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Spin-dependent interactions and heavy-quark transport in the quark-gluon plasma

Zhanduo Tang and Ralf Rapp
Cyclotron Institute and Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843-3366, USA

(Received 11 April 2023; accepted 11 September 2023; published 24 October 2023)

We extend a previously constructed T -matrix approach to the quark-gluon plasma (QGP) to include the effects
of spin-dependent interactions between partons. Following earlier work within the relativistic quark model, the
spin-dependent interactions figure as relativistic corrections to the Cornell potential. When applied to the vacuum
spectroscopy of quarkonia, in particular their mass splittings in S- and P-wave states, the issue of the Lorentz
structure of the confining potential arises. We confirm that a significant admixture of a vector interaction (to
the previously assumed scalar interaction) improves the description of the experimental mass splittings. The
temperature corrections to the in-medium potential are constrained by results from thermal lattice quantum
chromodynamics for the equation of state and heavy-quark free energy in a self-consistent setup for heavy-
and light-parton spectral functions in the QGP. We then deploy the refined in-medium heavy-light T matrix to
compute the charm-quark transport coefficients in the QGP. The vector component of the confining potential,
through its relativistic corrections, enhances the friction coefficient for charm quarks in the QGP over previous
calculations by tens of percentages at low momenta and temperatures and more at higher momenta. Our results
are promising for improving the current phenomenology of open heavy-flavor observables at Relativistic Heavy
Ion Collider and the Large Hadron Collider.
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I. INTRODUCTION

The exploration of hadron properties in vacuum and the
properties of the quark-gluon plasma (QGP) are usually
regarded as rather independent areas in the study of quan-
tum chromodynamics (QCD). However, in both areas the
basic building block are soft parton interactions rooted in
the nonperturbative sector of the theory, albeit in differ-
ent environments. Of particular interest are heavy quarks:
heavy-quarkonium spectroscopy in vacuum has provided deep
insights into potential between a heavy (charm or bottom)
quark (Q = c, b) and its antiquark (Q̄). The Cornell potential
and its refinements remain a phenomenologically successful
tool in the description of the pertinent bound states, taking
advantage of expansion in the inverse heavy-quark (HQ) mass,
1/MQ [1]. The long-range (linear) part of the potential, which
by now is also well established in lattice QCD (lQCD), is
arguably one of the most direct manifestations of the confining
force in QCD. In the context of high-temperature QCD and
its study in ultrarelativistic heavy-ion collisions (URHICs),
this led to the idea of utilizing quarkonium production as
a probe of deconfinement, although the originally proposed
suppression signature has evolved considerably since the early
1990s [2–4]. Specifically, transport approaches have been
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developed toward the more general objective of deducing
the in-medium QCD force from quarkonium observables by
implementing it into the transport coefficients that govern
both suppression and regeneration reactions in the evolving
fireball of a heavy-ion collision, see, e.g., Ref. [5]. This effort
is critically aided by ample information from lQCD on the
in-medium properties of quarkonia through HQ free energies
and Euclidean correlation functions [6–9], which constrain
calculations of spectral functions that can serve as an interface
to phenomenological applications [10–12].

Open heavy-flavor (HF) particles have emerged as an ex-
cellent probe of the transport properties of the QCD medium
in URHICs [13–15]. Produced in initial hard processes, low-
momentum heavy quarks exert a Brownian motion through
the QGP characterized by a spatial diffusion coefficient,
hadronize in different HF hadrons, and subsequently are fur-
ther transported through the hadronic medium. The large HQ
mass implies the dominance of elastic interactions with small
energy transfer amenable to potential approximations, and the
final HF baryon spectra carry a memory of their interaction
history due to a thermalization time being comparable or
larger than the fireball lifetime.

The present work builds on previous efforts to develop
a quantum many-body theory to describe the spectral and
transport properties of open and hidden HF particles in
a strongly coupled QGP [16,17], including the one- and
two-body Green’s functions of thermal partons for obtaining
the equation of state (EoS) in a self-consistent Brueckner
scheme [18,19]. The basic ingredient to this framework is the
two-body interaction kernel for the in-medium T matrix for
which we employ an ansatz using a Cornell potential, whose
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temperature corrections are constrained by lQCD data for
the HQ free energy. A salient feature of this approach is that
it recovers basic features of vacuum spectroscopy (such as
masses of quarkonia, D and B mesons, and non-Goldstone
light hadrons), providing a baseline for the calculation of
medium effects. In the spirit of a 1/MQ expansion, spin-orbit
and spin-spin interactions were not included thus far. In the
present paper, we take the next step by including the latter by
benchmarking them against the hyper-/fine mass splittings of
quarkonia in vacuum.

Our study raises the question of the Lorentz structure of
the confining potential. Historically, a default assumption of a
purely scalar interaction has been employed [20,21], implying
a vanishing long-range magnetic contribution that neverthe-
less could reproduce the empirical fine structure for heavy
quarkonium [22]. However, studies of the Wilson loop suggest
that the confining potential cannot be a purely scalar kernel
[23,24], and the latter also causes problems in construct-
ing a stable vacuum of QCD [25]. In the relativistic quark
model [26,27] a mixing of scalar and vector structures in
the confining potential has been found to yield a quarkonium
spectroscopy in good overall agreement with experimental
data. The approach we employ in the present paper is close in
spirit to these works, i.e., we will incorporate the possibility
of a mixed confining Lorentz structure in the T -matrix kernel
with the goal of improving the description of the observed the
hyper/fine splittings in the vacuum quarkonium spectroscopy;
the pertinent relativistic corrections will turn out to have sig-
nificant ramifications for the HQ diffusion coefficient.

This article is organized as follows. In Sec. II, we briefly
recollect the main elements of the thermodynamic T -matrix
approach. In Sec. III we implement spin-dependent interac-
tions as well as a vector component of the confining force
into the potential. In Sec. IV we compute heavy-quarkonium
spectral functions from the T matrix and discuss the charmo-
nium and bottomonium spectroscopy in vacuum. In Sec. V
we lay out our constraints on the in-medium corrections to
the potential using lQCD data for static HQ free energies
(Sec. V A) and the QGP equation of state (Sec. V B) and
discuss the pertinent numerical results (Sec. V C). In Sec. VI
we outline the calculation of the HQ transport coefficients
and highlight the implications of the vector component in
the confining interaction on the numerical results for charm
quarks. We summarize and conclude in Sec. VII.

II. T-MATRIX APPROACH

The thermodynamic T matrix is a two-particle irreducible
(PI) quantum many-body scheme that self-consistently solves
the one- and two-body Green’s functions and is thus suitable
for strongly interacting systems. In Refs. [17,18] it has been
initially developed to study the properties of HF particles in
the QGP allowing for a reduction of the four-dimensional
(4D) Bethe-Salpeter two-body scattering equation to a 3D one
which allows for tractable numerical solutions. Subsequently,
it has also been extended to the light-parton sector [28],
based on the notion that the effective masses of the QGP’s
constituents are typically large compared to temperatures not
too far above the pseudocritcal one of Tpc � 160 MeV. The

TT T = + + ...+

FIG. 1. T -matrices resummation for ladder diagrams.

starting point can be formulated in terms of an effective
Hamiltonian with a relativistic potential,
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which emphasizes the implementation of unitarity through
resummations of the propagators (also referred to as a
Dyson-Schwinger setup). Here p and p′ denote the relative
momentum of the incoming and outgoing states and P the total
momentum of the two-body system. Furthermore, εi(p) =√

M2
i + p2 is the dispersion relation of a parton with mass Mi,

and the V a
i j are the potentials between particles i and j in a

color channel a. The summation includes momentum, spin,
color, and flavor for quarks and gluons. The infinite series
of ladder diagrams generated by the Hamiltonian in Eq. (1)
straightforwardly results in the T -matrix equation, depicted
in Fig. 1. In the center-of-mass (c.m.) frame, one has

T a
i j (z, p, p′) =V a

i j (p, p′) +
∫ ∞

−∞

d3k
(2π )3

V a
i j (p, k)

× G0
i j (z, k)T a

i j (z, k, p′), (2)

where G0
i j is the two-body propagator, z = E ± iε the ana-

lytical energy variable, and p and p′ are the incoming and
outgoing 3-momenta in the center-of-mass frame, respec-
tively. The reduction scheme from 4D to 3D is not unique
[29] but its specific choice has minor impact on the results; we
choose the Thompson scheme following our previous studies
[17,28]. In this scheme, the two-body propagator in spectral
representation can be written as

G0
i j (z, k) =

∫ ∞

−∞
dω1dω2

[1 ± ni(ω1) ± n j (ω2)]

z − ω1 − ω2

× ρi(ω1, k)ρ j (ω2, k), (3)

with the single-particle propagator

Gi(z) = 1[
G0

i (z, k)
]−1 − �i(z, k)

= 1

z − εi(k) − �i(z, k)

(4)

and the single-particle spectral function

ρi(ω,k) = − 1

π
Im Gi(ω + iε). (5)

The ± signs in Eq. (3) correspond to bosons (upper) or
fermions (lower),1 and ni is the Bose or Fermi distribution

1The convention that upper/lower signs denote bosons/fermions is
applied throughout this work.
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function for parton i. In quasiparticle approximation Eq. (3)
reduces to2

G0
i j (z, k) = 1

z − εi(k) − ε j (k) − �i(k) − � j (k)
. (6)

The single-particle self-energies in the QGP, �i(k), are
obtained by closing the T matrix with an in-medium
single-parton propagator from the heat bath; its spectral rep-
resentation is

�i(z, p1) = 1

di

∫
d3p2

(2π )3

∫ ∞

−∞
dω2

dE

π

−1

z + ω2 − E

×
∑
a, j

d i j
s di j

a Im T a
i j (E , p1, p2 | p1, p2)

× ρ j (ω2, p2)[n j (ω2) ∓ ni j (E )], (7)

with T (E , p1, p2 | p1, p2) the forward-scattering T matrix,
i.e., p′

1 = p1 and p′
2 = p2, where p1,2 and p′

1,2 are the incom-
ing and outgoing momenta for particles 1 and 2, respectively,
defined in the thermal frame. The ni j refers to the thermal
distribution for the two-body state i j, while ∓ refers to the
bosonic/fermionic single-parton state i. The di j

a,s are color and
spin degeneracies of the two-body system, and di is the spin-
color degeneracy of the single parton i. We also need to add
the purely real thermal Fock term [30],

�i(p1) = ∓
∫

d3p2

(2π )3

∫ ∞

−∞
dω2V

a=1
iī (p1 − p2)ρi(ω2, p2)

× ni(ω2), (8)

which is not part of the self-energy in Eq. (7). The V a=1
iī

refers to the color-singlet potential between particle and an-
tiparticle. The self-energy can be solved self-consistently
by iterating Eqs. (2), (7), and (8) numerically. In doing
so, the T matrix in the thermal frame, T a

i j (ω1 + ω2, p1, p2 |
p′

1, p′
2) needs to be transformed into the center-of-mass frame,

T a
i j (Ec.m., pc.m., p′

c.m., cos(θc.m.)). This is accomplished by

Ec.m. =
√

(ω1 + ω2)2 − (p1 + p2)2

son = [ε1(p1) + ε2(p2)]2 − (p1 + p2)2

pc.m. =
√(

son − M2
i − M2

j

)2 − 4M2
i M2

j

4son

cos (θc.m.) = pc.m. · p′
c.m.

pc.m. p′
c.m.

, (9)

where cos(θc.m.) is the angle between the incoming and out-
going momenta in the center-of-mass frame and p′

c.m. can
be obtained by substituting son(p1, p2) with son(p′

1, p′
2). As

discussed in Ref. [28], the reason for using the on-shell value,
son, for pc.m. is to preserve the analytical properties of the T
matrix after the transformation into the center-of-mass frame.

2This differs from Refs. [17,29] by a factor of mi j (k) = MiM j

εi (k)ε j (k) ;
here we keep the convention of Ref. [28] where mi j (k) is absorbed
into the relativistic corrections to the potential which will be elabo-
rated in Sec. III B.

The 3D T -matrix integral equation can be further reduced
to a 1D one by applying the partial-wave expansion in the
center-of-mass frame (from hereon the subscript “c.m.” is
suppressed for simplicity),

X (p, p′) = 4π
∑

L

(2L + 1)X L(p, p′)PL[cos(θ )], (10)

where X denotes V or T , L the angular-momentum quantum
number, and p and p′ are the moduli of p and p′. The 1D
T -matrix equation then takes the form

T L,a
i j (z, p, p′) = V L,a

i j (p, p′) + 2

π

∫ ∞

−∞
k2dkV L,a

i j (p, k)

× G0
i j (z, k)T L,a

i j (z, k, p′). (11)

Equation (11) can be solved by discretizing the momenta
to convert it into a matrix equation and solve it by matrix
inversion.

III. TWO-BODY POTENTIALS IN VACUUM

In this section we first discuss the static potentials in
Sec. III A, then introduce the relativistic corrections to the
potential between particles i and j and construct the confining
potential with mixed Lorentz structures in Sec. III B. The
potential is generalized to different color channels at the end
of this section. For simplicity, we suppress the color factors
indices until the end of this section.

A. Static potential

The kernel of the T -matrix equation (2) is based on the
Cornell potential, with a color-Coulomb potential, VC , plus a
confining potential (“string” term), VS . In coordinate space the
common ansatz is

Ṽ (r) = ṼC (r) + ṼS (r) = −4

3

αs

r
+ σ r, (12)

where αs and σ are the perturbative coupling constant and
nonperturbative string tension, respectively. To obtain the
momentum-space potentials, VC/S (k), depending on the mo-
mentum transfer k = p − p′, we use the subtracted quantities
VC/S (r) = ṼC/S (r) − ṼC/S (∞) to ensure the convergence of
the Fourier transforms. A running coupling is implemented
in the Coulomb potential for off-shell scattering in momen-
tum space as [17] Frun(p, p′) = ln[�2


2 ]/ ln[ (p−p′ )2+�2


2 ]. For the
confining potential, we enforce a flat potential above a string
breaking scale of about rSB = 1 fm to account for string break-
ing. We employ the same potential parameters as in previous
studies [28], i.e., αs = 0.27, σ = 0.225 GeV2, � = 1 GeV,
and 
 = 0.2 GeV, which are fitted to the lQCD data of the
vacuum free energy [11,31–35] as shown in Fig. 2, noting
that in vacuum the color-singlet free energy is identical to the
potential (as there is no entropy term).

B. Relativistic corrections and spin-dependent interactions

Relativistic effects in the one-gluon exchange amplitude
are well known, containing spin-independent and spin-
dependent ones. For the pertinent vector potential (denoted as
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FIG. 2. The fitted vacuum potential versus the lQCD data. The
blue line denotes the fitted vacuum potential, the colored dots the
lQCD data from Refs. [11,31–35].

V vec), the spin-independent correction amounts to multiplying
the momentum-space potential by a factor

Ri j =
√

1

mi j (p)

√
1 + p2

εi(p)ε j (p)

×
√

1

mi j (p′)

√
1 + p′2

εi(p′)ε j (p′)
, (13)

which is known as the Breit correction, representing magnetic
effects. For scalar potentials, denoted as V sca, no relativistic
correction arises to leading order in 1/MQ, see Ref. [17]. We
write the total spin-independent potential in momentum space
as

Vi j (p, p′) = Ri jV
vec(p − p′) + V sca (p − p′). (14)

To implement spin-dependent interactions, including spin-
orbit (V LS), spin-spin (V SS), and tensor (V T ) channels, we
follow Ref. [36] where the detailed procedure to derive the
Fermi-Breit Hamiltonian is laid out. The pertinent corrections
for vector and scalar potentials between two partons with
equal masses (Mi = Mj ≡ M) in coordinate space are given
by

V LS (r) = 1

2M2r
〈L · S〉

[
3

d

dr
V vec(r) − d

dr
V sca(r)

]
,

V SS (r) = 2

3M2
〈S1 · S2〉�V vec(r),

V T (r) = 1

12M2
〈S12〉

[
1

r

d

dr
V vec(r) − d2

dr2
V vec(r)

]
, (15)

where � ≡ ∇2 in the SS interaction is the Laplace operator.
Note that the scalar interactions do not contribute to the SS
and T corrections. We note that the vector potential, V vec,
in the spin-dependent potentials above do not receive the
spin-independent Breit correction, R, introduced in Eq. (13).
Following Ref. [37], we smear the Dirac delta function δ in
the SS part by a Gaussian, δ̃(r) = ( b√

π
)3e−b2r2

, to avoid the
singularity. We take b = 10 in this work and have checked

that for b > 10 the SS interaction saturates in the quarkonium
spectroscopy.

The expectation values take the standard form
(with L, S, and J denoting the orbital, spin, and total
angular-momentum quantum numbers, respectively):
〈L · S〉 = 1

2 [J (J + 1) − L(L + 1) − S(S + 1)], 〈S1 · S2〉 =
1
2 [S(S + 1) − 3

2 ], and 〈S12〉 = 4
(2L+3)(2L−1) [S(S+1)J (J+1) −

3
2 〈L · S〉 − 3(〈L · S〉)2] for L �= 0 and S = 1, but 〈S12〉
vanishes for either L = 0 or S = 0. The total potential (with
relativistic corrections) between, e.g., a heavy quark and
antiquark in momentum-space reads

VQQ̄(p, p′) =RQQ̄V vec(p − p′) + V sca(p − p′)

+ V LS (p − p′) + V SS (p − p′) + V T (p − p′),

(16)

where the spin-dependent terms in momentum space
are obtained through Fourier transform, V a(k = p − p′) =∫

d3re−ik·rV a(r) with a = LS, SS, T . We absorb mi j (k) in the
two-body propagator into the relativistic corrections for the
potentials to keep the same convention as in Ref. [28], and
thus Eq. (14) become

Vi j (p, p′) → √
mi j (p)

√
mi j (p′)Vi j (p, p′)

= Rvec
i j V vec(p − p′) + Rsca

i j V sca(p − p′), (17)

with

Rvec
i j ≡ √

mi j (p)
√

mi j (p′)Ri j

=
√

1 + p2

εi(p)ε j (p)

√
1 + p′2

εi(p′)ε j (p′)
,

Rsca
i j ≡ √

mi j (p)
√

mi j (p′)

=
√

MiMj

εi(p)ε j (p)

√
MiMj

εi(p′)ε j (p′)
, (18)

and Eq. (16) becomes

VQQ̄(p, p′) → √
mi j (p)

√
mi j (p′)VQQ̄(p, p′)

=Rvec
QQ̄V vec(p − p′) + Rsca

QQ̄V sca (p − p′)

+ Rspin
QQ̄

[V LS (p − p′) + V SS (p − p′)

+ V T (p − p′)], (19)

with

Rspin
i j ≡ √

mi j (p)
√

mi j (p′)

=
√

MiMj

εi(p)ε j (p)

√
MiMj

εi(p′)ε j (p′)
. (20)

The Lorentz structure for Coulomb potential is entirely vector,
and a common assumption for the confining one is to be en-
tirely scalar, i.e., V vec = VC and V sca = VS . As was mentioned
in the Introduction, there are reasons to believe that the confin-
ing potential is not a purely scalar one but a mixture of vector
and scalar Lorentz structures, i.e., V vec = VC + (1 − χ )VS
and V sca = χVS . The key parameter is the mixing coefficient,
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TABLE I. Casimir and degeneracy factors for different color
channels (Casimir factor, degeneracy).

qq qq̄ (q/q̄)g gg

(1/2, 3) (1,1) (9/8, 3) (9/4, 1)
(−1/4, 6) (−1/8, 8) (3/8, 6) (9/8, 16)

(−3/8, 15) (−3/4, 27)

χ , defined such that for χ = 1 the interaction reduces to the
case with a purely scalar confining potential, while values
below one characterize a vector admixture.

The potentials in the various color channels, V a
i j (p, p′),

are obtained by the substitutions VC (p − p′) → FC
a VC (p − p′)

and VS (p − p′) → FS
a VS (p − p′). For the Coulomb interac-

tion, FC
a are the standard Casimir coefficients listed in Table I

(together with the pertinent degeneracy factors), and we take
the absolute values of the Casimir coefficients for the string in-
teraction, FS

a , to ensure a positive definite string tension [28].
The parton masses are also related to the potential intro-

duced above. The constituent masses of the heavy quarks, MQ,
receives two contributions, the first one is calculated by the
self-energy from the color-singlet (a = 1) potential (including
the relativistic factors) and the second one is a “bare mass,”
M0

Q, which is associated with condensate contributions that
we do not calculate explicitly in the present framework,

MQ = −1

2

∫
d3p

(2π )3
V a=1

QQ̄ (p) + M0
Q, (21)

IV. HEAVY-QUARKONIUM SPECTROSCOPY IN VACUUM

In this section we introduce the correlation and spec-
tral functions including their nonrelativistic classifications
in angular momentum (Sec. IV A) and discuss our fits to
the vacuum spectra including the spin-related interactions
(Sec. IV B).

A. Correlation and spectral functions

To evaluate the quarkonia spectra in both charm and bottom
sectors, we compute the quark-antiquark spectral functions
for different mesonic quantum-numbers channels using the
pertinent T matrices as described in Sec. II. The bound-state
masses are then determined from the peak values of cor-
responding mesonic spectral functions. In the vacuum, we
introduce a small width in the single-quark propagators which
allows us to numerically resolve the bound-state mass while
not distorting their masses. Since we only account for the
QQ̄ channels (off-shell) couplings to intermediate two-meson
states (e.g., DD∗ channels) are not accounted for, which could
affect the masses near the DD̄ threshold somewhat.

Table II lists the L, S, and J assignments in the scalar (S),
pseudoscalar (PS), vector (V), axial-vector (AV), and tensor
(T) mesonic channels. In practice, a cutoff rc = 0.01 fm is
introduced in the Fourier transform for the spin-dependent
potentials to avoid ultraviolet divergences; we have checked
that the results are not sensitive to variations in rc by ±50%.

TABLE II. Nonrelativistic classification of
angular-momentum quantum numbers in different
mesonic channels.

Channels L S J

S 1 1 0
PS 0 0 0
V 0 1 1
AV1 1 0 1
AV2 1 1 1
T 1 1 2

The spectral functions are obtained form the correlation
functions, G, of the meson currents. The latter are obtained
by closing the two incoming and outgoing legs of T matrix
(plus a noninteracting contribution) with the corresponding
projection operator for the different quarkonium channels, see
Fig. 3. Writing

G = G0 + �G, (22)

the noninteracting part of correlation function in the center-
of-mass frame is given by

G0(E , T ) = Nf Nc

∫
d3 p

(2π )3
Rsca

QQ̄

× Tr{�α
+(p)�α
−(−p)}G0
QQ̄(E , p), (23)

where 
±(p) = [εQ(p)γ 0 − (p · γ ) ± MQ]/2MQ are the
positive/negative energy projectors for quark and antiquark,
respectively, and �α ∈ (1, iγ5, γ

μ, γ μγ5,
i
2 [γ μ, γ ν]) the

vertex operators for the mesonic S, PS, V, AV, and T channels,
respectively; the pertinent traces are listed in Table III.
Furthermore, Nf = 1 and Nc = 3 are the numbers of flavor
and color for the heavy quark.

The interacting part of correlation function in the center-
of-mass frame is given by

�G(E , T ) = Nf Nc

8π4

∫
d pp2G0

QQ̄(E , p)
∫

d p′ p′2G0
QQ̄(E , p′)

×Rsca
QQ̄T (�α; E , p, p′), (24)

with the scattering amplitude

T (�α; E , p, p′) =
∫

d (cos θ )Tr(�α; p, p′, θ )TQQ̄(E , p, p′)

= 8π
[
a0(p, p′)T 0

QQ̄ + a1(p, p′)T 1
QQ̄

]
. (25)

+++

+

...V V V

T

FIG. 3. Diagrammatic representation of the QQ̄ correlation func-
tion. The dots denote meson current operators �M .
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TABLE III. Values for the trace coefficients in
different mesonic channels for the noninteracting
part, G0, of the correlation functions.

�α G0 trace

S 2 p2

M2
Q

PS 2
(
1 + p2

M2
Q

)
V 6 + 4 p2

M2
Q

AV 4 p2

M2
Q

T 4 p2

M2
Q

The T matrix, T L
QQ̄, is calculated from Eq. (11) with the inter-

action kernel in Eq. (19). The aL denote the coefficients of the
orbital-angular momentum, L, in the partial-wave expansion
of the trace,

Tr(�α; p, p′, θ ) = Tr{
+(p)�α
−(−p)
−(−p′)�α
+(p′)}
= a0(p, p′)P0(cos θ ) + a1(p, p′)P1(cos θ );

(26)

they are listed in Table IV. For the evaluation of the traces in
the V, AV, and T channels we focus on the spatial components.
The correlation functions defined in Refs. [16] and [17] do
not have the Rsca

QQ̄ factor due to the different definitions of
potentials and two-body propagators, but they are equivalent
to those in Refs. [28] and in this work.

At higher orders in the 1/MQ expansion, the partial-wave
expansion leads to a mixing between S- and P-wave com-
ponents in a given meson channel. However, to keep with
the (nonrelativistic) classification of the meson channels with
definite quantum numbers of L, S, and J , we terminate the
expansion when the “unnatural” partial waves admix [16]. The
pertinent leading orders are collected in Table V.

From the correlation functions, the mesonic spectral func-
tions follow from the imaginary part,

σα (E , T ) = − 1

π
Im Gα (E + iε, T ), (27)

TABLE IV. Coefficients of orbital angular momentum (up to L =
1) in different mesonic channels for the interacting part, G, of the
correlation functions.

�α a0(p, p′) a1(p, p′)

S − p2 p′2
M4

Q

[
1 + ε(p)εQ (p′ )

M2
Q

] pp′
M2

Q

PS 1 + p2+p′2
M2

Q
+ εQ (p)εQ (p′ )

M2
Q

+ p2 p′2
M4

Q
− εQ (p)εQ (p′ )pp′

M4
Q

V 3
[
1 + εQ (p)εQ (p′ )

M2
Q

] +2 p2+p′2
M2

Q
+ 4

3
p2 p′2
M4

Q
−[

1 + 2 εQ (p)εQ (p′ )
M2

Q

] pp′
M2

Q

AV − 4
3

p2 p′2
M4

Q
2
[
1 + εQ (p)εQ (p′ )

M2
Q

] pp′
M2

Q

T − 2
3

p2 p′2
M4

Q
2
[
1 + εQ (p)εQ (p′ )

M2
Q

] pp′
M2

Q

TABLE V. Leading orders of the angular-momentum coeffi-
cients, aL , in evaluating the traces for the noninteracting (second
column) and interacting (third and fourth columns) part of the dif-
ferent mesonic channels specified in the first column.

�α G0 trace a0(p, p′) a1(p, p′)

S 2 p2

M2
Q

O(
p4/M4

Q

) −2 pp′
M2

Q
+ O(

p4/M4
Q

)
PS 2 + O(

p2/M2
Q

) −2 + O(
p2/M2

Q

) O(
p2/M2

Q

)
V 6 + O(

p2/M2
Q

) −6 + O(
p2/M2

Q

) O(
p2/M2

Q

)
AV 4 p2

M2
Q

O(
p4/M4

Q

) −4 pp′
M2

Q
+ O(

p4/M4
Q

)
T 4 p2

M2
Q

O(
p4/M4

Q

) −4 pp′
M2

Q
+ O(

p4/M4
Q

)

where the subscript α denotes the different meson channels.

B. Heavy-quarkonium spectra in vacuum

We are now in position to investigate the quantitative
consequences of the spin-dependent interactions and the
scalar-vector mixing effect in the confining potential on
the charmonium and bottomonium spectroscopy in vacuum.
In practice, we adopt a value for the HQ width of �Q =
20 MeV which is small enough to not affect the vacuum
masses but large enough to allow for straightforward nu-
merical computations and plotting. Our fit procedure is as
follows: For a given mixing coefficient, χ , we adjust the
bare-quark masses M0

c (M0
b ) to find the best fit for all the

masses of charmonium (bottomonium) states given by the
Particle Data Group [38] using a χ2 statistical test. In prin-
ciple we could optimize the value for the mixing coefficient,
χ , by strictly minimizing the variance of the fit. However,
in practice we found that χ = 0.6 already provides most of
the improvement in the mass splittings compared to χ = 1,
while for still smaller values the constituent quark masses
become rather large producing uncomfortably large bind-
ing energies; in addition, a more precise evaluation of the
quarkonium masses near the open heavy-flavor threshold
would also require the inclusion of hadronic loop corrections.
In particular, we do not pursue here more extreme scenar-
ios, as proposed, e.g., in Refs. [26,27] where optimized fits
with χ = −1 were found (implying a negative string tension
for the scalar term, counteracted by a twice larger vector
component).

We start by displaying the comparison of charmonium
spectral functions between purely scalar (χ = 1) and mixed
(χ = 0.6) confining potential for all states below the DD̄
threshold in Fig. 4 (we only plot the interacting parts of
spectral functions since the free part does not affect the
bound-state locations). The various peaks in each quantum-
number channel are readily assigned as S: χc0(1P); PS:
ηc(1S) and ηc(2S); V: J/�(1S) and �(2S); AV1: hc(1P);
AV2: χc1(1P); and T: χc2(1P). The masses extracted from
the pole positions are listed in Table VI and compared to
the experimental values. The potential with mixing effect
generates more attraction from the additional relativistic cor-
rections [recall Eq. (13)], thus requiring a larger HQ mass
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FIG. 4. The vacuum charmonium spectral functions (interacting
parts) in S, PS, V, AV, and T channels with mixing coefficient χ = 1
(upper panel) and χ = 0.6 (lower panel).

for χ = 0.6 as quoted in Table VI. For χ = 1, neither the
S- nor P-wave mass splittings are well reproduced; the re-
sults are much improved by introducing the mixing effect
with χ = 0.6.

To better understand the impact of the mixing effect, it
is useful to summarize the expectation values for 〈L · S〉,
〈S1 · S2〉, and 〈S12〉 in Table VII. We take the mass splitting
between PS and V channels, where only spin-spin interac-
tion are operative, as an example. For simplicity, we will

TABLE VI. Experimental and theoretical values for charmonium
masses (in GeV) with the mixing coefficient χ = 1 and χ = 0.6;
M0

c and Mc are the bare and constituent charm-quark masses,
respectively.

Th. Th.
χ = 1 χ = 0.6

M0
c = 1.352 M0

c = 1.359
Channel Particle Exp. Mc = 1.872 Mc = 1.916

S χc0(1P) 3.415 3.498 3.448
PS ηc(1S) 2.984 3.079 3.022

ηc(2S) 3.638 3.624 3.600
V J/�(1S) 3.097 3.120 3.104

�(2S) 3.686 3.650 3.650
AV1 hc(1P) 3.525 3.518 3.500
AV2 χc1(1P) 3.511 3.519 3.499
T χc2(1P) 3.556 3.519 3.544

TABLE VII. Couplings of LS, SS, and T interactions for differ-
ent quarkonium channels.

Channel 〈L · S〉 〈S1 · S2〉 〈S12〉
S −2 1/4 −4
PS 0 −3/4 0
V 0 1/4 0
AV1 0 −3/4 0
AV2 −1 1/4 2
T 1 1/4 −2/5

use the Cornell potential in Eq. (12) to make the argument.
According to Eq. (15), the spin-spin interaction is V SS (r) ∼
〈S1 · S2〉�V vec(r) = 〈S1 · S2〉[ 16παs

3 δ(r) + (1 − χ ) 2σ
r ]. Since

the quantity in the bracket is positive, the negative (positive)
value for 〈S1 · S2〉 gives a more attractive (repulsive) interac-
tions, which is the origin of the J/�-ηc (i.e., V-PS) splitting.
The mixing with χ < 1 obviously enhances this effect. Sim-
ilar arguments can be made for the spin-orbit, V LS (r) ∼
〈L · S〉[ 4αs

r3 + (3 − 4χ ) σ
r ], and tensor, V LS (r) ∼ 〈S12〉[ 4αs

r3 +
(1 − χ ) σ

r ], interactions; i.e., the strength of V LS , V SS , and
V T are all enhanced by introducing a vector component in
the confining potential, thereby improving the splittings in
comparison to experiment.

We have carried out a similar analysis for bottomonium
spectral functions. In Fig. 5 bound-state spectral functions
between χ = 1 and 0.6 are compared. We identify the
peaks in each channel as follows [not all of which have
an experimental counterpart (yet)]: S: χb0(1P) and χb0(2P);
PS: ηb(1S), ηb(2S), and ηb(3S); V: ϒ(1S), ϒ(2S), and

FIG. 5. The vacuum bottomonium spectral functions (interacting
parts) in S, PS, V, AV, and T channels with mixing coefficient χ = 1
(upper panel) and χ = 0.6 (lower panel). The spectral functions in S,
AV, and T channels are multiplied by a factor of 4 for better visibility.
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TABLE VIII. Experimental and theoretical bottomonium spec-
troscopy with the mixing coefficient χ = 1 and χ = 0.6 (in GeV).
M0

b and Mb are the bare and constituent masses for bottom quark,
respectively.

Th. Th.
χ = 1 χ = 0.6

M0
b = 4.681 M0

b = 4.681
Channel Particle Exp. Mb = 5.247 Mb = 5.266

S χb0(1P) 9.859 9.871 9.864
χb0(2P) 10.233 10.227 10.220

PS ηb(1S) 9.399 9.496 9.470
ϒ(1S) 9.460 9.520 9.500

V ϒ(2S) 10.023 9.999 9.994
ϒ(3S) 10.355 10.345 10.324

AV1 hb(1P) 9.899 9.896 9.893
χb1(1P) 9.893 9.894 9.877

AV2 χb1(2P) 10.255 10.248 10.243
χb1(3P) 10.513 10.520 10.500

T χb2(1P) 9.912 9.897 9.899
χb2(2P) 10.269 10.249 10.249

ϒ(3S); AV1: hb(1P), hb(2P), and hb(3P); AV2: χb1(1P),
χb1(2P), and χb1(3P); T: χb2(1P), χb2(2P), and χb2(3P).
The comparison between the experimental values and the
masses extracted from spectral functions is compiled in
Table VIII. Also here an improvement in the mass splittings
is found by introducing the vector confining potential, but
it is not as significant as the charmonium sector, primar-
ily due to the larger 1/Mb suppression for the spin-induced
forces.

Finally, we have evaluated the spin-induced interactions
in the heavy-light sector, which is the key ingredient to cal-
culating the heavy-quark transport coefficients discussed in
Sec. VI. Specifically, in the S-wave color-singlet D-meson
channel, the mass splitting between the pseudoscalar D-meson
and the vector D∗-meson improves from 30 MeV for χ = 1 to
120 MeV for χ = 0.6.

V. IN-MEDIUM POTENTIAL
AND SELF-CONSISTENT QGP

In this section, we briefly introduce (and carry out) the
framework for determining the medium modifications to the
potential and its application to the EoS and spectral func-
tions of the QGP within a self-consistent quantum many-body
approach [28]. In a nutshell the procedure consists of two self-
consistency loops as follows. First, the in-medium potential
will be constrained through calculating the HQ free energies
from the T matrix and fitting it to pertinent lQCD data. The
key fit parameters in this step are the screening masses, md

and ms, of the color-Coulomb and string interactions. The
in-medium potentials are then applied in a self-consistent
2-PI scheme to compute the EoS of the QGP and fit those
results to pertinent lQCD data as well. The main parame-
ters in this step are the in-medium light-quark and gluon
masses, but the EoS is computed including the full off-shell
properties of the one-body spectral functions and two-body

scattering amplitudes. Since the parton self-energies are com-
puted from their T matrices, this forms a self-consistency
problem which is solved by numerical iteration. However, the
calculation of the HQ free energy also requires the spectral
functions (self-energies) of the heavy quarks, calculated from
heavy-light T matrices closed off with thermal parton spectral
functions. Thus, after constraining the light sector with the
EoS, the in-medium HQ spectral functions are recalculated
and inserted into the computation of the HQ free energies.
Refitting the screening masses to the lQCD data, a refinement
of the in-medium two-body potential is obtained which is
then reprocessed in a new fit to the EoS. This constitutes
the second (“outer”) iteration loop which is also iterated
numerically.

In the remainder of this section, we first introduce the the
main equations to compute the HQ free energy (Sec. V A) and
the EoS (Sec. V B) and then discuss the numerical results with
the updated in-medium potential (Sec. V C).

A. Static HQ free energy

Our starting point is an ansatz for the medium modifi-
cations of the potential; following previous studies [28] we
employ

ṼC (r) = −4

3
αs

e−md r

r
− 4

3
αsmd

ṼS (r) = −σe−msr−(cbmsr)2

ms
+ σ

ms
, (28)

where md and ms are the respective Debye screening masses
for Coulomb and confining potentials, related by ms =
(csm2

dσ/αs)1/4 [28]. The quadratic term in the exponential,
−(cbmsr)2, accelerates the suppression of the long-range part
of the confining potential to simulate string breaking. In the
limit of vanishing screening masses the vacuum potential of
Eq. (12) is recovered.

The HQ free energy, FQQ̄(r, T ), is defined as the difference
between the free energies of the QGP without and with a
static quark and antiquark (not counting their infinite masses)
separated by a distance r (see, e.g., Ref. [39]),

FQQ̄(r, T ) = − 1

β
ln[G>

QQ̄(−iβ, r)], (29)

where G>
QQ̄(−iτ, r) is the Euclidean time Green function and

β = 1/T the inverse temperature. In the vacuum, this simply
corresponds to the potential between Q and Q̄, cf. Sec. III.
In medium, the free energy and the potential are no longer
identical to each other due to the presence of entropy con-
tributions resulting from medium effects encoded in the HQ
self-energies (which we calculate from the in-medium heavy-
light T matrix) and the potential. In Ref. [28] a compact form
of the free energy has been derived as

FQQ̄(r, T ) = − 1

β
ln

[
−

∫ ∞

−∞

dE

π
e−βE

× Im

[
1

E + iε − Ṽ (r) − �QQ̄(E + iε)

]]
,

(30)
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with the color-singlet potential Ṽ (r) (color-flavor indices are
suppressed for simplicity) from Eq. (28). The relationship
between the two-body self-energy, �QQ̄(z), and the two-body
propagator, G0

QQ̄(z), is [28]

[
G0

QQ̄(z)
]−1 = z − 2�MQ − �QQ̄(z), (31)

with a Fock mass term for each quark, �MQ = Ṽ (∞)/2. In
the static limit, G0

QQ̄(z) reduces to

G0
QQ̄(z) =

∫ ∞

−∞
dω1dω2

ρQ(ω1)ρQ̄(ω2)

z − ω1 − ω2
, (32)

where ρQ/Q̄(ω) = − 1
π

Im GQ/Q̄(ω + iε) are the single-particle
spectral functions with propagators GQ/Q̄(z) = 1

z−MQ/Q̄−�Q/Q̄ (z)

in the static limit. Then the single-particle self-energy, �Q(z),
can be solved self-consistently by combining the T matrix
and the self-energy equations. By taking the heavy-light T
matrix from Eq. (2) in the “half-static” limit, where the p1
dependence is suppressed due to the infinite static-quark mass,
Eq. (7) takes the form

�Q(z) =
∫

d3p2

(2π )3

∫ ∞

−∞
dω2

dE

π

−1

z + ω2 − E

1

dQ

∑
a, j

dQ j
s dQ j

a

× T a
Q j (E , p2 | p2)ρ j (ω2, p2)n j (ω2). (33)

The center-of-mass transformation in Eq. (9) reduces to

Ec.m. = ω1 + ω2, pc.m. = p2, cos (θc.m.) = cos(θ ),

(34)

with ω1 + ω2 � |p1 + p2|. The resulting single-particle self-
energy, �Q(z), is inserted into Eq. (32) to obtain the QQ̄
propagator, and Eq. (31) yields the two-body self-energy,
�QQ̄(z).

Interference effects lead to a suppression of the imaginary
part of the two-body self-energy (relative to the sum of the
single-particle absorptive parts), which is sometimes referred
to as “imaginary part of the potential” (it is, in fact, an
r-dependent suppression of the imaginary part) [40]. In the
T -matrix formalism this amounts to three-body diagrams
which are rather challenging to compute explicitly [28].
Instead, the interference effects are implemented through an
r-dependent suppression factor [28] with a functional form
guided by perturbative results [41] using a factorized ansatz,
�QQ̄(z, r) = �QQ̄(z)φ(r), where the function φ(r) is part of
the constraints from the lQCD data for static HQ free energies
at each temperature. The interference effect is mostly relevant
for deeply bound heavy quarkonia, where, in the color singlet
channel, the imaginary part should vanish in the limit of r → 0
(corresponding to a color-neutral object). This is a central
ingredient to quantum transport approaches (see Ref. [41]
for a recent review), but it also plays a significant role in the
quantitative description of the quarkonium spectral functions
computed within the T -matrix approach, especially when
fitting lQCD data for euclidean quarkonium correlators [28].

B. Equation of state

The equation of state of a many-body system is encoded
in the pressure, P(T, μ), as a function of temperature and
chemical potential. The EoS is driven by the dominant degrees
of freedom in the medium and is therefore sensitive to their
spectral properties, including their masses. For a homoge-
neous grand-canonical ensemble, the relationship between the
EoS and the grand potential per unit volume is given by � =
−P. We adopt the Luttinger-Ward-Baym formalism which
provides a diagrammatic and thermodynamically consistent
quantum approach that allows to incorporate the off-shell
dynamics of the one- and two-body correlation functions.
Quantum effects are expected to become particularly impor-
tant for a strongly coupled system with large scattering rates
(widths) [42–44]. One has

� = ∓−1

β

∑
n

Tr{ln(−G−1) + [(G0)−1 − G−1]G} ± �,

(35)

where “Tr” denotes the trace over spin, color, flavor, and
3-momentum,

∑
n the Matsubara frequency sum, and the G0

and G are the free and fully dressed single-particle Green’s
function. The two-body interaction contribution is encoded in
the Luttinger-Ward functional (LWF), � = ∑∞

v=1 �v , where

�v = −1

β

∑
n

Tr

{
1

2v

(−1

β

)v

[(−β )v�v (G)]G

}
(36)

with

�v (G) =
∫

d p̃
[
V G0

(2)V G0
(2) · · ·V

]
G, (37)

using the notation
∫

d p̃ ≡ −β−1 ∑
n

∫
d3p/(2π )3 with p̃ ≡

(iωn, p). The φν correspond to the “skeleton diagrams” of the
νth order in the potential expansion. To account for possible
bound-states formation and their contribution to the pressure,
one has to resum the skeleton series. For nonseparable in-
teractions this has been achieved through a matrix-logarithm
resummation technique in Refs. [28,45,46], resulting in a
structure similar to the T -matrix resummation in Eq. (7):

� =
∑

j

∓d j

∫
d p̃

{
ln

(−Gj ( p̃)−1
)

+
[
� j ( p̃) − 1

2
log � j ( p̃)

]
Gj ( p̃)

}
(38)

with

log �i(z, p1) =
∫

d3p2

(2π )3

∫ ∞

−∞
dω2

dE

π

−1

z + ω2 − E

× 1

di

∑
a, j

d i j
s di j

a

× Im
[

log T a
i j (E , p1, p2 | p1, p2)

]
× ρ j (ω2, p2)[n j (ω2) ∓ ni j (E )]. (39)
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FIG. 6. Left and middle panels: The in-medium HQ free energies (blue) and potentials (orange) for χ = 0.6 (solid) and 1 (dashed) at
different temperatures in comparison to lQCD data for the HQ free energies from Ref. [47] for Nf = 2 + 1 light flavors (black dots). The right
panel shows the temperature dependence of the screening masses, md (blue) and ms (orange), for χ = 0.6 (solid) and 1 (dashed) as resulting
from our fit. The χ = 1 results are taken from Ref. [28].

The transformation of the T matrices in Eq. (39) between the
thermal and center-of-mass frame is given by Eq. (9). The
grand potential can then be obtained after carrying out the sum
over Matsubara frequencies in Eq. (38).

C. Self-consistent in-medium results

We now turn to the self-consistent in-medium results at
four temperatures, T = 0.194, 0.258, 0.320, and 0.400 GeV,
constrained by the lQCD data for static HQ free energies
(Sec. V C 1) and QGP EoS (Sec. V C 2). All in-medium calcu-
lations are carried out with the mixing coefficient for χ = 0.6
and 1 in this study, but we do not yet incorporate the spin-
dependent corrections. In particular in the light sector, i.e.,
for the QGP EoS, their effect can be rather significant and
deserves a separate study (some compensatory effects are
expected due to both attractive and repulsive contributions).
Nevertheless, we want to ensure that the medium within which
the heavy quarks are embedded satisfies basic constraints
from lQCD.

1. Static HQ free energies

Recalling Eq. (30), the HQ free energy, FQQ̄(r, T ),
is a functional of the potential, Ṽ (r), and the two-body
self-energy, �QQ̄(E + iε). Note that FQQ̄(r, T ) increases with
increasing Ṽ (r) but with decreasing |�Q(E + iε)|. A larger
Debye screening mass, md and/or ms, suppresses Ṽ (r) so
that the partons become more weakly coupled, which in
turn lowers FQQ̄(r, T ); at the same time, a larger md reduces
|�Q(E + iε)| in medium, which in turn enhances FQQ̄(r, T ). It
is this competition between Ṽ (r) and |�Q(E + iε)| that leads

to a nonmonotonic behavior of FQQ̄(r, T, md ) with md . Since
md is directly related to the free energy at infinite distance
(cf. Sec. V A), we define a function Ftrial(r → ∞, T, md )
calculated from our many-body approach which we require to
be equal to the lQCD value, FlQCD(r → ∞, T ). We typically
find two solutions for md for any fixed parameter set provided
the maximum of the trial free energy lies above the lQCD
value. We denote the solutions with the smaller and the larger
md as strongly coupled solution (SCS) and weakly coupled
solution (WCS), respectively (in analogy to the two solutions
which were found in Ref. [28]). Here we only focus on the
SCS which results in transport parameters in much better
agreement with heavy-ion phenomenology (i.e., a liquidlike
behavior with interaction energies comparable to the parton
masses, as well as HQ transport parameters) than the
WCS [28].

The resulting potentials and fits to lQCD results [47] for the
HQ free energies with cb = 1.55 (1.3) and cs = 0.06 (0.01)
for χ = 0.6 (1) at different temperatures are shown in Fig. 6.
As found in earlier studies, large HQ widths lead to a sub-
stantial enhancement of the potential over the free energies;
in particular, at the lowest temperature of 0.194 GeV, the
potential is close to the vacuum one, but becomes notably
suppressed at higher T . Consequently, the screening masses
for Coulomb (md ) and confining (ms) potentials, shown in
the right panel of Fig. 6, have rather small values at low
T , with the string interaction exhibiting a weaker screening
with increasing T . This implies that remnants of the confin-
ing force survive in the QGP well above the critical region.
The potential with mixed confining interaction (χ = 0.6) is
enhanced by the extra relativistic corrections [cf. Eq. (13)],
requiring a stronger screening to fit the lQCD free-energy
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FIG. 7. The pressure (normalized by T 4) in comparison to the
lQCD data (black dots) from Ref. [34] (upper panel), and the in-
medium light-quark and gluon masses as a function of temperature
(lower panel). The χ = 1 results are taken from Ref. [28].

data. Therefore, the screening masses for confining potential
for χ = 0.6 are larger than those for χ = 1, see the right panel
of Fig. 6. However, note that the χ = 0.6 solution generates
a stronger force at relatively small distances, a feature that
will figure importantly in the QGP structure and HQ transport
properties.

2. Equation of state

In Fig. 7 we display the pressure together with the fitted
light-parton masses for χ = 0.6 and 1, which allow for a good
reproduction of the lQCD data. However, while the parton
masses are effective in achieving a quantitative agreement
with the lQCD results, the underlying quark and gluon
spectral functions for χ = 0.6 and 1 both feature large self-
energies, especially imaginary parts which, at low momentum
and temperatures, are comparable to, or even larger, than
the parton masses, cf. the spectral function widths in Fig. 8
(first and second rows). The large scattering rates are mostly
driven by dynamical resonance formation in the underlying
T matrices (which in turn are generated by resumming the
strong potential). These resonances contribute through the
resummed LWF functional � ∼ 1/2log�G introduced in
Sec. V B, whose contribution for χ = 0.6 and 1 is displayed
in Fig. 7. The increasing proportion of LWF contribution
with decreasing temperature indicates the onset of a change
in the degrees of freedom. Specifically, the LWF parts make
up more than 70(50)% of the pressure at T = 0.194 GeV

for χ = 0.6(1). While the spectral functions for χ = 0.6
generally share the main features with those for χ = 1 at low
momenta, a notable quantitative difference is that the widths
for χ = 0.6 do not fall off with momentum as much as those
for χ = 1. In the former case, this is a consequence of the
3-momentum dependence of the confining interaction whose
vector component, through relativistic effects, generates
additional interaction strength and thus larger scattering rates
at larger momenta relative to the χ = 1 case.

VI. CHARM-QUARK TRANSPORT COEFFICIENTS

With the parameters of the interaction potential and par-
ton masses fixed with the aid of lQCD data, we can now
investigate the effect of the mixed potential on charm-quark
transport properties in the QGP. As elaborated in Ref. [19]
it is important to account for the off-shell properties of both
charm quarks and thermal partons in the evaluation of the
transport coefficient, especially due to the formation of near-
threshold bound states which only provide limited phase for
quasiparticle (on-shell) scattering. This point is further cor-
roborated on inspecting the equilibrium spectral functions,
ρq,g,c, of the partons displayed in Fig. 8, exhibiting large
widths of ≈0.6 GeV or so at low momentum. As already
mentioned in Sec. V C 2, the main difference between χ =
0.6 and 1 is that the widths for χ = 0.6 do not fall off
with momentum as much as those for χ = 1. This feature
persists in the heavy-light scattering amplitudes, which are
the main ingredient to the charm-quark transport coefficients
discussed below, see Fig. 9. At T = 0.194 GeV, the peak
value of the imaginary part of the S-wave color-singlet heavy-
light scattering amplitude for χ = 0.6 still shows a rather
marked decrease with increasing center-of-mass mass mo-
mentum of the colliding partons, but it is significantly weaker
than for χ = 1 with a purely scalar confining potential; e.g.,
the peak reduction from the pc.m. = 0 to pc.m. = 0.5 GeV
case is almost a factor 3 for the latter but only ≈1.5 for
χ = 0.6. This trend continues to higher temperatures; at T =
0.400 GeV, the peak reduction from pc.m. = 0 to pc.m. =
0.6 GeV is essentially absent for χ = 0.6, while it is still a
factor of 1.6 for the purely scalar confining potential. The
T -matrix amplitudes for χ = 0.6 are smaller than that for
χ = 1 at low momenta due to its stronger screening in con-
fining potential (recall its larger Debye screening masses in
the right panel of Fig. 6); however, they exceed the ones for
χ = 1 for pc.m. � 0.5 GeV due to the harder 3-momentum
dependence of confining potential through relativistic effects.
The T matrices for other partial waves and color chan-
nels share similar features, and thus we do not reproduce
therm here.

Turning now to the HQ transport coefficients in the QGP,
we adopt their standard definition through a Fokker-Planck
equation where they amount to the first and second momen-
tum of the momentum transfer of the heavy-light scattering
amplitude squared, integrated over the thermal-parton distri-
butions (one could also employ a Kubo-type formula via the
zero-mode contribution to the charmonium spectral function
in the vector channel, see, e.g., Ref. [48]). At this level,
off-shell effects can be readily implemented by an additional
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FIG. 8. Single-parton spectral functions for light quarks (first row), gluons (second row), and charm quarks (third row) with χ = 0.6 (solid)
and 1 (dashed) as a function of energy for various 3-momenta in each panel. From left to right, the four columns correspond to temperatures
of T = 194, 258, 320, and 400 MeV, respectively. The χ = 1 results are taken from Ref. [28].

energy convolution over the light-parton spectral functions.
However, since also charm quarks acquire widths which
are not small, the inclusion of their spectral width is also

warranted. This has been worked out in Ref. [19] employing
the Kadanoff-Baym equations, resulting in the following
expression for the HQ friction coefficient (or relaxation

FIG. 9. The imaginary part of the S-wave charm-light T matrices in the color-singlet channel at different temperatures. The T matrix is
displayed for four different values of the center-of-mass momentum (pc.m.) in each panel. The χ = 1 results are taken from Ref. [28].
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rate):

A(p) =
∑

i

1

2εc(p)

∫
dω′d3p′

(2π )32εc(p′)
dνd3q

(2π )32εi(q)

× dν ′d3q′

(2π )32εi(q′)
δ(4) (2π )4

dc

×
∑
a,l,s

|M|2ρc(ω′, p′)ρi(ν, q)ρi(ν
′, q′)

× [1 − nc(ω′)]ni(ν)[1 ± ni(ν
′)]

(
1 − p · p′

p2

)
. (40)

As before (recall Sec. II), εi/c, ρi/c, and ni/c are the dispersion
relations, spectral, and thermal-distribution functions for
partons i/c, respectively, δ(4) is a short-hand notation for
the energy-momentum conserving δ function in the 2 → 2
scattering process, and dc = 6 the spin-color degeneracy of
charm quarks. The summation

∑
i is over all light-flavor

quarks and gluons, i = u, ū, d, d̄, s, s̄, g, where the masses
for light and strange quarks are assumed to be the same.
In the above expression, the quasiparticle approximation
is only applied to the incoming charm quark by assigning
it a sharp energy εc(p) at momentum p, while all other
partons are treated via off-shell integrations. We expect this
approximation to be reasonable for charm-quark widths that
can be larger than the temperature but are still smaller than the
charm-quark on-shell energy, which is in practice the case for
the interactions considered here. The heavy-light scattering
matrix elements, |M|2, in Eq. (40) are related to the T matrix
in the center-of-mass frame by∑

a,L,s

|M|2 = 16εc(pc.m.)εi(pc.m.)εc
(
p′

c.m.

)
εi

(
p′

c.m.

)
dci

s

×
∑

a

dci
a

∣∣∣∣∣4π
∑

L

(2L + 1)T a,L
ci

× (Ec.m., pc.m., p′
c.m.)PL(x)

∣∣∣∣∣
2

(41)

with the color and spin degeneracies of the two-body system,
dci

a,s. The heavy-light T matrix, T a,L
ci (Ec.m., pc.m., p′

c.m.),
is calculated in the center-of-mass frame in all possible
two-body color channels, a, and partial-wave channels,
L (expanded up to L = 8 to ensure convergence at high
momenta). The center-of-mass energy, Ec.m., incoming
center-of-mass momentum, pc.m., outgoing center-of-mass
momentum, p′

c.m., and scattering angle, x = cos θc.m.,
are expressed as functions of E , p, q, p′, q′, through the
transformation in Eq. (9). Instead of only the moduli of pc.m.

and p′
c.m., their explicit vector form is required here [19]:

pc.m.‖ = εp2 p1‖ − εp1 p2‖√
son

, pc.m.⊥ = p1 p2‖ − p2 p1‖
|p1 + p2| , (42)

with ‖ and ⊥ indicating parallel and perpendicular to
the relative velocity, respectively, and likewise for the
outgoing (primed) momenta. In Fig. 10 we plot our results
for the friction coefficient A(p) with the mixed confining
potential (χ = 0.6) in comparison to the results with a purely

FIG. 10. The charm-quark friction coefficient at different tem-
peratures for χ = 0.6 (solid) and 1 (dashed). The χ = 1 results are
taken from Ref. [19].

scalar confining potential (χ = 1). We stipulate that both
calculations are carried out for a thermal QGP medium which
satisfies the constraints from the EoS and HQ free energy.
With the vector component in the confining potential, the
low-momentum values of the relaxation rate are enhanced
by several tens of percentages, but the more significant effect
is the increase at higher momenta, for the same reasons as
discussed above in the context of the single-parton spectral
functions and their scattering amplitudes. For example, for a
charm-quark momentum of 4 GeV, the enhancement is about
a factor 2.6, while at momenta of 10 GeV it reaches an even
larger factor of ≈3.5 at the lowest temperature. However,
at the latter momentum, radiative contributions are expected
to be large. At first sight it might be surprising that the
enhancement due to the vector component in the confining
potential also transpires at low momenta although the perti-
nent T -matrix amplitudes are smaller than those with purely
scalar confining potential at low center-of-mass momenta
(cf. Fig. 9). To some extent this can be understood due to
the fact that even at vanishing HQ momentum the thermal
motion of the surrounding medium partons creates a finite
momentum in the center of mass, but there is also a nontrivial
interference effect in the expression (41) that plays a role.

To scrutinize different contributions, we take the charm-
light contribution (cq̄) for A(p = 0) at T = 194 MeV as an
example and collect in Table IX partial-wave components of
the collision rate [obtained by replacing (1 − p·p′

p2 ) by 1 in
Eq. (40)] and relaxation rate up to angular momenta of 2 (note
that for the collision rate the interference contributions should

TABLE IX. The contributions of various partial-wave compo-
nents (specified in the first row) of the cq̄ scattering amplitude
to the c-quark collision rate (lines 1 and 2) and relaxation rate
(lines 3 and 4) for p = 0 at T = 194 MeV (in units of fm−1).

LL′ 00 11 22 01 = 10 12 = 21

χ = 1 0.8058 0.3321 0.0678 0.0038 0.0016
χ = 0.6 0.7308 0.2943 0.0533 0.0022 0.0014
χ = 1 0.1501 0.1138 0.0354 −0.0521 −0.0306
χ = 0.6 0.1522 0.1313 0.0359 −0.0322 −0.0305
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FIG. 11. The charm-quark spatial diffusion coefficient for χ =
0.6 (solid) and 1 (dashed). The χ = 1 results are taken from
Ref. [19].

vanish, whereby the small numerical values quoted in the
table, which are of the order of one to two permille of the total,
are an indication of our numerical accuracy). We denote by
“LL′” the terms ∼T L(T L′

)∗ = ReT LReT L′ + ImT LImT L′ +
i(−ReT LImT L′ + ImT LReT L′

) in Eq. (41), where the imagi-
nary part vanishes by definition since T L(T L′

)∗ + (T L )∗T L′ =
2(ReT LReT L′ + ImT LImT L′

). In accord with the T -matrix
behavior at low momenta in Fig. 9, the collision rate for
χ = 1 is larger than that for χ = 0.6 for each partial-wave
component, leading to a larger total collision rate at low mo-
mentum. The situation is more involved for the relaxation rate:
The diagonal partial-wave components (L = L′) for χ = 1
are smaller than those for χ = 0.6, and one also notices the
relatively more important role of the higher partial waves
compared to the collision rate (which is dominated by the
S-wave contribution). In addition, the presence of the p · p′
term, together with the Legendre polynomials, causes negative
interference components (L �= L′), and their absolute values
are larger for χ = 1. On adding the diagonal and interference
components the relaxation rate for χ = 0.6 becomes larger.

The widely discussed spatial diffusion coefficient, Ds =
T/[McA(p = 0)], is related to the relaxation time, τc =
1/A(p = 0), at vanishing 3-momentum of the heavy quark. It
is commonly scaled by the inverse thermal wavelength, 2πT ,
to render a dimensionless quantity for which we display our
results in Fig. 11 as a function of temperature. The χ = 0.6
result shows a mild reduction relative to the χ = 1 one, which
is again caused by the larger average momenta of the thermal
partons probed by the charm quark.

The increase in the elastic charm-quark friction coefficient,
and in particular its harder 3-momentum dependence, found
here could have significant ramifications for the phenomenol-
ogy of open HF probes in URHICs. In a recent work [49] a
good description of D, Ds, and 
c observables in heavy-ion
collisions has been achieved using the T -matrix-based trans-
port coefficients from Refs. [17,50], which are based on the
internal energy (U ) as a potential proxy but with an extra K
factor of about 1.6. The pertinent results for A(p, T ) (with
K = 1.6) are slightly larger than the ones from the SCS with
χ = 1 at low momentum but much larger at higher momenta.
However, with our new χ = 0.6 results, the low-momentum
deficit can be overcome, while they still fall below the high-

momentum results of the U potential with K = 1.6. Yet the
inclusion of radiative processes, as computed within the T -
matrix approach in Ref. [51] could result in a total transport
coefficients that are quite comparable to the one employed
in Ref. [49], without the need of any phenomenological
adjustments.

VII. CONCLUSIONS

We have augmented the thermodynamic T -matrix ap-
proach to include the effects of spin-dependent interactions
between heavy quarks, including spin-orbital, spin-spin, and
tensor contributions, as part of the more general objective to
assess 1/MQ corrections. Toward this end we have utilized
the Breit-Fermi Hamiltonian to derive these interactions in
the context of the Cornell potential as the two-body interac-
tion kernel for the T -matrix equation. When benchmarking
these interactions using the experimentally observed split-
tings in vacuum quarkonium spectroscopy, we have found
that, in accordance with previous studies, a moderate ad-
mixture of a Lorentz-vector component in the confining
potential allows for a much improved description especially
in the charmonium sector. We have then implemented the
amended interaction kernel into our quantum many-body ap-
proach for the QGP. While the spin-dependent interactions
themselves are expected to be of minor importance (and
therefore have been neglected), the vector component of the
confining potential turns out to be rather significant. After
self-consistently refitting the in-medium HQ free energies
and the QGP EoS under the inclusion of the vector compo-
nent, quantitative modifications of the QGP properties toward
shorter distances (larger momenta) were found. A strong
broadening of the thermal-parton spectral functions persists
to higher 3-momenta as a consequence of an increased in-
teraction strength in the thermodynamic two-body scattering
amplitudes at larger momenta. The harder amplitudes and
spectral functions are a consequence of the relativistic correc-
tions induced by the vector part of the confining interaction,
as opposed to a purely scalar interaction. This suggests that
the nature of the confining force in the QCD vacuum has
an impact on the properties of the strongly coupled QGP,
with liquid properties that extend to higher resolution scales
compared to a purely scalar confining force. Finally, we have
applied the modified setup to calculate the friction coefficient
of charm quarks. As compared to the results with a purely
scalar string potential, a slightly larger relaxation rate is found
at small momentum (and a pertinent decrease in the diffusion
coefficient), but a much larger increase of a factor of ≈2−3
(or more) at momenta of around 5 GeV (and above). These
are promising features to make a significant step forward in
achieving a quantitative description of HF diffusion in heavy-
ion collisions at RHIC and the LHC based on microscopically
and nonperturbatively calculated transport coefficients. Work
in this direction is in progress.
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