by
the NSFC and the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) via the funds provided to the
Sino-German Collaborative Research Center TRR110 Sym-
metries and the Emergence of Structure in QCD (NSFC Grant
No. 12070131001, DFG Project-ID 196253076-TRR 110), by
the NSFC Grants No. 11835015 and No. 12047503, and by
the Chinese Academy of Sciences (CAS) under Grant No.
XDB34030000.

APPENDIX: N∗ HADRONIC MOLECULES

For the N∗(2270) as the K∗�∗ molecular, it should
be mentioned that the sets of spin and parity for
(K∗, �∗) is (1−, 3/2+). Thus the N∗ states of spin-parity
(1/2−, 3/2−, 5/2−) may be considered as S-wave bound
states of K∗�∗. Subject to the Lorentz covariant orbital-spin
scheme, the S-wave couplings for the N∗ with JP = 1/2− and
3/2− with the meson-baryon pairs of interest are given by

LK∗�∗N∗(1/2− ) = g1/2−
K∗�∗N∗�̄

∗
μN∗K∗μ, (A1)

LK∗�∗N∗(3/2− ) = g3/2−
K∗�∗N∗�̄

∗μγ5γ̃
νN∗

μK∗
ν , (A2)

where γ̃ ν = (gμν − pμ pν

p2 )γ μ with pμ representing the mo-
mentum of initial N∗ state. And two S-wave coupling
constants g1/2−

K∗�∗N∗ and g3/2−
K∗�∗N∗ can be estimated by the

TABLE III. The coupling constants used in our calculation.

gKN�∗ (GeV−1) gK∗N�∗ (GeV−1) gK∗Kφ gK∗K∗φ

6.202 8.444 9.077 4.271
gKN� gK∗N� gK∗

0 K0γ (GeV−1) gK∗
c Kcγ (GeV−1)

2.7 −3.25 −0.385 0.253
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Weinberg compositeness criterion [4,50,51]:

g1/2−
K∗�∗N∗ =

√
2πm2

√
2ε

μ3/2
, (A3)

g3/2−
K∗�∗N∗ =

√
12πm2

√
2ε

5μ3/2
, (A4)

where μ = m1m2/(m1 + m2) is the reduced mass of the bound
particles, m1 and m2 denote the masses of �∗ and K∗, respec-
tively, and ε = m1 + m2 − M is the binding energy.

Similarly, for the N∗(2080)(3/2−) as the K∗� molecular,
the S-wave coupling can be written as

LK∗�N∗(3/2− ) = g3/2−
K∗�N∗�̄N∗

μK∗μ, (A5)

g3/2−
K∗�N∗ =

√
4πm2

√
2ε

μ3/2
. (A6)

As shown in Fig. 8, we calculate the partial decay width
of the molecular state by calculating this triangle diagram, the
process considered in Table II. Therefore we also need the
following effective Lagrangians [40]:

LV1V2P = −gV1V2P εμναβ
(
∂μV1ν∂αV2β

)
P,

LV1V2V3 = −igV1V2V3

{
V μ

1

(
∂μV ν

2 V3ν − V ν
2 ∂μV3ν

)
+ (

∂μV1νV ν
2 − V1ν∂μV ν

2

)
V μ

3

+V μ
2

(
V ν

1 ∂μV3ν − ∂μV1νV ν
3

)}
,

LPBB∗ = gPBB∗ B̄∗μ∂μPB,

LV BB∗ = −igV BB∗ B̄∗μγ νγ5[∂μVν − ∂νVμ]B,

LPB1B2 = −igPB1B2 B̄1γ5B2P,

LV B1B2 = gPB1B2 B̄1γμV μB2,

where V1V2P denotes K∗Kφ or K∗Kγ , V1V2V3 denotes K∗K∗φ
or K∗K∗γ , PBB∗ denotes K p�∗, V BB∗ denotes K∗ p�∗,
PB1B2 denotes K p�, V B1B2 denotes K∗ p�.

Here, we list the exact values of the coupling constants in-
volved in our calculations in Table III, where gγ K∗K is derived
from the radiative decay of K∗ in PDG [30], and the other
constants are derived from the SU(3) flavor symmetry [52,53].

FIG. 9. The particle’s momentums of the triangle diagram.

In order to make the calculation reasonable, we add two
form factors. We adopt the following Gaussian regulator f1

to suppress short-distance contributions, and introduce the
monopole form factor f2 to suppress the off-shell contribu-
tions for the exchanged particles:

f1
(
p2

/
	2

0

) = exp
(−p2

/
	2

0

)
, (A7)

f2(q2) = 	4
1

(m2 − q2)2 + 	4
1

, (A8)

where p is the spatial part of the momentum of K∗ or �∗ in
the rest frame of the N∗ state, m is the mass of the exchanged
particle, and q is the corresponding momentum. 	0 and 	1

are ultraviolet cut-off and off-shell cutoff, respectively. The
cutoff 	0 denotes a hard momentum scale that suppresses the
contribution of the two constituents at short distances ∼1/	0.
There is no universal criterion for choosing the cut-off, but
as a general rule, the value of 	0 should be much larger than
the typical momentum in the bound state, given by

√
2με. It

should also not be too large since we have neglected all other
degrees of freedom, except for the two constituents, which
would play a role at short distances. Here, we range 	0 from
0.6 GeV to 1.4 GeV. The cut-off 	1 for the off-shell form
factor varies for the different systems, and we vary it in the
range of 0.8 GeV to 2.0 GeV.

So, following the momentums notation in Fig. 9, the corre-
sponding amplitude can be written as

Mi = g0g1g2

∫ ∞

−∞

d4k

(2π )4
exp

{−(q + k)2

	2
0

}
	4

1(
m2

i3 − k2
)2 + 	4

1

× Ai(k)[
(q + k)2 − m2

i1 + iεi1
][

(p − q − k)2 − m2
i2 + iεi2

](
k2 − m2

i3 + iεi3
) , (A9)

A1/2
N∗(2270),K = ū(q, s1)(/q + /k + mi1)Pμν

3/2+ (q + k, mi1)u(p, s0)kμg̃i2
νσ ελσαβ (p − q − k)λ(p − q)αε∗

β (p − q, s2), (A10)

A1/2
N∗(2270),K∗ = ū(q, s1)γ5γ

ν (/q + /k + mi1)Pμα

3/2+ (q + k, mi1)u(p, s0)
{
kμ(p − q + k)λg̃i2

αλg̃i3β
ν

+ kμ(p − q − 2k)β g̃i2
αλg̃i3λ

ν + kμ(k − 2p + 2q)λg̃i2β
α g̃i3λ

ν − (μ ↔ ν)
}
ε∗
β (p − q, s2), (A11)

A3/2
N∗(2270),K = ū(q, s1)(/q + /k + mi1)Pμν

3/2+ (q + k, mi1)γ5γ̃
ρuν (p, s0)kμg̃i2

ρσ ελσαβ (p − q − k)λ(p − q)αε∗
β (p − q, s2), (A12)

A3/2
N∗(2270),K∗ = ū(q, s1)γ5γ

ν (/q + /k + mi1)Pμα

3/2+ (q + k, mi1)γ5γ̃
βuα (p, s0)

{
kμ(p − q + k)λg̃i2

βλg̃i3σ
ν

+kμ(p − q − 2k)σ g̃i2
βλg̃i3λ

ν + kμ(k − 2p + 2q)λg̃i2σ
β g̃i3λ

ν − (μ ↔ ν)
}
ε∗
σ (p − q, s2), (A13)
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TABLE IV. The values of (|A3/2/A1/2|, �γ p, �pφ ) at different cutoffs from the triangle diagram.

(	0, 	1)(GeV) (0.6,0.8) (0.8,1.1) (1.0,1.4) (1.2,1.7) (1.4,2.0)

|A3/2/A1/2| 1.90 2.04 2.16 2.27 2.39

N∗(2080)(3/2−) �γ p(KeV) 0.047 0.28 0.69 1.16 1.64

�pφ (MeV) 2.34 14.97 41.09 78.70 127.98

|A3/2/A1/2| 1.06 1.12 1.19 1.26 1.32

N∗(2270)(3/2−) �γ p(KeV) 0.53 4.56 15.65 35.56 65.72

�pφ (MeV) 2.87 21.86 88.85 256.19 605.63

A3/2
N∗(2080),K = ū(q, s1)γ5(/q + /k + mi1)uρ (p, s0)g̃i2

νρε
μναβ (p − q − k)μ(p − q)αε∗

β (p − q, s2), (A14)

A3/2
N∗(2080),K∗ = ū(q, s1)γμ(/q + /k + mi1)uν (p, s0)

{
(p − q + k)α g̃να

i2 g̃μβ

i3

+(p − q − 2k)β g̃ν
i2α g̃μα

i3 + (k − 2p + 2q)α g̃νβ

i2 g̃μα
i3

}
ε∗
β (p − q, s2)

= ū(q, s1)γμ(/q + /k + mi1)uν (p, s0)g̃να
i2 g̃μβ

i3

{
gβλ(p − q + k)α

+gαβ (p − q − 2k)λ + gλα (k − 2p + 2q)β
}
ε∗λ(p − q, s2), (A15)

where εi1 = mi1�i1, εi2 = mi2�i2, εi3 = mi3�i3, and g̃i2
μν ≡ g̃μν (p − q − k, mi2), g̃i3

μν ≡ g̃μν (k, mi3), g̃μν (p, m) = gμν −
pμ pν/m2.

A1/2,3/2
N∗(2270);K,K∗ or A3/2

N∗(2080);K,K∗ correspond to the pγ or pφ channel with K, K∗ exchange of triangle diagrams for two-body
decays of the N∗(2270)(1/2−), N∗(2270)(3/2−) or N∗(2080)(3/2−).

So, we can calculate the squared amplitude and width by

|M|2 = |MK |2 + |MK∗ |2, (A16)

d� = 1

32π2

|M|2
2J + 1

| �q|
m2

0

d�. (A17)

Then we list the corresponding results in Table IV.

[1] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 115,
072001 (2015).

[2] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 122,
222001 (2019).

[3] H. X. Chen, W. Chen, X. Liu, and S. L. Zhu, Phys. Rep. 639, 1
(2016).

[4] F. K. Guo, C. Hanhart, Ulf-G. Meißner, Q. Wang, Q. Zhao, and
B. S. Zou, Rev. Mod. Phys. 90, 015004 (2018); 94, 029901(E)
(2022).

[5] Y. R. Liu, H. X. Chen, W. Chen, X. Liu, and S. L. Zhu,
Prog. Part. Nucl. Phys. 107, 237 (2019).

[6] J. J. Wu, R. Molina, E. Oset, and B. S. Zou, Phys. Rev. Lett.
105, 232001 (2010).

[7] J. J. Wu, R. Molina, E. Oset, and B. S. Zou, Phys. Rev. C 84,
015202 (2011).

[8] W. L. Wang, F. Huang, Z. Y. Zhang, and B. S. Zou, Phys. Rev.
C 84, 015203 (2011).

[9] J. J. Wu, T. S. H. Lee, and B. S. Zou, Phys. Rev. C 100, 035206
(2019).

[10] C. W. Xiao, J. Nieves, and E. Oset, Phys. Rev. D 88, 056012
(2013).

[11] M. Z. Liu, Y. W. Pan, F. Z. Peng, M. S. Sánchez, L. S. Geng,
A. Hosaka, and M. P. Valderrama, Phys. Rev. Lett. 122, 242001
(2019).

[12] M. L. Du, V. Baru, F. K. Guo, C. Hanhart, Ulf-G. Meißner, J. A.
Oller, and Q. Wang, Phys. Rev. Lett. 124, 072001 (2020).

[13] J. He, Phys. Rev. D 95, 074031 (2017).
[14] B. Zou and J. Dai, Nucl. Phys. Rev. 35, 369 (2018).
[15] Y. H. Lin, C. W. Shen, and B. S. Zou, Nucl. Phys. A 980, 21

(2018).
[16] D. Ben, A. C. Wang, F. Huang, and B. S. Zou,

arXiv:2302.14308.
[17] B. Dey et al. (CLAS Collaboration), Phys. Rev. C 89, 055208

(2014).
[18] H. Seraydaryan et al. (CLAS Collaboration), Phys. Rev. C 89,

055206 (2014).
[19] Q. Zhao, J. P. Didelez, M. Guidal, and B. Saghai, Nucl. Phys. A

660, 323 (1999).
[20] A. I. Titov, T. S. H. Lee, H. Toki, and O. Streltsova, Phys. Rev.

C 60, 035205 (1999).
[21] Y. S. Oh and H. C. Bhang, Phys. Rev. C 64, 055207 (2001).
[22] Q. Zhao, B. Saghai, and J. S. Al-Khalili, Phys. Lett. B 509, 231

(2001).
[23] A. I. Titov and B. Kampfer, Phys. Rev. C 76, 035202 (2007).
[24] S. Ozaki, A. Hosaka, H. Nagahiro, and O. Scholten, Phys. Rev.

C 80, 035201 (2009); 81, 059901(E) (2010).
[25] A. Kiswandhi, J. J. Xie, and S. N. Yang, Phys. Lett. B 691, 214

(2010).

045201-12

https://doi.org/10.1103/PhysRevLett.115.072001
https://doi.org/10.1103/PhysRevLett.122.222001
https://doi.org/10.1016/j.physrep.2016.05.004
https://doi.org/10.1103/RevModPhys.90.015004
https://doi.org/10.1103/RevModPhys.94.029901
https://doi.org/10.1016/j.ppnp.2019.04.003
https://doi.org/10.1103/PhysRevLett.105.232001
https://doi.org/10.1103/PhysRevC.84.015202
https://doi.org/10.1103/PhysRevC.84.015203
https://doi.org/10.1103/PhysRevC.100.035206
https://doi.org/10.1103/PhysRevD.88.056012
https://doi.org/10.1103/PhysRevLett.122.242001
https://doi.org/10.1103/PhysRevLett.124.072001
https://doi.org/10.1103/PhysRevD.95.074031
https://doi.org/10.11804/NuclPhysRev.35.04.369
https://doi.org/10.1016/j.nuclphysa.2018.10.001
http://arxiv.org/abs/arXiv:2302.14308
https://doi.org/10.1103/PhysRevC.89.055208
https://doi.org/10.1103/PhysRevC.89.055206
https://doi.org/10.1016/S0375-9474(99)00398-X
https://doi.org/10.1103/PhysRevC.60.035205
https://doi.org/10.1103/PhysRevC.64.055207
https://doi.org/10.1016/S0370-2693(01)00432-4
https://doi.org/10.1103/PhysRevC.76.035202
https://doi.org/10.1103/PhysRevC.80.035201
https://doi.org/10.1103/PhysRevC.81.059901
https://doi.org/10.1016/j.physletb.2010.06.029


STRANGE MOLECULAR PARTNERS OF Pc STATES IN … PHYSICAL REVIEW C 108, 045201 (2023)

[26] H. Y. Ryu, A. I. Titov, A. Hosaka, and H. C. Kim, Prog. Theor.
Exp. Phys. (2014) 023D03.

[27] B. G. Yu, H. Kim, and K. J. Kong, Phys. Rev. D 95, 014020
(2017).

[28] S. H. Kim and S. I. Nam, Phys. Rev. C 100, 065208 (2019).
[29] S. H. Kim and S. I. Nam, Phys. Rev. C 101, 065201 (2020).
[30] R. L. Workman et al. (Particle Data Group), Prog. Theor. Exp.

Phys. (2022) 083C01.
[31] S. H. Kim, T. S. H. Lee, S. I. Nam, and Y. Oh, Phys. Rev. C 104,

045202 (2021).
[32] A. Donnachie and P. V. Landshoff, Nucl. Phys. B 244, 322

(1984).
[33] J. M. Laget and R. Mendez-Galain, Nucl. Phys. A 581, 397

(1995).
[34] M. A. Pichowsky and T. S. H. Lee, Phys. Rev. D 56, 1644

(1997).
[35] Y. S. Oh, A. I. Titov, and T. S. H. Lee, Phys. Rev. C 63, 025201

(2001).
[36] M. Birkel and H. Fritzsch, Phys. Rev. D 53, 6195 (1996).
[37] M. J. Yan, F. Z. Peng, M. Sánchez Sánchez, and M. Pavon

Valderrama, Phys. Rev. D 104, 114025 (2021).
[38] V. G. J. Stoks and T. A. Rijken, Phys. Rev. C 59, 3009 (1999).
[39] T. A. Rijken, V. G. J. Stoks, and Y. Yamamoto, Phys. Rev. C 59,

21 (1999).
[40] Y. H. Lin, C. W. Shen, F. K. Guo, and B. S. Zou, Phys. Rev. D

95, 114017 (2017).
[41] C. W. Shen, F. K. Guo, J. J. Xie, and B. S. Zou, Nucl. Phys. A

954, 393 (2016).

[42] Y. Oh, C. M. Ko, and K. Nakayama, Phys. Rev. C 77, 045204
(2008).

[43] F. James and M. Roos, Comput. Phys. Commun. 10, 343
(1975).

[44] H. Dembinski et al. (iminuit team), iminuit: A Python interface
to MINUIT, https://github.com/scikit-hep/iminuit.

[45] F.-K. Guo, IMinuit.jl: A Julia wrapper of iminuit, https://github.
com/fkguo/IMinuit.jl.

[46] J. Ballam, G. B. Chadwick, Y. Eisenberg, E. Kogan, K. C.
Moffeit, P. Seyboth, I. O. Skillicorn, H. Spitzer, G. E. Wolf,
H. H. Bingham et al., Phys. Rev. D 7, 3150 (1973).

[47] R. M. Egloff, P. J. Davis, G. Luste, J. F. Martin, J. D. Prentice,
D. O. Caldwell, J. P. Cumalat, A. M. Eisner, A. Lu, R. J.
Morrison et al., Phys. Rev. Lett. 43, 657 (1979).

[48] D. P. Barber, J. B. Dainton, L. C. Y. Lee, R. Marshall, J. C.
Thompson, D. T. Williams, T. J. Brodbeck, G. Frost, G. N.
Patrick, G. F. Pearce et al., Z. Phys. C 12, 1 (1982).

[49] J. Busenitz, C. Olszewski, P. Callahan, G. Gladding, A.
Wattenberg, M. E. Binkley, J. Butler, J. P. Cumalat, I. Gaines,
M. Gormley et al., Phys. Rev. D 40, 1 (1989).

[50] S. Weinberg, Phys. Rev. 137, B672 (1965).
[51] V. Baru, J. Haidenbauer, C. Hanhart, Y. Kalashnikova, and A. E.

Kudryavtsev, Phys. Lett. B 586, 53 (2004).
[52] J. J. de Swart, Rev. Mod. Phys. 35, 916 (1963); 37, 326

(1965).
[53] D. Rönchen, M. Doring, F. Huang, H. Haberzettl, J.

Haidenbauer, C. Hanhart, S. Krewald, U. G. Meissner, and K.
Nakayama, Eur. Phys. J. A 49, 44 (2013).

045201-13

https://doi.org/10.1093/ptep/ptu004
https://doi.org/10.1103/PhysRevD.95.014020
https://doi.org/10.1103/PhysRevC.100.065208
https://doi.org/10.1103/PhysRevC.101.065201
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1103/PhysRevC.104.045202
https://doi.org/10.1016/0550-3213(84)90315-8
https://doi.org/10.1016/0375-9474(94)00428-P
https://doi.org/10.1103/PhysRevD.56.1644
https://doi.org/10.1103/PhysRevC.63.025201
https://doi.org/10.1103/PhysRevD.53.6195
https://doi.org/10.1103/PhysRevD.104.114025
https://doi.org/10.1103/PhysRevC.59.3009
https://doi.org/10.1103/PhysRevC.59.21
https://doi.org/10.1103/PhysRevD.95.114017
https://doi.org/10.1016/j.nuclphysa.2016.04.034
https://doi.org/10.1103/PhysRevC.77.045204
https://doi.org/10.1016/0010-4655(75)90039-9
https://github.com/scikit-hep/iminuit
https://github.com/fkguo/IMinuit.jl
https://doi.org/10.1103/PhysRevD.7.3150
https://doi.org/10.1103/PhysRevLett.43.657
https://doi.org/10.1007/BF01475724
https://doi.org/10.1103/PhysRevD.40.1
https://doi.org/10.1103/PhysRev.137.B672
https://doi.org/10.1016/j.physletb.2004.01.088
https://doi.org/10.1103/RevModPhys.35.916
https://doi.org/10.1103/RevModPhys.37.326
https://doi.org/10.1140/epja/i2013-13044-5

